
 1

The Implementation of a Server
for a Distributed Class Algebra Database System

Chen Chun-Ting, Lo Tse-Win, Hsieh Chih-Ming, Hou Kai-Liang, Daniel J. Buehrer

Institute of Computer Science and Information Engineering
National Chung Cheng University, Chiayi 621, Taiwan

dan@cs.ccu.edu.tw

ABSTRACT

We have implemented a class algebra database server
with a distributed client/server architecture. This includes
a nice object-oriented structure, an easy-to-use interface,
an Offset Table that hides object storage, and objects
including User objects, Class objects and standard objects.
These objects are serialized onto persistent storage. In
order to solve the single inheritance problem of the Java
language, we have designed an LClass structure that meets
the needs of multiple inheritance for class algebra. For
improving performance on searches, an Inverted
Attribute/Relation Table has been created. Also a clear
interface which includes add/get/set/delete/change/invoke
methods of classes, relations and attributes, and a class
algebra query language has been provided for the client.

1. INTRODUCTION

In the past twenty years, relational database systems
have proven to be quite successful for developing
traditional business database applications. The rows in
relational tables represent individual objects or data. These
rows are usually called tuples or records in a relational
database. These attributes are the columns of the table.

However, traditional relational database systems have
shortcomings for more complex applications, such as
engineering design and manufacturing (CAD/CAM),
images and graphics databases, scientific databases,
geographic information systems and multimedia databases.
These newer applications have more complex structures
for objects, longer-duration transactions, new data types
for storing images or large textual items. Today, with the
benefits of object-oriented concepts, object-oriented
databases have been proposed to meet the needs of these
more complex applications.

In this paper, first we briefly describe the reasons for
implementing a class algebra database. Then we introduce
some background that is basic to the implementation. This
background includes a brief introduction of the Java
programming language [1], properties of Java RMI [2] and
reflection [3]. In Section 3, we can see how important
class algebra [6-8] applications can be in each field of
computer science. This paper describes a prototype class

algebra database which was implemented as a secure
client-server multiple user architecture.

2. CLASS ALGEBRA

Class algebra provides a mapping from normalized
class expressions to sets of objects. Sets, which are the
“extent” of classes, can be either classical or fuzzy sets,
although we have implemented only classical sets. A
query is an implicit definition of a set. This set consists of
objects that are in the extent of some class.

! Intent (Classes)

An intent is a normalized class algebra query. Intents
have two uses. For an explicit class or relation, the
intent gives typing constraints which are used to
restrict the assignments that can be made to that
explicit class’s objects or relation edges. For queries
(i.e. implicit classes) and implicit relations, the intents
are used to calculate the current value of the extent or
the current set of edges in the relation.

! Extent

For an explicit class, the extent is the set of objects
which have been declared to be in that class or one of
its subclasses. For a query (i.e. implicit class), we can
derive the extent by testing which objects satisfy the
query.

Class algebra has the advantages of object-oriented
concepts, such as inheritance, reflection, encapsulation,
and strongly-typed attributes, methods and so on. A class
is a data type of objects. An intent defines the structure
and behavior of objects of a particular type. This structure
includes attributes, binary relationships and methods
(behaviors). An object is an instance of its definition class.
Those objects that have been declared to be of class C
have attributes, relations and methods which satisfy the
constraints given by C’s intent. For example, all objects of
type Student have a name, a student ID, an advisor, a sex,
a set of methods, and so on. It would be best, however, if
the student were declared to be of type “Person”, and the
person’s current value were assigned to a new instance of
the “Student” subclass. In this way, the person could
graduate and be assigned to an Employee object with the
original object identifier unchanged.

 2

For object-oriented databases, classes provide the
schema of the database. The structure of the objects in the
database is described by the class intents. Objects and
classes are similar to the traditional databases in that there
are two kinds of information in the database, data and
schema (metadata). Classes describe the schema of the
object-oriented database system. Classes are also objects
in our data model. Each class has attributes, relations and
methods that are constrained by the intent of that class.

Class algebra is an algebra of classes and their
operators, which include the standard Boolean operators, a
dot operator for attributes and binary relations, a selection
operator, an ISA superclass/subclass relation, and
assert/remove operators. Each class expression maps to a
unique normalized version, called the intent. The Intent is
used as the label of a node in the ISA hierarchy and this is
a normalized class algebra class expression’s class name.
The extent of the class is the set of all objects for which
that membership expression returns a “true” value.

A class expression (query expression) is normalized
into a Sorted Disjunction Normal Form (SDNF for short)
that describes constraints of the corresponding set of
objects. The SDNF is an intent for either an explicit class
or a query (i.e. implicit class, also called the query class).
The explicit class has a list of all members that have been
declared to always satisfy that intent regardless of what
assignments are made. For an implicit (query) class, the
value of the implicit class is computed each time that the
implicit class is invoked. The state of an object will
change if attributes or relations of that object change. So
an object will move from one implicit class to another
implicit class when the state of that object changes. Since
the state of objects will change, the value of an implicit
class possibly changes each time that the corresponding
query expression is evaluated.

The binary relations are also either explicit or implicit
in class algebra. An explicit relation is stored as a domain
class, a range class, a relation name and a set of Oid cross
products. An implicit relation is stored using a domain
class, a range class, a relation name and the defining
SDNF query for the domain and SDNF query for the range.
The SDNF queries produce implicit subclasses of the
domain and range classes. The implicit relation is
evaluated to get an explicit relation which includes an
edge from every domain object to every range object.

The main advantage of using class algebra is that it
solves the “containment” problem of determining whether
or not one class expression produces a subclass of another
class expression. Although it may take exponential time
to compute the SDNF forms of class algebra expressions,
the SDNF forms may be compared for “containment” in
linear time. Therefore, both explicit type constraints and
implicit query expressions are quickly organized into a
ISA hierarchy to help the user locate appropriate objects.
Logically equivalent queries can also be detected. Most

other query algebras involve variables which make them
run either very slowly or, as in the case of non-stratified
Prolog programs, cause the containment problem to be
uncomputable.

3. SERVER IMPLEMENTATION

With the benefit of the Java programming language,
attributes and methods in our database are strongly typed.
By means of Java reflection, a user can inspect
information that includes modifiers, fields, methods and so
on. There is a clear RMI interface for the clients to
manipulate the objects, attributes and relations. Also,
serialization [12] allows objects to be serialized as an
entity into persistent storage. In this section we discuss the
implementation of the distributed class algebra database
server.

3.1 The Big Picture

Since the architecture of our database is distributed,
objects may be located on several servers in the network.
A client needs to connect to all servers available on the
network. As Figure 3-1 shows, first a client needs to
choose a server from the network that has read and write
permissions for the client. We call this server a write server.
Then, this client connects to the write server, server A, and
gets machine signatures of other servers available on the
network from this server A. Information in a machine
signature includes a machine name, a TCP/IP address, an
URL address, a public key, a random number and an
encrypted random number. After connecting to server A
and receiving machine signatures, the client connects to
other machines if needed.

3.2 Distributed OODB
As we mentioned in the previous section, objects may

be distributed across several servers on the network. A
user needs to choose a write server for each chosen
writable database. The server will prevent multiple users
from being assigned write capabilities at the same time.
Also a user can connect to several servers that have a read
permissions for various databases. Each time when a user
connects to a server, the server will return a session to the

Figure 3-1. Connections between clients and

servers.

Database
Server A

Database
Server B

Database
Server N

Database Client

invocation

invocation

 3

user. Our user interface will union the results of queries
from the servers that he has connected to, and delegate the
updates to the appropriate write servers.

3.3 Server Architecture

Figure 3-2 shows the architecture of a class algebra
database server. When a client requests a connection to a
database server, the client must create a login process and
communicate with the secure login interface of the server.
If the user name and the user password are valid, the
server creates a remote session for that user and returns a
stub [2] of that remote session to the client. The session
includes the remote interfaces that the server provides.
These interfaces include methods to modify classes,
objects, attributes, relations, queries, and so on.

3.4 Abstract Class Hierarchy

In this section, we will show an abstract hierarchy
(Figure 3-3) to describe the relations between each
component of the server machine. This abstract hierarchy
is an overview of the server. We do not describe details
here. As Figure 3-3 shows, a user can login (connect) to
the other machines and then invoke methods on objects
from these other server machines. Here, we assume each
machine represents a server. A server has many users that
can connect to it. A user has classes that he has declared.
A class may have superclasses or subclasses. Also, this
class may have objects in its extent. Each object can have
binary relations, attributes and methods.

3.5 Object Identifier (OID)

Each object in our database has a unique object identifier

(OID for short). The object identifier identifies a unique
object in a database. If an object was deleted or removed,
the unique OID of that object cannot be used by another
object. The OID in our data model is composed of three
fields, and these fields, are separated by commas in the
OID string (as Figure 3-4 shows).

In our database model, there are three types of objects
that must be stored into external object files. They are the
User objects, Classes, and the objects which are instances
of classes. These types of objects use the same triple
structure (Figure 3-4) for their object identifiers, so it is
necessary for us to distinguish them from each other.

In a User object, the first field has a tag of “USER”.
The second field represents the group that the user joined,
and the third field stores the name of the user. In a Class
object, the first field indicates the owner of this Class and
the second field is a “MetaClass” tag. The third field of a
Class Oid stores the class name. In an Object, the first
field stores the name of the owner of that object, the
second field stores class name, which is the declared class
of that object, and the third field stores the object number
which is generated uniquely by the declared class of the
object. (see Fig. 3-5.)

3.6 OidObject Structure

Here we describe the object structure. With the
serialization functionality of the Java programming
language, we have designed an OidObject structure, which
can be serialized/de-serialized into external object files
through an input/output stream [12]. So the OidObject is
the basic structure that can be serialized/de-serialized
to/from object files in the database system.

As we mentioned in the previous section, there are
three types of objects that need to be written to external
storage. However, the only object that can be written to
external storage is an OidObject object. This problem is
solved with careful design of the OidObject. We design an
OidObject as a capsule that can store all kinds of objects
inside it, and then this capsule can be written out to or read
from object storage, a disk file, through the
ObjectOutputStream [12] mechanism of Java Serialization.

Figure 3-2. Communications between client and

server.

Figure 3-3. Abstract Server Architecture.

[OID_Field1, OID_Field2, OID_Field3]
Figure 3-4. OID structure.

User: [“USER”, GroupName, UserName]

MetaClass: [UserName, “MetaClass”, LClassName]

Object : [UserName, ClassName, ObjectNumber]

Figure 3-5. OIDs of three types of objects, User,

MetaClass and Object.

Server EnvironmentClient Environment
Secure
Login

Interface
Login

process

Session Stub
Remote Client

Session
(4) Start

communications

(2) Create a new client sessoin

Database
Server

Interface

Object Storage

Data Server

(1) Login request

(3) Return a session

Machine

Machine

login(m-n)login(m-n)login(m-n)login(m-n)

User
m-nm-nm-nm-n

Class Object

Methods

Relations

Attributes
m-nm-nm-nm-n

m-nm-nm-nm-n

m-nm-nm-nm-n

m-nm-nm-nm-n

m-nm-nm-nm-n

Groups

join(m-n)join(m-n)join(m-n)join(m-n)

SubClass

SuperClass

m-nm-nm-nm-n

m-nm-nm-nm-n

invokeinvokeinvokeinvoke

setAttr/getAttrsetAttr/getAttrsetAttr/getAttrsetAttr/getAttr

 4

How is this done? In Java, all objects are subclasses of
class Java.lang.Object. In the definition of class OidObject,
there is a field called “object”, which is of type
Java.lang.Object. Objects that are subclasses of
Java.lang.Object can be assigned to this field. So, User
objects, Class objects and non-class objects can be
encapsulated into an OidObject. An object that could be
written to or read from external storage must implement a
Serializable interface [12] or extend a class that is
serializable. The OidObject class implements the
Serializable interface, and it can be read from Java
ObjectInputStream [12] and written to Java
ObjectOutputStream.

3.7 User Objects

A User object keeps information and the state of a
database user. Here is the information included in the User
object:

! User Name
A User Name represents the owner of the database.
He has the capability to assign his method call
capabilities (e.g. read/write/delete) to others.

! User Groups
The names of groups which this user has joined.

! Encrypted Password
An Encrypted Password is used to check the user’s
login password. Each time the user requests to change
his password, the new password needs to be stored in
this field.

! Classes (LClasses)
“Classes” is a set that records the LClasses (described
in the next section) that the user has declared. When
the user declares a new class, the server must save this
new class in this set. When the user deletes a class,
that deleted class and the subclasses which have no
other direct superclass, along with their relations,
must be removed from this set.

3.8 MetaClasses

We defined the LClass as follow:

public class LClass implements java.io.Serializable {
 private String name;
 private LCatalog attributes;
 private Hashtable methods;
 private HashSet supers;
 private HashSet subs;
 private HashSet instances;
 private HashSet relations;
 private HashSet inverseRelations;
}

where the “name” means this class’s name, “attributes” is
the field names and types, and “methods” as all methods
of the class that we can invoke. The “supers” indicates the
super classes. Similarly, “subs” indicates the sub classes.

We believe that every user has the right to change his
class definitions, and also has the right to keep any data
that he has stored into the database. So there is something
incompatible between these two ideas. We use a special
version control mechanism to balance them. We define
two kinds of versions: Catalog Versions and Attribute
Versions. Every time that the class owner add a new
attribute, then the database system issues an Attribute
Version to the new attribute. The Attribute Versions will
never repeat.

public class LVersion implements java.io.Serializable,
Comparable {
 String owner;
 int verno;

Figure 3-6. Capsules and Objects.

public class OidObject implements Serializable {

 private String userName; // userName.

 private String className; // which class, ref by ClassTable

 private String objectNumber; // object id itself, used for OidTable

 private LVersion version; // object version.

 private Object object; // keep Real Object.

 /* for optional attributes, pairs of AttributeName:AttributeValue. */

 /* AttributeName and AttributeValue are of type String. */

 private Hashtable optionalAttributes;

 /* for relations (both required/optional) */

 private Hashtable relations;

 private Hashtable inverseRelations;

 private String currentClass; // must be a subclass of className.

}

Figure 3-7. OidObject class.

Capsule

Object Storage

User
Object

Capsule

MetaClass
ObjectCapsule

Object

 5

}

 The “owner” is a combination of Host and UserID. It is
assumed that user names are unique on the net, in the same
way as email address. The version number, “verno”, is
produced by a counter, and it is always increases after
every issue of a new version number. Whenever the
attribute is updated (no matter whether by add or delete),
the Catalog Version will increase, and the Version will
pass to all subclasses. So we can know who made the
update.

 Within the mechanism above, we have built a
multi-layered data structure to handle the changes to the
catalog:

public class LCatalog implements java.io.Serializable {
 private Matrix data;
 private String classname;
}

The “data” field is a 2D matrix to record every change of
the catalog. The table format looks like this:

Versions ObjsCounter AttrsCounter Attr1 Attr2 Attr3

Ver1 50 3 true true true

Ver2 40 2 true true

Ver3 100 2 true true

Ver4 137 1 true

Ver5 0 1 true

Figure 3-8. Table of Object Versions.

 The “Versions” field indicates the Catalog Version.
“ObjsCounter” indicates the number of objects which have
been created for this version. “AttrsCounter” indicates the
number of attributes for this version. The union of the
attributes that we have used to create objects is sorted by
Attribute Version.

 We force users to only use the newest catalog to save
new data. By using the mechanism above, the user can still
read his old data.

 The “methods” field in LClass is a hash table whose key
is the method name, and whose value is a java bytecode
file name. The user can write his own method as a class,
and upload it to the server, as follows:

public class Method {
 Object invoke(Object thisobject, Object[] parameters);
}

 When the user invokes some object’s method, the server
will search for the registered java bytecode file, and then
load it using a ClassLoader. Then it will call the method

“invoke”, and pass “thisobject” from the query result, and
parameters to the method, then get the return value to send
to the user.

 For preventing name collisions of methods, the server
will add the user name to the class name of the bytecode.
Otherwise, because of name collisions among methods,
there would be some trouble for Java’s ClassLoader.

3.9 Object Storage

! The architecture of this implementation includes an
object file and an object offset table. An object file is
a logically persistent storage. We can serialize objects
into the object file. An object offset table maps an
object identifier (OID) to the offset address in the
object file.

3.10 Attributes

Objects have attributes. Attributes represent an
object’s properties, states, or other qualities. For example,
a car has a color and a length attribute. Here we define
attributes by variables of Java classes.

Variables defined in classes are required attributes.
Class Algebra allows an object’s attribute to be created
dynamically. This could be done with Java’s inheritance
mechanism. For example, when a user wishes to add a new
attribute, named “height”, to a class, named “Student”, the
server will add a new class with a variable of “height”, and
other variables and methods that are inherited from its
Student ancestor class. We name this new class “Student1”.
So class “Student1” has all of the attributes and methods
inherited from class “Student” and its ancestors, including
the new attribute, “height”.

A problem occurs when the user makes a reference to
“Student”. Since users do not know the inside mechanism
of the database server, we have to provide an interface so
that the user does not need to know which class, “Student”
or “Student1”, he has referred to. The approach is to
design a ClassMap, which is a hash table that maps a class
name to its effective class name, i.e. “Student” to
“Student1”. Each time that a user accesses a class which is

Figure 3-9. Offset Table.

ObjectID: A

ObjectID: C

ObjectID: B

...

ObjectID: D

File Offset

File Offset

File Offset

File Offset

...

Offset Table

Effective Object: D

Effective Object: A

Effective Object: B

...

...

Effective Object: C

Object File

 6

given by its class name (e.g. “Student”), the class returned
(e.g. “Student1”) is always its effective class.

Since the Java language has single inheritance, we
need a different way of inheriting attributes from a
superclass to a subclass. So we create a hash table, called
“required attributes”, that stores the attributes which are
inherited from superclasses. This hash table maps an
attribute name to an aggregate structure which contains the
attribute name, an attribute type and an attribute value.

Objects can also have optional attributes. An optional
attribute is an attribute that has no inherited typing
constraints. A hash table was created in order to store the
values of these optional attributes. Also this hash table
maps an attribute name to an aggregate structure which
contains the attribute name, an attribute type and an
attribute value.

Attribute editors and attribute viewers are two kinds
of interfaces for accessing the value of an attribute. An
attribute editor uses the setAttribute interface of a Java
Bean. It can change the value of an attribute to a new
value. An attribute viewer can only use the getAttribute
interface of the Java Bean. It simply returns the value of
the attribute. These two kinds of interfaces, the attribute
editor and attribute viewer, are provided by the user who
defines a new primitive attribute class. For example, the
attribute editor for an MPEG-4 object may provide editing
methods, such as adding a scene or inserting an object.
The attribute viewer for an MPEG-4 object may simply
provide a play method that displays the MPEG-4 stream.
These new primitive objects may then be added into cells
of the user interface’s grid.

3.11 Attribute/Relation Inverted Table

Class queries often involve searching for a given
value of an attribute or relation. We have designed a
mechanism for quickly responding to such queries. The
mechanism is an Attribute/Relation Inverted Table. As
Figure 4-12 shows, the Attribute/Relation Inverted Table
maps an attribute and its value to a set of Oids, where
these Oids point to exactly those objects that have that
attribute and its corresponding value. Also an
Attribute/Relation Inverted Table maps a relation to a set
of Oids where these Oids have that value for the relation.

At the time that an object is created, all attribute
values (both required and otional), and relation values
must be added into an Attribute/Relation Inverted Table.
When an attribute value or a relation value of an object is
changed, the corresponding Oid set of that object must be
modified. Also the modification of the Attribute/Relation
Inverted Table must be done when an object is removed or
deleted.

3.12 Relations

In our database model, there are two kinds of relations.

They are explicit relations and implicit relations. An
explicit relation includes a domain class, a range class, a
relation name and a set of Oid cross-products, where the
domain the and the range class are LClasses. Objects that
are in the left side of a cross-product must satisfy the
intent of the domain class and objects that are in the right
side of a cross-product must satisfy the intent of the range
class.

An implicit relation includes a query expression of a
domain class, a query expression of a range class and a
relation name. Objects that return a true value for the
query expression of the domain class will be selected, and
objects that return a true value for the query expression of
the range class will also be selected. The implicit relation
represents the cross product of these two sets. An implicit
relation is usually made up by unioning subrelations which
all have the same name, but which represent different
cases of the relation.

The major difference between implicit relations and
explicit relations is that the result of implicit relations is
computed each time from its intent. If the current state of
database is different from previous state, the result of a
class expression may be different.

As we mentioned previously, an implicit relation in a
LClasses contains a query expression of the domain class,
a query expression of the range class, and a relation name.
An explicit relation contains a domain class, a range class,
a relation name and a set of pairs of Oids. Also the
inverses of implicit or explicit relations are kept in
LClasses. These inverse relations are good for inverse
queries from range classes to domain classes. Explicit
relations are also stored in the objects themselves.
Relations in objects are all explicit ones, and they are
recorded in the form of a set of range Oids.

3.13 Method Invocation

We use Java’s strongly-typed methods to implement
behaviors. That is, methods in the Java language have
types. The user can call these methods if they have a
public access tag. So users can invoke methods from
objects. We have designed a secure invocation approach
for the database server. The approach is that when a user
wants to invoke a method on some objects, the user will
communicate to the Secure Invocation Interface. That user
must specify the method name, arguments and Oids, on
which the invocation will occur. Then the Secure
Invocation Interface will check whether this user has
permission to invoke the method on these objects. If the
check is passed, the Secure Invocation Interface will
delegate invocations to the Generic Invocation Interface.
Otherwise an error object that indicates an illegal access
will be returned. After the check is passed, invocations
will be continued by the Generic Invocation Interface. The
Generic Invocation Interface will then invoke methods
from those specified objects. Also error objects, that

 7

indicate objects on which the invocations have failed, will
be returned to the user from the Generic Invocation layer.

There are objects that may be located on some other
servers on the network. At this time, the write server will
delegate invocations to the other servers. So servers in our
database model provide an invocation interface to other
servers.

3.14 The Query Language and Interfaces

The context free grammar of the class algebra query
language of the database server is given below. We use
the Java-based tools JLex [4] and CUP [5] to parse these
queries.

<classexpr> ::= <classexpr> '+' <classexpr> //union
 | <classexpr> '~' <classexpr> //not (same as &~)
 | <classexpr> '-' <classexpr> //difference
 | <classexpr> '*' <classexpr> //intersection
 | '('<classexpr>')'
 | <dottedExpr>
 | <rangeList>
 | <attrName>
<dottedExpr> ::= <optHome> <dottedRelns> <optAttr>
<optHome> ::= 'home.' | <empty>
<dottedRelns> ::= <pathPart> | <pathPart> '.' <dottedRelns>
<optAttr> ::= <attrExpr> | <empty>
<attrExpr> ::= <aggrFcn>'(' <classexpr> ')'
 | <attrName>
<aggrFcn> ::= 'cnt' | 'avg' | 'sum' | 'std' | 'min' | 'max'
<arithop> ::= '+' | '-' | '*' | '/'
<pathPart> ::= 'classes' //return classes declared by the user
 | 'extent' //return a set of oids of the class.

| <relnName>
 | <relnName>'{' <wherecond> '}'
 | <relnName> <RangeList> <optWhereCond>
<optWhereCond> ::= <wherecond> | <empty>
<relnName> ::= <identifier>
<wherecond> ::=

<wherecond> '|' <wherecond> //”or”
| <wherecond> '&' <wherecond> //”and”

 | '~'<wherecond> //true if <wherecond> is not true
 | '-'<wherecond> //true if <wherecond> is false else true
 | <predicate> // may be 3-valued; true/false/unknown
 | <classexpr> (‘~’ | ‘-‘ |) (‘in’ | ‘has’ | ‘=’) <classexpr>

| <amount> ‘(‘ <classexpr> ‘,’ <wherecond> ‘)’
<amount> ::= <comparision op> <Integer> (‘’%’ | <empty>)

| all | most | some | no | always | usually | sometimes | never
<className> ::= <identifier>
<attrName> ::= <identifier>
<number> ::= <Integer> | <Float> | <Double> | <Long>
<Date> ::= <integer> '/' <integer> '/' <integer>

A class algebra expression consists of predicates,
selection conditions (where conditions) and operators
which include dotted operators and set operators (such as
union, intersection and difference). A “where” condition
consists of Boolean operators applied to “A in Y”, “A has

Y”, and “A = Y” predicates. We define “A in Y”, “A has
Y”, and “A = Y” as:

! “A in Y” means that all values of the attribute or
relation named A must have a true value for “this.Y”.
For example, a class expression,

classes[Student].extent{ age in [30:inf] },

means that the student whose age is greater than thirty
will be selected.

! “A has Y” means that all values of Y is contained in
all values for the attribute or relation named A. For
example, a class expression,

classes[Politician].extent{ nationalities has [“Taiwan”, “USA”] },

means that the politician whose nationalities include
Taiwan and USA will be selected.

! “A = Y” is logically equivalent to “(A in Y) & (A has
Y)”.

In the following, we will give some more examples of
queries to explain the usage of class algebra relations and
where conditions.

! A database user, called John, who wants to get the
extent, which is a set of oids, of the “Student” class
that John has defined would give the following query
expression (This query will return the oids of objects
in John’s “Student” class.):

user[John].classes[Student].extent

! Each of the students whose birthday is between
3/20/1977 and 5/15/1990.

classes[Student].extent{birthday in [“3/20/1977”:”5/15/1990”]}

! Each of the students who takes at least 7 courses.

classes[Student].extent{cnt(taking) in [7:inf]}

! Each of the students whose the sum of the credit hours
is at least 21.

classes[Student].extent{sum(taking.creditHours) in [21:inf]}

Here we give an example which are quoted from the
book of Elmasri and Navathe [14]. We will explain how to
use the SQL language and Class Algebra query
expressions to get the answers of this example.

Q: SELECT FIRSTNAME, LASTNAME, ADDRESS
 FROM EMPLOYEE, DEPARTMENT

WHERE DNAME = “RESEARCH” AND DNUMBER =
DNO

is equivalent to:

 8

 q := home.classes[Employee].extent
{worksAt has home.classes[Department].extent{dname =
“Research”}}

 q.firstname, q.lastname, q.address

or
q := classes[Department].extent{ dname =

“Research” }.inv(worksAt)
q.firstname, q.lastname, q.address

where there exists a relation, named worksAt, between
Employee and Department.

The query expression classes[Department].extent{ dname
= “Research” } will return a set of Department objects
which have an dname attribute and the value of this
attribute is “Research”. The “inv(worksAt)” relation is the
inverse of the relation relating workers to their department.
In this query, it gives all of the workers in the research
department.

Notice that the class algebra queries do not need to
join artificial keys like DNO in the employee class, but
simply follow a “worksAt” relation to find the departments
at which the user works. This is usually faster than joining
the DEPARTMENT.DNUMBER and EMPLOYEE.DNO
keys. Using multiple names like DNUMBER and DNO is
also confusing for programmers.

4. CONCLUSIONS AND FUTURE WORK

We have introduced the object storage, Offset Table,
Oid structure, LClass structure, Inverted Attribute/Relation
Table and interfaces, including add/get/set/delete/
change/invoke methods of classes, relations and attributes,
and a class algebra query language for a class algebra
distributed database server. We also have provided several
examples to show the power of the class algebra query
language.

The performance of the object storage system we
designed is not very efficient. So we need to provide an
efficient approach to increase the utilization and
performance of the object storage system. We can use a
data structure, such as a B+ Tree, as the index system of
the Offset Table, and we can apply an object buffering
system on the memory management system. With this
buffering system, the objects are not read one by one, but
page by page, where a page may contain several objects.
This can decrease the disk access time and improve the
performance of the object storage.

The assignments that include add/get/set/delete/
change/invoke classes, relations and attributes, are
separated as methods from the class algebra query
language. We should integrate these assignments into the
class algebra query language to provide a compact
interface for the users.

Acknowledgments: We would like to thank the National

Science Council of Taiwan for their support of the related
projects: NSC 892218E194009 A Voice XML 0.9
Development System and Evaluation System, NSC
892213E194006 A Secure, Distributed Java Database
System with Voice Input, NSC 872213E194005 Ontology
Reasoning System, NSC 862213E194004 An
Object-Oriented Java-Based Database System

5. REFERENCES

[1] Sun Microsystems Inc. Java Software Homepage.
http://java.sun.com

[2] Java Remote Method Invocation (RMI): Java 2 SDK.
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/in
dex.html

[3] Java Reflection: Java 2 SDK.
http://java.sun.com/products/jdk/1.2/docs/guide/reflec
tion/index.html

[4] Elliot Berk, “A Lexical Analyzer Generator for
Java™”, version 1.2, May 5, 1997. Department of
Computer Science, Princeton University.
http://www.cs.princeton.edu/~appel/modern/java/JLex

[5] Scott E. Hudson, “CUP: LALR Parser Generator for
Java™. Graphics Visualization and Usability Center
Georgia Institute of Technology”, Version 0.10j, July,
1999, modified by Frank Flannery, C. Scott Ananian,
Dan Wang with advice from Andrew W. Appel.

[6] Buehrer, Daniel. J., “From Interval Probability Theory
to Computable First-Order Logic and Beyound”, Proc.
of IEEE World Congress on Computational
Intelligence, Orlando, Fla, Jun 26-July 2, 1994,
pp.1428-1433.

[7] Buehrer, Daniel J., “An Object-Oriented Class
Algebra”, Journal of Computing and Information,
Proc. of Seventh International Conference of
Computing and Information (ICCI’95), Trent
University, Peterborough, Ontario, Canada, July 5-8,
1995, pp. 669-685.

[8] Buehrer, Daniel J., “Class Algebra as a Description
Logic”, International Description Logic Workshop,
Boston, AAAI Press Tech. Report WS-96-05, Nov.
2-4, 1996, pp. 92-96.

[9] Lee Jing-Ming., “A Java Object-Oriented Database
Server”, MS Thesis, Computer Science and
Information Engineering June 1999 Chia-Yi Taiwan
62107, Republic of China.

[10] Java Virtual Machine: JavaTM Standard Edition
Platform Documentation.
http://java.sun.com/docs/books/vmspec/index.html

[11] Java Serialization: Java 2 SDK
http://java.sun.com/products/jdk/1.2/docs/guide/seriali
zation/index.html

[12] Class Loader: Java 2 SDK
http://java.sun.com/products/jdk/1.2/docs/api/java/lan
g/ClassLoader.html

[13] Ramez Elmasri and Shamkant B. Navathe,
“Fundamentals of Database Systems”,
Addison-Wesley, 1994.

