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Abstract 

This paper presents a new method for modeling 
plant forms. Built on L-systems, Structural Tree 
Language, or STL, is introduced to describe tree 
shapes in language-based graphics model. Besides 
traditional L-system primitives (namely Drawing 
Components in STL), we propose a novel Structural 
Syntax to enhance the ability of STL, which can be 
used to describe the outline shapes as well as the exact 
branching behaviors of trees. In STL, we provide two 
methods to describe a tree, namely Outline 
Description and Branch Expansion Description. 
Outline Description can represent the branch area of 
a tree in a higher-level mechanism, which specifies 
only simple rules and shape definitions for trees; 
whereas Branch Expansion Description provides a 
lower-lever mechanism, which describes the detailed 
branch behaviors of trees. We also developed two 
modules for the user to build his or her trees 
interactively using these two methods respectively. 
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I. Introduction 
It is always an ambition of computer scientists to 

simulate the appearances of or even the interaction among 
real-world objects and scenes using graphic models. Among 
those models, language-based graphics model such as 
L-system is often discussed when considering 
self-resemblance objects and scenes in the real world, 
especially plants. L-system was originally proposed by 
Lindenmayer to simulate the development of multicelluar 
organisms [1]. While it was originally proposed for 
biological purposes, computer graphics researchers have 
found that L-system can be used to render attractive and 
sophisticated graphics objects based upon L-system 
formalisms. Under these formalisms, specific symbols such 
as F, L, and R are defined as drawing primitives, and strings 
comprised by those symbols are built as production rules to 
represent the appearances of plants.  

Beyond the basic idea, many additional parameters 
are introduced to enhance the modeling ability of the system.  
Chen  [3] demonstrates an effortless transformation from 
the 2D L-system to a 3D one.  Prusinkiewicz [4] 

introduces the environmental parameters into L-system. The 
Wildwood project presented by Mock [5] can generate a 
new plant by genetic algorithm. Chen and Jing [6] use 
context-sensitive grammar, named L

+
-System, instead of 

conventional context-free grammar to simulate plant 
hybridization using string substitutions. Also, in order to 
overcome the deterministic characteristics of context-free 
grammars, Samal, Peterson, and Holliday [7] devise the 
Stochastic L-system in which probability calculations were 
added to simulate the diversity for plants of the same kind.  

I.1 Turtle Graphic System  

The rendering of plants for L-system can be 
implemented by a Turtle graphic system [2]. In Turtle 
graphic system, a turtle is rambling about on the canvas 
with a pen fixed under its belly. The trail of the turtle would 
then be recorded on the canvas. Some text symbols are 
defined as commands to mandate the turtle�s behavior. The 
followings are typical command symbols and their 
respective meanings: 

F: Move the turtle forward (along its original 
direction), and leave a line segment. 

R (or -): Turn the turtle right by a predefined degree. 

L (or +): Turn the turtle left by a predefined degree. 

[: Save the status of the turtle (i.e., push its position 
and direction onto stack). 

]: Restore the status of the turtle previously saved 
(i.e., pop from stack). 

Assuming the starting direction of the turtle is the 
direction of positive X axis, with the above definitions and a 
predefined turning degree as 60 degree, the string 
FLFLFLFLFLF bears the following graph (Figure 1): 

 
Figure 1. Graph of string FLFLFLFLFLF in Turtle 

Graphics 

According to the concept of Fractal, we can define a 
starting symbol F for the Turtle Graphics, and the above 
string thus becomes a production rule:  
F→FLFLFLFLFLF.  

Figure 1 becomes the graph of the rule string 
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F→FLFRRFLF with a seed (starting symbol) F when the 
system applies the rule substitution once. 

 As another example, consider the production rule: 
F→FLFRRFLF with a seed F, we will obtain Figure 2 when 
the system applies the substitution once. If we apply the 
production rule 3 times, we will derive Figure 3, which is 
the famous Koch curve [1]. 

Figure 2. Koch curve  
 
Figure 3. Koch curve with triple substitution of the 

production rule 

I.2 L-System Basics 

Although the appearances of plants in the real 
world seem to be arbitrary and unpredictable, with fine 
inspection, however, we can find that most plants possess 
the characteristics of self-resemblance. Take a tree as an 
example. Every single branch of a tree is just the 
miniature of the whole tree. Therefore, we can define 
some simple but adequate strings and string substitution 
rules, called production rules, to model the whole tree. 
This is the major concept of the L-system. 

The shape of a graph generated by a Turtle-graphics 
system depends on the seed and the production rules 
provided by the user. In the L-system, often, for simplicity, 
the seed is a single symbol representing the command 
�forward� or is a single symbol without any meaning except 
for replacement purposes. We may carefully select suitable 
production rules to make our figures resemble real-world 
plants. And, of course, the starting orientation is upward. 
For example, consider the seed F and the rule 
F→F[RF]F[LF]F with the rotation angle predefined to be 30 
degree. When applying the substitution once, we�ll obtain 
the tree in the left of Figure 4. It resembles a portion of a 
plant. 

 
Figure 4. L-system plant with rule string 

substitution 1 times (left), 2 times (middle) and 3 times 
(right) 

With closer examination, one will find that the 
plant with two-time substitution actually resembles the 
plant with one substitution as a whole, and it looks like 
being assembled by the one-substitution plant piece by 
piece. We call this self-resemblance. Thus, the 
one-substitution plant could be considered as the growth 
rule of the plant in the real world. Figure 4 also presents 
a plant using this growth rule, which 3-time 
substitutions. 

Based on the above discussion, there are four 
fundamental components in an L-system: 

1. A set of instruction symbols:  Each symbol 
represents a command for the plant growth. 

2. Starting symbol or seed: This is where the 
substitution begins. Often, the seed is a single 
instruction symbol that represents the meaning 
of "drawing a line forward".  

3. Production rule: One or more text strings 
comprised of command symbols for symbol 
substitution. 

4. Substitution counts or iteration counts. 

Formally, a plant P modeled by the L-system is 
described as a 3-tuple P={S, P, I}, where S is the seed, P 
is the set of production rules, and I stands for the 
substitution count. The following abbreviations are used 
for convenience: Seed(P), and Product(P), are used here 
to represent the seed and the production rule set of plant 
T.   

I.3 Growth Models 

Prusinkiewicz [4] creates virtual plants by 
simulating the growth of plants with L-systems. By 
defining complicated parameters and computations, the 
growth and therefore the appearances of stems and 
leaves of a plant would vary according to the factors of 
its surrounding environment, especially the intensity of 
light. Often, an axiom (seed) is parameterized, and 
several production rules (string substitution rules) are 
presented and chosen by predefined probability when 
substituting rule strings. 

The following gives an example of the mechanism: 

Axiom  W:A(1)B(3)A(5) 

Production p1: A(x) → A(x+1) : 0.4 

Production  p2: A(x) B(x-1) :0.6 

Production  p3: A(x) < B(y) > A(z) : y< 4→    b(x+z) [ a(y)] 

The Axiom above can be expanded as: A(1)B(3)A(5)    
→ A(2)B(6)[A(3)]B(4), in which p1 is applied in A(1), p2 
is applied in A(5), and p3 is used in B(3). 

With carefully designed parameters and 
productions, rather vivid pictures of plants can be 
generated through the growing model, but it also results 
in involving complex computations and adding difficulty 
in understanding the graphic language. Also, it is 
difficult and even laborious to find a good rule of 
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computing parameters. A try-and-error method for a user 
to find good or even adequate rules is almost inevitable.  

II. Structural Tree Language (STL) 
In Structural Tree Language (STL), we shall 

narrow our study from the whole range of plants to only 
the species of trees. There are two major parts in STL: 
Drawing Components and Structural Syntax, both of 
which are described in the following.  

II.1 Drawing Components in STL 

The Drawing Components of STL are just those 
command symbols in a Turtle System. They are used 
here to specify the drawing actions of the Turtle to render 
the appearances of the trees. See the description of I.1 
Turyle Graphic Systems for the definitions of command 
symbols in Drawing Components of STL. 

II.2 Structural Syntax in STL 

Drawing Components described above represent 
common drawing primitives, therefore, in effect, they are 
adequate for all kinds of graphics. In contrast, "Structural 
Syntax" is developed specifically for tree modeling.  In a 
sense, Structural Syntax describes "what" a tree looks like, 
rather than "how" to draw it. Therefore, we may term 
Drawing Components as "low-level" constructs and then 
Structural Syntax as "high- level" ones. Our Structural 
Syntax in STL includes Growing Rules (R), 
Self-Resemblance Count (I), Stem Parameters (B、L), 
Branching Syntax, and Layout Description. 

II.2.1 Growth Rules ( R ) 

The Growth Rules deal with how a tree grows. 
Trees of the same species may have the same growth 
rules according their genes. Using the concept of macro, 
respective Growth Rules are grouped and are given 
respective names to enhance the readability. 

For example, consider the seed of a tree T: 

Seed(T) = [FFF][F[+F][-F]F][F[+F][-F]F] 

And  

Seed(T)' = R1R2R2 

R1=[FFF]  

R2=[F[+F][-F]F] 

Seed(T) and Seed(T)' are syntactically equivalent. 
However, Seed(T)' are more readable since it specifies 
clearly how the seed of tree T branches. Therefore, STL 
would adopt the later style of description. 

II.2.2 Self-Resemblance Count ( I ) 

The self-resemblance property of a tree is modeled 
by recursively substituting the strings of production rules 
in L-system. In typical L-systems, an individual plant has 
a single rule and thus a single substitution count. This is 
not the case in STL, in which a tree may have multiple 
rules, each rule for each branch, and may have different 
substitution counts for each rules.  The following syntax 
is used to describe the property: 

[ I <count> <rule>], 

Where <count> is a integer indicating the times of 
recursive substitution, and <rule> is a string of Drawing 
Components 

II.2.3 Stem Parameter (B, L) 

In order to allow for more reality and flexibility, 
two parameters L and B are incorporated in STL. B 
defines the broadness and L defines the length of the 
stems. The syntax of the two parameters are listed below: 

B = <default broadness> (<broadness decrement>) 

L = <default length> (<length decrement>) 

With the optional <broadness decrement> defined, 
the stems would become slimmer and slimmer while 
continuing branching. The latter the stem is materialized, 
the slimmer it is. The same case is applicable on the stem 
length described by L parameters. 

II.2.4 Branching Syntax 

For a L-system tree, new stems grow from the end 
of all of its stems. The number of stems will grow at 
some exponential order. Obviously it is not the case in 
natural  world [4], in which the number of branches is 
far much smaller. Prusinkiewicz and other researchers 
proposed many hypothetical mechanisms to simulate the 
branching constraint of real-world trees to avoid the 
exponential excess of stem numbers [13]. Here, we take 
a simplified approach to model the branching constraints. 
Our assumption is that a stem can have new branches on 
top of it only if there is enough free space for those new 
branches to occupy. Take Figure 5 as an example, the 
branch at the left side is failed because some existed 
stems already occupy the space it needs while the branch 
at the other side is succeeded because the space it needs 
is still free. 

Space occupied
Stem to grow
Existed stems

Branch
failed

Branch
succeeded

 

Figure 5. A Example of Branching Constraints 
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In STL, we define the following syntax to express 
the branching behaviors after those branching constraints 
are applied: 

 R {[R1], [R2], . . . , [Rm]}. 

Note: anything in [ ] denotes it is optional. 

The previous expression specifies that R has m 
branches. The nth symbol stands for the nth branch of R. 
If the nth symbol is Rn, the nth branch is succeeded and 
Rn is applied at the end of the branch; otherwise, the nth 
symbol is omitted representing that the nth branch is 
failed. For example, we have 

R1 = [F][+F][-F] 

R2 = [++F][-F] 

The expression Rn = R1{R1, R2, R1} means the 
three branches of R1 are all succeeded, and after their 
successes, R1, R2, and R1 are applied to each of the 
extended branches from left to right. The first branch of 
Rn is [F], the second is [+F], and the last is [-F].  
However, the above expression Rn is not complete, as 
we do not explicitly declare the branching rules for R1, 
R2, and R1 inside the {}. In the case that there is no 
further branching for those rules inside the {}, the 
expression should be rewritten as 
 Rn = {R1{, ,}, R2{,}, R1{, ,}}.  

Substituting R1 and R2 with their right hand side 
in Rn, we'll obtain Rn in Drawing Components:  

Rn = [F[F][+F][-F]] [+F[++F][-F]] [-F[F][+F][-F]]. 

Figure 6 demonstrates the visual representation of 
Rn. In this figure, The middle and right branches come 
from the first and the third branching rules of R1 (i.e., 
still R1), and the left branch comes from the second 
branching rules of R1 (i.e., R2). 

As another example, The branching rules 
embraced in { } can each be expanded to include their 
respective branching rules such as  

Rm = R1{R1{R2{,}, R2{,}, R2{,}}, R2{R2{,}, }, 
R1{R2{,}, R2{,}, R2{,}}}, 

Which, after expanded into Drawing Components, 
equals to 

Rm = [+F [++F[++F][-F]][-F]] 
[-F[F[++F][-F]][+F[++F][-F]][-F[++F][-F]]] 

 

Figure 6. Visual appearances of Rn applying 
branching rules 

As a summary, branching syntax provides a 
mechanism to describe the successive branches of all 
branches of a tree. When designing or appreciating a tree 
in STL using the branching syntax, the user can consider 

solely about how the branches would behave instead of 
fumbling about all those low-level Drawing Components. 
The branching rule expressions can be put inside Seed(T) 
or Product(T) for a given tree T. 

IV.1.5 Layout Description 

Besides using the branching syntax to describe the 
branching behavior of a tree, STL provides "Layout 
Descriptions" to describe the growth (layout) range of a 
tree. Basically, Layout Descriptions are names of typical 
geometric shapes such as rectangles, ellipse, and 
polygons, or the combinations of those typical geometric 
shapes. In STL syntax, Layout Descriptions are defined 
as the following: 

LAYOUT 

  (<color>) <shape <shape parameters> > 

   (<color>) <shape <shape parameters> > 

... 

ENDLAYOUT 

The Layout Descriptions should always be 
enclosed by LAYOUT, ENDLAYOUT pairs. Each line 
defines a layout shape with its color, shape name 
(command) and shape parameters. 

All shapes and their parameters usable in STL 
Layout Descriptions are listed below: 

Shape Shape Parameters 
Rectangle Starting Point, Width, Height 
Rounded 
Rectangle 

Starting Point, Width, Height, Angle of 
Rounded Corner 

Ellipse Starting Point, Width, Height 
Polygon Point1, Point2, ..., Pointn 

Table 1. Table of Layout Description Shapes and 
Parameters 

Shape color uses the color names in Delphi, such 
as clWhite, clRed... etc. 

For example, the following defines the Layout 
shape in Figure 7. 

LAYOUT 

 (clWhite) Rectangle (0,0), 200, 100 

ENDLAYOUT 
 

 

 

 

Figure 7. Layout Description example 

III.  Outline Description (OD) vs. Branch-Expansion 
Description (BED) 

Starting point

Shape height

Shape width
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Incorporating those Drawing Components and 
Structural Syntax, we propose two ways to describe a 
tree in STL, namely, Outline Description, and 
Branch-Expansion Description. 

In Outline Description, a tree is described as the 
following: 

<tree name> 

<root coordinate> 

<stem parameters> 

RULE 

<Production Rule 1> 

<Production Rule 2> 

. . . 

<Production Rule n> 

[ SEED 

<Seed> 

 ENDSEED ] 

LAYOUT 

<Layout Description 1> 

<Layout Description 2> 

. . .  

<Layout Description n> 

ENDLAYOUT 

That is, in Outline Description, we only specify the 
seed and the unexpanded rules of the tree along with the 
area for the tree to grow. The seed segment may be 
omitted if the seed is only a single F, as it is common in 
most conventional L-systems. 

In Branch-Expansion Description, the seed of a 
tree is expanded to incorporate the Growth Rules and 
other components in Structural Syntax to describe how 
each stem of the tree branches. A tree is described as the 
following: 

<tree name> 

<root coordinate> 

<stem parameters> 

RULE 

<Production Rule 1> 

<Production Rule 2> 

. . . 

<Production Rule n> 

SEED 

<Seed symbol string> 

ENDSEED 

The user describes her tree either by the Outline 

Description or by the Branch-Expansion Description. 
With the first description method, the user can specify 
some simple seed and production rules for recursion 
along with the area for the tree to grow. The 
responsibility to transform the original description to the 
Branch-Expansion from is left to the L-system program. 
Also, at times, the user may want to specify by herself all 
the branch rules for her tree. Under this circumstance, the 
second method is applied. 

To give a concrete example, consider the following 
description for a tree named 2Dtree: 

2DTree 

(76,150) 
L=10(0) 

B=1(0) 

RULE 

R1: [+F][-F] 

LAYOUT 

(clGreen)< RoundRect (0,0,180,192,7,7)> 

(clWhite)< RoundRect (55,30,40,15,4,4)> 

(clWhite)< RoundRect (35,125,76,30,5,5)> 

ENDLAYOUT 

The area specified by the Layout Description is 
shown in Figure 8 (left). The description above would 
then transformed into equivalent Branch-Expanded form 
listed below: 

2DTree 

(76,150) 

L=10(0) 

B=1(0) 

RULE 

R1: [+F][-F] 
SEED 
FR1{R1{R1{R1{R1{R1{,R1{,R1{,}}},R1{R1{,R

1{R1{,},R1{,R1{,}}}},R1{R1{,R1{,R1{,}}},R1{,}}}},
R1{R1{,R1{R1{,R1{,R1{,R1{,}}}},R1{R1{,R1{,R1{R
1{,R1{,}},}}},R1{R1{,R1{R1{,R1{R1{,R1{R1{,R1{,R
1{R1{,R1{,}},R1{,}}}},R1{R1{,R1{R1{,R1{,}},R1{,}
}},R1{,}}}},R1{R1{,R1{R1{,R1{R1{,R1{,}},R1{,}}},
R1{,}}},R1{,}}}},R1{R1{,R1{R1{,R1{R1{,R1{R1{,R1
{,}},R1{,}}},R1{,}}},R1{,}}},R1{,}}}},R1{R1{,R1{R
1{,R1{R1{,R1{R1{,R1{R1{,R1{,}},R1{R1{,R1{,R1{,}
}},R1{R1{,},}}}},R1{R1{,R1{,R1{R1{,},}}},R1{R1{,
R1{,R1{,}}},}}}},R1{R1{,},}}},R1{R1{,},R1{R1{,R1
{,}},}}}},R1{R1{,R1{,R1{R1{,R1{,}},}}},R1{R1{,R1
{R1{,},R1{,}}},R1{R1{,},}}}}}}}},}},},},R1{,R1{,R1
{,R1{R1{R1{R1{R1{R1{R1{,R1{R1{R1{R1{,},R1{,R
1{,}}},R1{R1{,R1{,}},R1{,}}},R1{R1{,R1{R1{,R1{R
1{R1{,R1{,R1{R1{,},}}},R1{R1{,R1{,}},}},}},}},}}},
R1{R1{,R1{R1{,R1{R1{,R1{R1{,R1{R1{,},R1{,R1{,}
}}},R1{R1{,R1{,R1{,}}},R1{,}}}},R1{R1{,R1{R1{,R
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1{,R1{,}}},R1{,}}},R1{,}}}},R1{R1{,R1{R1{,R1{R1{
,R1{,}},R1{,}}},R1{,}}},R1{,}}}},R1{R1{,R1{R1{,R1
{R1{,R1{R1{,},}},R1{,}}},R1{,}}},R1{,}}}},R1{R1{,
R1{R1{,R1{R1{,},}},}},R1{,}}},R1{R1{,},}},R1{R1{,
},R1{,}}},R1{R1{,},R1{,}}},R1{R1{,},}}}}}} 
ENDSEED 

Figure 8 shows the visual appearance of the tree 

described above. 

    
Figure 8. Tree Outline and the Rendered Result 

IV.2 Growth Strategies: Depth-First Growth vs. 
Breadth-First Growth: 

In convention, a tree in a L-system gets its 
branches grown by 'Breadth-Firstly' substituting strings 
in its production rules.  We name it 'Breadth-First 
Growth' as stems of the same level have their branches 
grown together. From the discussion of IV.1.4, it appears 
that the order of branching of stems can effectively alter 
the shape of the branches.  In general, those stems that 
branch earlier would dominate the following growth. 
That is, earlier formed branches would occupy the space 
and block or confine the growth of latter branches. As a 
consequence, a tree applying a different growth strategy, 
i.e., Depth- First Growth, would have a greatly different 
shape from the original one. In Depth-First Growth, 
branch continues to grow until it cannot branch anymore 
because the boundary of the tree or the self-resemblance 
count of the particular rule has been reached. We discuss 
the two growth strategies here: 

IV.2.1 Breadth-First Growth 

Most L-systems utilize the strategy of 
Breadth-First Growth. Under this strategy, the growth of 
the whole tree may divide into many levels. After all 
recursive symbols at the same level are expanded with 
corresponding production rules, those at the next level 
are then expanded. That is, in a tree, all stems in level N 
are branched before stems in N+1 are branched, for all N 
greater than zero and not greater than user specified 
constraints. The order of branching in a single level is 
determined via the order of branching rules specified.  

Take the tree T in Figure 9, in which Seed(T) = FR1 
and R1 = [-F][+F], as an example. The branching rule for 
Leve1 1 is F, while the rule for level 2 and thereafter is R1. 
Those stems in level 2 are arranged according to R1. In a 
single stem when applying R1, The right-side branch has a 
higher priority to grow than the left-side branch, as in R1, a 
[-F], which means a right-side branching, is preceding a 

[+F], a left-side branching.  As each level has its own 
branches grown before its next level does, all stems at the 
same level have almost equal probability to branch 
successfully. Therefore, the branches in Figure 9 seem 
equally distributed in left and right sides. 

 
Figure 9. Breadth-First Growth Example.   

IV.2.2 Depth-First Growth 

In Depth-First Growth, there is no the concept of 
levels. Each branch continues to branch and branch further 
until it cannot grow further anymore. When this happened, a 
next branch, which does not complete its growth, starts to 
grow until it cannot go any further. And again, a next 
branch starts to grow. Under this strategy, the branches with 
higher priorities will dominate the shape of the tree. Those 
branches with lower priorities struggle to survive because 
less free space is left for them. In other words, the lower 
priority a branch has, the less probability the branch will 
succeed in branching. 

Figure 10 presents such an example in Depth-First 
Growth, in which the tree has the same seed and production 
rule with the tree in Figure 8. Using Depth-First Growth 
strategy, the tree has a complete different appearance from 
the previous tree. Observe that the tree has rather biased 
branches, and it looks some vine plants or floral 
decorations. 

 

Figure 10. Depth-First Growth Example. 

 
We summarize the comparisons of the two 

strategies in the table in Table 2 below. 
 

Strategy  Breadth-First 
Growth 

Depth-First 
Growth 

Description   All stems at the 
same level branches 
before those stems at 

  A single stem 
branches and branches 
further until some 
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the next level do. constraints stop it. 
When this condition 
happened, one next 
unstopped branch start 
to grow. 

Differences / 
Characteristics 

1. Stems in the same 
level shares almost 
the same 
probability to 
branch successfully. 

2. Branches are 
balanced in each 
single level. 

3. Branching Order in 
production rules has 
little impact on the 
shape of the tree. 

1. Stems in the same 
level have greatly 
varied probabilities 
to branch 
successfully. 

2. Branches are biased 
in each single level. 

3. Branching order in 
production rules 
dominates heavily 
on the shape of the 
tree. 

Example 
Applicable 
Domains 

Trees Vines or floral 
ornament 

Table 2. Comparisons of BFG and DFG.  
 

V. System Description 
Here is a concise description of the software -- 

Structural Tree Language Graphics System (abbreviated as 
STL Graphics System) -- we developed for implementing 
the proposed Structural Tree Language (STL).  

There are two major components in STL Graphics 
System: Tree Maker is developed for the user to create 
tree graphics interactively. The user may use Outline 
Description (OD) to describe her tree and draw the shape 
for her tree to grow. Also, she may select the growth 
strategy, i.e., BFG or DFG, to apply on her tree. Tree 
Maker would then transform the tree in OD to the 
representations of Branch-Expansion Description (BED), 
render them onto the screen, and save those graphics in 
disks as either BMP format binary files or 
BED-formatted text files. The other is Tree Renderer. It 
is used mainly to read BED-formatted text files in and to 
re-render the trees represented in BED onto the screen. 
The user can also apply BED syntax directly to create 
her graphics in Tree Render. Tree Maker was designed 
using Borland Delphi 3, while Tree Renderer was created 
using Symantec Visual Café pro. The two both run upon 
the platform of Microsoft Windows system. 

Figure 11 shows the block diagram of STL 
Graphics System components, in which the upper 
division represents the Tree Maker and the lower one 
stands for the Tree Renderer. The descriptions of those 
blocks are listed below: 

V.1 Tree Maker: 

Main Frame: Main Program of Tree Maker. It 
initializes system parameters, maintains the interactions 
with the user, and invokes other components when 
necessary. 

Language Analyzer: It translates tree descriptions 

written in Structural Syntax to descriptions formed solely 
by Drawing Components for 'Graphics L-system' to 
render the tree. 

Graphics L-system: It is essentially a Turtle 
System, which takes descriptions formed by Drawing 
Components and renders the corresponding figure onto 
the canvas. 

Graphics Tool: The user uses this component to 
define a shape for her tree to grow. The way to define a 
shape is like to draw a typical geometric object in most 
common painting software. 

Graphics Analyzer: It is the preprocessor of the 
'Graphics Developer'. Its main task is to analyze the 
shape drawn by the user in 'Graphics Tool'. 

6. Graphics Developer: It transforms descriptions 
written in Outline Description (OD) format to 
corresponding descriptions in Branch-Expansion 
Description (BED) format based on the branching 
strategy specified.  

Figure 11. System Organization Black Diagram of 
Structural Tree Language Graphics System (STL 
GRAPHICS SYSTEM) 

V.2 Tree Renderer: 

Main Frame: Main Program of Tree Renderer. It 
initializes system parameters, maintains the interactions 
with the user, and invokes other components when 
necessary. 

Language Tool: It provides the interface for the 
user to add her own BED descriptions. 

Language Analyzer: The component is the same as 
the identically named Component in Tree Maker. 

Graphics L-system: The component is the same as 
the identically named Component in Tree Maker. 

 

VI. Conclusion and Discussion 

In this paper, we defined Structural Tree Language 
(STL), a language built upon L-systems to describe the 
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appearances of trees. There are two major parts in STL, 
namely, Drawing Components, which are command 
symbols of drawing primitives in a typical Turtle system, 
and Structural Syntax, which is our proposed scheme to 
describe the spatial constraints and branching behaviors 
of a tree. Structural Syntax comprises of five parts: 
Growth Rules, Self-Resemblance Count, Stem 
Parameters, Branch Syntax, and Layout Description. 
Incorporating the above five parts, a tree may have a 
complex seed, several different production rules each has 
its own repetition count, and a confined range of space to 
grow. Also, a production rule may have multiple 
different rules applied in each of its branches. 

Utilizing Drawing Components and Structural 
Syntax in STL, two ways to describe a tree are possible. 
Outline Description is adequate to define a tree by only 
specifying the production rules of a tree and a shape 
(outline) for it to grow, while Branch-Expansion 
Description is used to clearly specify all branching 
details of the tree. 

We then developed a software system named STL 
Graphics System. In the system, the user may create her 
own tree interactively using Outline Description and, in a 
rare case, Branch-Expansion Description. The program 
would then transform statements in Outline Description 
into equivalent statements in Branch-Expansion 
Description. Statements in Branch-Expansion 
Description are thereafter used for rendering or for 
saving. 

Structural Tree Language (STL) has the following 
advantages over the traditional L-systems. 

Because of environmental and other effects, 
although trees have the attribute of self-resemblance, it is 
not natural that every branch has exactly the same 
appearances as other branches do in a single tree. With 
STL, the branches of each branch may be respectively 
described in detail, thus to simulate the outside effects 
and to confine the branch growth. 

STL is more readable than traditional L-system in 
that the user may obtain the branching information of a 
tree from reading its Structural Syntax. Also, in the 
opposite sense, STL is more controllable because the 
user may use Structural Syntax to describe her desired 
branching in a tree. 

As for the further work, to extend our STL to be a 
three-dimensional one should be straightforward. Also, 
as graphics described by a certain language possess a 
tremendous compression ratio against those stored as 
bitmapped files, incorporating STL into the web should 
result in saving lot of graphics transmission time and lot 
of bandwidth. It should be a good practice to re-define 
our STL in XML tags and to render our trees in Java 
applets. 
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