

 1

Structural Tree Language (STL): L-System Plant Implementation with
Structural Syntax

Yao-ming Yeh,
Chia-lin Chien,

Kuan-Sheng Lee
Dept. of Information And Computer Education,

National Taiwan Normal University, Taiwan.

Abstract

This paper presents a new method for modeling
plant forms. Built on L-systems, Structural Tree
Language, or STL, is introduced to describe tree
shapes in language-based graphics model. Besides
traditional L-system primitives (namely Drawing
Components in STL), we propose a novel Structural
Syntax to enhance the ability of STL, which can be
used to describe the outline shapes as well as the exact
branching behaviors of trees. In STL, we provide two
methods to describe a tree, namely Outline
Description and Branch Expansion Description.
Outline Description can represent the branch area of
a tree in a higher-level mechanism, which specifies
only simple rules and shape definitions for trees;
whereas Branch Expansion Description provides a
lower-lever mechanism, which describes the detailed
branch behaviors of trees. We also developed two
modules for the user to build his or her trees
interactively using these two methods respectively.

Key Words: Computer Graphics, Language-based

Graphics Model, L-System

I. Introduction
It is always an ambition of computer scientists to

simulate the appearances of or even the interaction among
real-world objects and scenes using graphic models. Among
those models, language-based graphics model such as
L-system is often discussed when considering
self-resemblance objects and scenes in the real world,
especially plants. L-system was originally proposed by
Lindenmayer to simulate the development of multicelluar
organisms [1]. While it was originally proposed for
biological purposes, computer graphics researchers have
found that L-system can be used to render attractive and
sophisticated graphics objects based upon L-system
formalisms. Under these formalisms, specific symbols such
as F, L, and R are defined as drawing primitives, and strings
comprised by those symbols are built as production rules to
represent the appearances of plants.

Beyond the basic idea, many additional parameters
are introduced to enhance the modeling ability of the system.
Chen [3] demonstrates an effortless transformation from
the 2D L-system to a 3D one. Prusinkiewicz [4]

introduces the environmental parameters into L-system. The
Wildwood project presented by Mock [5] can generate a
new plant by genetic algorithm. Chen and Jing [6] use
context-sensitive grammar, named L

+
-System, instead of

conventional context-free grammar to simulate plant
hybridization using string substitutions. Also, in order to
overcome the deterministic characteristics of context-free
grammars, Samal, Peterson, and Holliday [7] devise the
Stochastic L-system in which probability calculations were
added to simulate the diversity for plants of the same kind.

I.1 Turtle Graphic System

The rendering of plants for L-system can be
implemented by a Turtle graphic system [2]. In Turtle
graphic system, a turtle is rambling about on the canvas
with a pen fixed under its belly. The trail of the turtle would
then be recorded on the canvas. Some text symbols are
defined as commands to mandate the turtle�s behavior. The
followings are typical command symbols and their
respective meanings:

F: Move the turtle forward (along its original
direction), and leave a line segment.

R (or -): Turn the turtle right by a predefined degree.

L (or +): Turn the turtle left by a predefined degree.

[: Save the status of the turtle (i.e., push its position
and direction onto stack).

]: Restore the status of the turtle previously saved
(i.e., pop from stack).

Assuming the starting direction of the turtle is the
direction of positive X axis, with the above definitions and a
predefined turning degree as 60 degree, the string
FLFLFLFLFLF bears the following graph (Figure 1):

Figure 1. Graph of string FLFLFLFLFLF in Turtle

Graphics

According to the concept of Fractal, we can define a
starting symbol F for the Turtle Graphics, and the above
string thus becomes a production rule:
F→FLFLFLFLFLF.

Figure 1 becomes the graph of the rule string

 2

F→FLFRRFLF with a seed (starting symbol) F when the
system applies the rule substitution once.

 As another example, consider the production rule:
F→FLFRRFLF with a seed F, we will obtain Figure 2 when
the system applies the substitution once. If we apply the
production rule 3 times, we will derive Figure 3, which is
the famous Koch curve [1].

Figure 2. Koch curve

Figure 3. Koch curve with triple substitution of the

production rule

I.2 L-System Basics

Although the appearances of plants in the real
world seem to be arbitrary and unpredictable, with fine
inspection, however, we can find that most plants possess
the characteristics of self-resemblance. Take a tree as an
example. Every single branch of a tree is just the
miniature of the whole tree. Therefore, we can define
some simple but adequate strings and string substitution
rules, called production rules, to model the whole tree.
This is the major concept of the L-system.

The shape of a graph generated by a Turtle-graphics
system depends on the seed and the production rules
provided by the user. In the L-system, often, for simplicity,
the seed is a single symbol representing the command
�forward� or is a single symbol without any meaning except
for replacement purposes. We may carefully select suitable
production rules to make our figures resemble real-world
plants. And, of course, the starting orientation is upward.
For example, consider the seed F and the rule
F→F[RF]F[LF]F with the rotation angle predefined to be 30
degree. When applying the substitution once, we�ll obtain
the tree in the left of Figure 4. It resembles a portion of a
plant.

Figure 4. L-system plant with rule string

substitution 1 times (left), 2 times (middle) and 3 times
(right)

With closer examination, one will find that the
plant with two-time substitution actually resembles the
plant with one substitution as a whole, and it looks like
being assembled by the one-substitution plant piece by
piece. We call this self-resemblance. Thus, the
one-substitution plant could be considered as the growth
rule of the plant in the real world. Figure 4 also presents
a plant using this growth rule, which 3-time
substitutions.

Based on the above discussion, there are four
fundamental components in an L-system:

1. A set of instruction symbols: Each symbol
represents a command for the plant growth.

2. Starting symbol or seed: This is where the
substitution begins. Often, the seed is a single
instruction symbol that represents the meaning
of "drawing a line forward".

3. Production rule: One or more text strings
comprised of command symbols for symbol
substitution.

4. Substitution counts or iteration counts.

Formally, a plant P modeled by the L-system is
described as a 3-tuple P={S, P, I}, where S is the seed, P
is the set of production rules, and I stands for the
substitution count. The following abbreviations are used
for convenience: Seed(P), and Product(P), are used here
to represent the seed and the production rule set of plant
T.

I.3 Growth Models

Prusinkiewicz [4] creates virtual plants by
simulating the growth of plants with L-systems. By
defining complicated parameters and computations, the
growth and therefore the appearances of stems and
leaves of a plant would vary according to the factors of
its surrounding environment, especially the intensity of
light. Often, an axiom (seed) is parameterized, and
several production rules (string substitution rules) are
presented and chosen by predefined probability when
substituting rule strings.

The following gives an example of the mechanism:

Axiom W:A(1)B(3)A(5)

Production p1: A(x) → A(x+1) : 0.4

Production p2: A(x) B(x-1) :0.6

Production p3: A(x) < B(y) > A(z) : y< 4→ b(x+z) [a(y)]

The Axiom above can be expanded as: A(1)B(3)A(5)
→ A(2)B(6)[A(3)]B(4), in which p1 is applied in A(1), p2
is applied in A(5), and p3 is used in B(3).

With carefully designed parameters and
productions, rather vivid pictures of plants can be
generated through the growing model, but it also results
in involving complex computations and adding difficulty
in understanding the graphic language. Also, it is
difficult and even laborious to find a good rule of

 3

computing parameters. A try-and-error method for a user
to find good or even adequate rules is almost inevitable.

II. Structural Tree Language (STL)
In Structural Tree Language (STL), we shall

narrow our study from the whole range of plants to only
the species of trees. There are two major parts in STL:
Drawing Components and Structural Syntax, both of
which are described in the following.

II.1 Drawing Components in STL

The Drawing Components of STL are just those
command symbols in a Turtle System. They are used
here to specify the drawing actions of the Turtle to render
the appearances of the trees. See the description of I.1
Turyle Graphic Systems for the definitions of command
symbols in Drawing Components of STL.

II.2 Structural Syntax in STL

Drawing Components described above represent
common drawing primitives, therefore, in effect, they are
adequate for all kinds of graphics. In contrast, "Structural
Syntax" is developed specifically for tree modeling. In a
sense, Structural Syntax describes "what" a tree looks like,
rather than "how" to draw it. Therefore, we may term
Drawing Components as "low-level" constructs and then
Structural Syntax as "high- level" ones. Our Structural
Syntax in STL includes Growing Rules (R),
Self-Resemblance Count (I), Stem Parameters (B、L),
Branching Syntax, and Layout Description.

II.2.1 Growth Rules (R)

The Growth Rules deal with how a tree grows.
Trees of the same species may have the same growth
rules according their genes. Using the concept of macro,
respective Growth Rules are grouped and are given
respective names to enhance the readability.

For example, consider the seed of a tree T:

Seed(T) = [FFF][F[+F][-F]F][F[+F][-F]F]

And

Seed(T)' = R1R2R2

R1=[FFF]

R2=[F[+F][-F]F]

Seed(T) and Seed(T)' are syntactically equivalent.
However, Seed(T)' are more readable since it specifies
clearly how the seed of tree T branches. Therefore, STL
would adopt the later style of description.

II.2.2 Self-Resemblance Count (I)

The self-resemblance property of a tree is modeled
by recursively substituting the strings of production rules
in L-system. In typical L-systems, an individual plant has
a single rule and thus a single substitution count. This is
not the case in STL, in which a tree may have multiple
rules, each rule for each branch, and may have different
substitution counts for each rules. The following syntax
is used to describe the property:

[I <count> <rule>],

Where <count> is a integer indicating the times of
recursive substitution, and <rule> is a string of Drawing
Components

II.2.3 Stem Parameter (B, L)

In order to allow for more reality and flexibility,
two parameters L and B are incorporated in STL. B
defines the broadness and L defines the length of the
stems. The syntax of the two parameters are listed below:

B = <default broadness> (<broadness decrement>)

L = <default length> (<length decrement>)

With the optional <broadness decrement> defined,
the stems would become slimmer and slimmer while
continuing branching. The latter the stem is materialized,
the slimmer it is. The same case is applicable on the stem
length described by L parameters.

II.2.4 Branching Syntax

For a L-system tree, new stems grow from the end
of all of its stems. The number of stems will grow at
some exponential order. Obviously it is not the case in
natural world [4], in which the number of branches is
far much smaller. Prusinkiewicz and other researchers
proposed many hypothetical mechanisms to simulate the
branching constraint of real-world trees to avoid the
exponential excess of stem numbers [13]. Here, we take
a simplified approach to model the branching constraints.
Our assumption is that a stem can have new branches on
top of it only if there is enough free space for those new
branches to occupy. Take Figure 5 as an example, the
branch at the left side is failed because some existed
stems already occupy the space it needs while the branch
at the other side is succeeded because the space it needs
is still free.

Space occupied
Stem to grow
Existed stems

Branch
failed

Branch
succeeded

Figure 5. A Example of Branching Constraints

 4

In STL, we define the following syntax to express
the branching behaviors after those branching constraints
are applied:

 R {[R1], [R2], . . . , [Rm]}.

Note: anything in [] denotes it is optional.

The previous expression specifies that R has m
branches. The nth symbol stands for the nth branch of R.
If the nth symbol is Rn, the nth branch is succeeded and
Rn is applied at the end of the branch; otherwise, the nth
symbol is omitted representing that the nth branch is
failed. For example, we have

R1 = [F][+F][-F]

R2 = [++F][-F]

The expression Rn = R1{R1, R2, R1} means the
three branches of R1 are all succeeded, and after their
successes, R1, R2, and R1 are applied to each of the
extended branches from left to right. The first branch of
Rn is [F], the second is [+F], and the last is [-F].
However, the above expression Rn is not complete, as
we do not explicitly declare the branching rules for R1,
R2, and R1 inside the {}. In the case that there is no
further branching for those rules inside the {}, the
expression should be rewritten as
 Rn = {R1{, ,}, R2{,}, R1{, ,}}.

Substituting R1 and R2 with their right hand side
in Rn, we'll obtain Rn in Drawing Components:

Rn = [F[F][+F][-F]] [+F[++F][-F]] [-F[F][+F][-F]].

Figure 6 demonstrates the visual representation of
Rn. In this figure, The middle and right branches come
from the first and the third branching rules of R1 (i.e.,
still R1), and the left branch comes from the second
branching rules of R1 (i.e., R2).

As another example, The branching rules
embraced in { } can each be expanded to include their
respective branching rules such as

Rm = R1{R1{R2{,}, R2{,}, R2{,}}, R2{R2{,}, },
R1{R2{,}, R2{,}, R2{,}}},

Which, after expanded into Drawing Components,
equals to

Rm = [+F [++F[++F][-F]][-F]]
[-F[F[++F][-F]][+F[++F][-F]][-F[++F][-F]]]

Figure 6. Visual appearances of Rn applying
branching rules

As a summary, branching syntax provides a
mechanism to describe the successive branches of all
branches of a tree. When designing or appreciating a tree
in STL using the branching syntax, the user can consider

solely about how the branches would behave instead of
fumbling about all those low-level Drawing Components.
The branching rule expressions can be put inside Seed(T)
or Product(T) for a given tree T.

IV.1.5 Layout Description

Besides using the branching syntax to describe the
branching behavior of a tree, STL provides "Layout
Descriptions" to describe the growth (layout) range of a
tree. Basically, Layout Descriptions are names of typical
geometric shapes such as rectangles, ellipse, and
polygons, or the combinations of those typical geometric
shapes. In STL syntax, Layout Descriptions are defined
as the following:

LAYOUT

 (<color>) <shape <shape parameters> >

 (<color>) <shape <shape parameters> >

...

ENDLAYOUT

The Layout Descriptions should always be
enclosed by LAYOUT, ENDLAYOUT pairs. Each line
defines a layout shape with its color, shape name
(command) and shape parameters.

All shapes and their parameters usable in STL
Layout Descriptions are listed below:

Shape Shape Parameters
Rectangle Starting Point, Width, Height
Rounded
Rectangle

Starting Point, Width, Height, Angle of
Rounded Corner

Ellipse Starting Point, Width, Height
Polygon Point1, Point2, ..., Pointn

Table 1. Table of Layout Description Shapes and
Parameters

Shape color uses the color names in Delphi, such
as clWhite, clRed... etc.

For example, the following defines the Layout
shape in Figure 7.

LAYOUT

 (clWhite) Rectangle (0,0), 200, 100

ENDLAYOUT

Figure 7. Layout Description example

III. Outline Description (OD) vs. Branch-Expansion
Description (BED)

Starting point

Shape height

Shape width

 5

Incorporating those Drawing Components and
Structural Syntax, we propose two ways to describe a
tree in STL, namely, Outline Description, and
Branch-Expansion Description.

In Outline Description, a tree is described as the
following:

<tree name>

<root coordinate>

<stem parameters>

RULE

<Production Rule 1>

<Production Rule 2>

. . .

<Production Rule n>

[SEED

<Seed>

 ENDSEED]

LAYOUT

<Layout Description 1>

<Layout Description 2>

. . .

<Layout Description n>

ENDLAYOUT

That is, in Outline Description, we only specify the
seed and the unexpanded rules of the tree along with the
area for the tree to grow. The seed segment may be
omitted if the seed is only a single F, as it is common in
most conventional L-systems.

In Branch-Expansion Description, the seed of a
tree is expanded to incorporate the Growth Rules and
other components in Structural Syntax to describe how
each stem of the tree branches. A tree is described as the
following:

<tree name>

<root coordinate>

<stem parameters>

RULE

<Production Rule 1>

<Production Rule 2>

. . .

<Production Rule n>

SEED

<Seed symbol string>

ENDSEED

The user describes her tree either by the Outline

Description or by the Branch-Expansion Description.
With the first description method, the user can specify
some simple seed and production rules for recursion
along with the area for the tree to grow. The
responsibility to transform the original description to the
Branch-Expansion from is left to the L-system program.
Also, at times, the user may want to specify by herself all
the branch rules for her tree. Under this circumstance, the
second method is applied.

To give a concrete example, consider the following
description for a tree named 2Dtree:

2DTree

(76,150)
L=10(0)

B=1(0)

RULE

R1: [+F][-F]

LAYOUT

(clGreen)< RoundRect (0,0,180,192,7,7)>

(clWhite)< RoundRect (55,30,40,15,4,4)>

(clWhite)< RoundRect (35,125,76,30,5,5)>

ENDLAYOUT

The area specified by the Layout Description is
shown in Figure 8 (left). The description above would
then transformed into equivalent Branch-Expanded form
listed below:

2DTree

(76,150)

L=10(0)

B=1(0)

RULE

R1: [+F][-F]
SEED
FR1{R1{R1{R1{R1{R1{,R1{,R1{,}}},R1{R1{,R

1{R1{,},R1{,R1{,}}}},R1{R1{,R1{,R1{,}}},R1{,}}}},
R1{R1{,R1{R1{,R1{,R1{,R1{,}}}},R1{R1{,R1{,R1{R
1{,R1{,}},}}},R1{R1{,R1{R1{,R1{R1{,R1{R1{,R1{,R
1{R1{,R1{,}},R1{,}}}},R1{R1{,R1{R1{,R1{,}},R1{,}
}},R1{,}}}},R1{R1{,R1{R1{,R1{R1{,R1{,}},R1{,}}},
R1{,}}},R1{,}}}},R1{R1{,R1{R1{,R1{R1{,R1{R1{,R1
{,}},R1{,}}},R1{,}}},R1{,}}},R1{,}}}},R1{R1{,R1{R
1{,R1{R1{,R1{R1{,R1{R1{,R1{,}},R1{R1{,R1{,R1{,}
}},R1{R1{,},}}}},R1{R1{,R1{,R1{R1{,},}}},R1{R1{,
R1{,R1{,}}},}}}},R1{R1{,},}}},R1{R1{,},R1{R1{,R1
{,}},}}}},R1{R1{,R1{,R1{R1{,R1{,}},}}},R1{R1{,R1
{R1{,},R1{,}}},R1{R1{,},}}}}}}}},}},},},R1{,R1{,R1
{,R1{R1{R1{R1{R1{R1{R1{,R1{R1{R1{R1{,},R1{,R
1{,}}},R1{R1{,R1{,}},R1{,}}},R1{R1{,R1{R1{,R1{R
1{R1{,R1{,R1{R1{,},}}},R1{R1{,R1{,}},}},}},}},}}},
R1{R1{,R1{R1{,R1{R1{,R1{R1{,R1{R1{,},R1{,R1{,}
}}},R1{R1{,R1{,R1{,}}},R1{,}}}},R1{R1{,R1{R1{,R

 6

1{,R1{,}}},R1{,}}},R1{,}}}},R1{R1{,R1{R1{,R1{R1{
,R1{,}},R1{,}}},R1{,}}},R1{,}}}},R1{R1{,R1{R1{,R1
{R1{,R1{R1{,},}},R1{,}}},R1{,}}},R1{,}}}},R1{R1{,
R1{R1{,R1{R1{,},}},}},R1{,}}},R1{R1{,},}},R1{R1{,
},R1{,}}},R1{R1{,},R1{,}}},R1{R1{,},}}}}}}
ENDSEED

Figure 8 shows the visual appearance of the tree

described above.

Figure 8. Tree Outline and the Rendered Result

IV.2 Growth Strategies: Depth-First Growth vs.
Breadth-First Growth:

In convention, a tree in a L-system gets its
branches grown by 'Breadth-Firstly' substituting strings
in its production rules. We name it 'Breadth-First
Growth' as stems of the same level have their branches
grown together. From the discussion of IV.1.4, it appears
that the order of branching of stems can effectively alter
the shape of the branches. In general, those stems that
branch earlier would dominate the following growth.
That is, earlier formed branches would occupy the space
and block or confine the growth of latter branches. As a
consequence, a tree applying a different growth strategy,
i.e., Depth- First Growth, would have a greatly different
shape from the original one. In Depth-First Growth,
branch continues to grow until it cannot branch anymore
because the boundary of the tree or the self-resemblance
count of the particular rule has been reached. We discuss
the two growth strategies here:

IV.2.1 Breadth-First Growth

Most L-systems utilize the strategy of
Breadth-First Growth. Under this strategy, the growth of
the whole tree may divide into many levels. After all
recursive symbols at the same level are expanded with
corresponding production rules, those at the next level
are then expanded. That is, in a tree, all stems in level N
are branched before stems in N+1 are branched, for all N
greater than zero and not greater than user specified
constraints. The order of branching in a single level is
determined via the order of branching rules specified.

Take the tree T in Figure 9, in which Seed(T) = FR1
and R1 = [-F][+F], as an example. The branching rule for
Leve1 1 is F, while the rule for level 2 and thereafter is R1.
Those stems in level 2 are arranged according to R1. In a
single stem when applying R1, The right-side branch has a
higher priority to grow than the left-side branch, as in R1, a
[-F], which means a right-side branching, is preceding a

[+F], a left-side branching. As each level has its own
branches grown before its next level does, all stems at the
same level have almost equal probability to branch
successfully. Therefore, the branches in Figure 9 seem
equally distributed in left and right sides.

Figure 9. Breadth-First Growth Example.

IV.2.2 Depth-First Growth

In Depth-First Growth, there is no the concept of
levels. Each branch continues to branch and branch further
until it cannot grow further anymore. When this happened, a
next branch, which does not complete its growth, starts to
grow until it cannot go any further. And again, a next
branch starts to grow. Under this strategy, the branches with
higher priorities will dominate the shape of the tree. Those
branches with lower priorities struggle to survive because
less free space is left for them. In other words, the lower
priority a branch has, the less probability the branch will
succeed in branching.

Figure 10 presents such an example in Depth-First
Growth, in which the tree has the same seed and production
rule with the tree in Figure 8. Using Depth-First Growth
strategy, the tree has a complete different appearance from
the previous tree. Observe that the tree has rather biased
branches, and it looks some vine plants or floral
decorations.

Figure 10. Depth-First Growth Example.

We summarize the comparisons of the two

strategies in the table in Table 2 below.

Strategy Breadth-First
Growth

Depth-First
Growth

Description All stems at the
same level branches
before those stems at

 A single stem
branches and branches
further until some

 7

the next level do. constraints stop it.
When this condition
happened, one next
unstopped branch start
to grow.

Differences /
Characteristics

1. Stems in the same
level shares almost
the same
probability to
branch successfully.

2. Branches are
balanced in each
single level.

3. Branching Order in
production rules has
little impact on the
shape of the tree.

1. Stems in the same
level have greatly
varied probabilities
to branch
successfully.

2. Branches are biased
in each single level.

3. Branching order in
production rules
dominates heavily
on the shape of the
tree.

Example
Applicable
Domains

Trees Vines or floral
ornament

Table 2. Comparisons of BFG and DFG.

V. System Description
Here is a concise description of the software --

Structural Tree Language Graphics System (abbreviated as
STL Graphics System) -- we developed for implementing
the proposed Structural Tree Language (STL).

There are two major components in STL Graphics
System: Tree Maker is developed for the user to create
tree graphics interactively. The user may use Outline
Description (OD) to describe her tree and draw the shape
for her tree to grow. Also, she may select the growth
strategy, i.e., BFG or DFG, to apply on her tree. Tree
Maker would then transform the tree in OD to the
representations of Branch-Expansion Description (BED),
render them onto the screen, and save those graphics in
disks as either BMP format binary files or
BED-formatted text files. The other is Tree Renderer. It
is used mainly to read BED-formatted text files in and to
re-render the trees represented in BED onto the screen.
The user can also apply BED syntax directly to create
her graphics in Tree Render. Tree Maker was designed
using Borland Delphi 3, while Tree Renderer was created
using Symantec Visual Café pro. The two both run upon
the platform of Microsoft Windows system.

Figure 11 shows the block diagram of STL
Graphics System components, in which the upper
division represents the Tree Maker and the lower one
stands for the Tree Renderer. The descriptions of those
blocks are listed below:

V.1 Tree Maker:

Main Frame: Main Program of Tree Maker. It
initializes system parameters, maintains the interactions
with the user, and invokes other components when
necessary.

Language Analyzer: It translates tree descriptions

written in Structural Syntax to descriptions formed solely
by Drawing Components for 'Graphics L-system' to
render the tree.

Graphics L-system: It is essentially a Turtle
System, which takes descriptions formed by Drawing
Components and renders the corresponding figure onto
the canvas.

Graphics Tool: The user uses this component to
define a shape for her tree to grow. The way to define a
shape is like to draw a typical geometric object in most
common painting software.

Graphics Analyzer: It is the preprocessor of the
'Graphics Developer'. Its main task is to analyze the
shape drawn by the user in 'Graphics Tool'.

6. Graphics Developer: It transforms descriptions
written in Outline Description (OD) format to
corresponding descriptions in Branch-Expansion
Description (BED) format based on the branching
strategy specified.

Figure 11. System Organization Black Diagram of
Structural Tree Language Graphics System (STL
GRAPHICS SYSTEM)

V.2 Tree Renderer:

Main Frame: Main Program of Tree Renderer. It
initializes system parameters, maintains the interactions
with the user, and invokes other components when
necessary.

Language Tool: It provides the interface for the
user to add her own BED descriptions.

Language Analyzer: The component is the same as
the identically named Component in Tree Maker.

Graphics L-system: The component is the same as
the identically named Component in Tree Maker.

VI. Conclusion and Discussion

In this paper, we defined Structural Tree Language
(STL), a language built upon L-systems to describe the

 8

appearances of trees. There are two major parts in STL,
namely, Drawing Components, which are command
symbols of drawing primitives in a typical Turtle system,
and Structural Syntax, which is our proposed scheme to
describe the spatial constraints and branching behaviors
of a tree. Structural Syntax comprises of five parts:
Growth Rules, Self-Resemblance Count, Stem
Parameters, Branch Syntax, and Layout Description.
Incorporating the above five parts, a tree may have a
complex seed, several different production rules each has
its own repetition count, and a confined range of space to
grow. Also, a production rule may have multiple
different rules applied in each of its branches.

Utilizing Drawing Components and Structural
Syntax in STL, two ways to describe a tree are possible.
Outline Description is adequate to define a tree by only
specifying the production rules of a tree and a shape
(outline) for it to grow, while Branch-Expansion
Description is used to clearly specify all branching
details of the tree.

We then developed a software system named STL
Graphics System. In the system, the user may create her
own tree interactively using Outline Description and, in a
rare case, Branch-Expansion Description. The program
would then transform statements in Outline Description
into equivalent statements in Branch-Expansion
Description. Statements in Branch-Expansion
Description are thereafter used for rendering or for
saving.

Structural Tree Language (STL) has the following
advantages over the traditional L-systems.

Because of environmental and other effects,
although trees have the attribute of self-resemblance, it is
not natural that every branch has exactly the same
appearances as other branches do in a single tree. With
STL, the branches of each branch may be respectively
described in detail, thus to simulate the outside effects
and to confine the branch growth.

STL is more readable than traditional L-system in
that the user may obtain the branching information of a
tree from reading its Structural Syntax. Also, in the
opposite sense, STL is more controllable because the
user may use Structural Syntax to describe her desired
branching in a tree.

As for the further work, to extend our STL to be a
three-dimensional one should be straightforward. Also,
as graphics described by a certain language possess a
tremendous compression ratio against those stored as
bitmapped files, incorporating STL into the web should
result in saving lot of graphics transmission time and lot
of bandwidth. It should be a good practice to re-define
our STL in XML tags and to render our trees in Java
applets.

References:
1. Lindenmayer A., “Mathematical Models for

Cellular Interaction in Development”, Parts II & I. J.
Theoretical Biology 18, pp. 280~315, 1968.

2. Edward Angel, “Interactive Computer Graphics, A
top-down approach with OpenGL”,
Addison-Wesley , 1998

3. Hung-Wen Chen, “L-system plant geometry
generator”, HTTP DOC, January 1995.
《 http://www.tc.cornell.edu/Visualization/contrib/c
s490-94to95/hwchen/》

4. Radomir Mech and Przemyslaw Prusinkiewicz,
“Visual models of plants interacting with their
environment”, In Proceedings of SIGGRAPH’ 96,
pp.397-410, 1996.

5. Kenrick J. Mock, “Wildwood: The Evolution of
L-system Plants for Virtual Environments”, IEEE,
pp. 476~480, 1998.

6. Chua Mei Chen and Hsu Wen Jing, "A Simulation
Study of Plant Hybridization Using L+-System",
IEEE, pp. 123~127.

7. Ashok Samal, Brian Peterson and David J. Holliday,
"Recognizing Plants Using Stochastic L-Systems"

8. Mark Green and Hanqiu Sun, “A language and
system for procedural modeling and motion”, IEEE
Computer Graphics and Application, pp.52-64, Nov.
1988.

9. Stephen D. Casey, Nicholas F. Reingold,
“Self-similar fractal sets: theory and procedure”,
IEEE Computer Graphics and Application, Vol. 14,
No. 3, pp.73-82, May 1994.

10. Alvy Ray Smith, “Plants, fractals and formal
languages”, In Proceedings of SIGGRAPH’84,
pp1-10, 1984.

11. Przemyslaw Prusinkiewicz and Aristid
Lindenmayer, The Algorithmic Beauty of Plants,
Springer-Verlag, New York, 1990.

12. De Reffy, P. C. Edelin, J. Francon, M. Jaeger, and C.
Puech, “Plant models faithful to botanical structure
and development”, In Proceedings of
SIGGRAPH’88, pp.151-158, 1988.

13. Prusinkiewicz Prusinkiewicz, Aristid Lindenmayer,
and James Hanan, “Developmental models of
herbaceous plants for computer imagery purposed”,
In Proceedings of SIGGRAPH‘88, pp.141-150,
1988.

14. Michael T. Wong, Douglas E. Zongker, and David
H. Salesin,“Computer-Generated Floral Ornament”,
In Proceedings of SIGGRAPH’98, pp.423-434,
1998.

15. John Kacher,“Interaction of multiple L-systems”,
HTTP DOC, Presented at NCUR 98 in Salisbury,
Maryland, 1998.
《 http://www.owlnet.rice.edu/~jkacher/lsys98.html
》

16. William McWorter, “Fractint L-Systems”, HTTP
DOC, Version 1.4, January 1997.
《http://fractal.mta.ca/fractint/lsys/》

