
 1

An Effective Request Distribution Mechanism For Improving Load

Balance in Web Server System

Cheng Zen Yang, Yi Shou Lin, Cheng Chen

Department of Computer Science and Information Engineering,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Email: {yzyang, linys, cchen}@csie.nctu.edu.tw
Phone: +886-3-5712121 ext. 54744

ABSTRACT

In this paper, we propose an effective request
distribution mechanism called Probabilistic Dispatching
with Content Adapted (PDCA) method for improving load
balance in web server system. Using predicted document
popularity to adjust the number of replicas, we place the
documents among servers by our data placement scheme.
The dispatcher distributes a request according to
dispatching probability of the requested document. In order
to reduce the impacts on burst traffic, servers may transmit
adapted documents to requests. This method can support
load balance and ensure QoS of overloaded servers.
According to preliminary performance evaluations, we
have found that our method is superior to other schemes
especially for massive traffic. The detailed information
about design concept and performance evaluations will be
described in the literature.

1.INTRODUCTION

The use of World Wide Web (WWW) has grown
exponentially in recent year [1-5]. Hence, it is more and
more critical to design a high performance web server
system that can handle massive requests. In general,
replication techniques are used to improve the performance
of web server system [2-8]. Basically, it adds more
machines as a server cluster to increase the resource and
processing capacity of web server system. However, the
management of these nodes affects the system performance
greatly. Generally speaking, the replication techniques can
be broadly divided into two catalogs: mirror-based
approaches [3] and content-based approaches [2,4-8]. In
mirror-based approaches, all servers in the system have
identical data set and dispatcher can distribute a request to
any of them. Conversely, in content-based approaches, a
server is only responsible for a specific subset of data. This
can reduce the disk overhead efficiently and improve cache
hit rate.

In this paper, an efficient request distribution method,
named " Probabilistic Dispatching with Content Adapting"
are proposed for imp roving load balance on web server
system. Firstly, it can replicate and adjust replica number
of documents based on their predicted popularities. Then,

an efficient data placement scheme is proposed to deploy
those calculated replicas among servers balanced such that
all servers may have equivalent workloads within a
specific time period. Based on the pre-computing
dispatching probability, a probabilistic dispatching policy
can distribute load among servers balanced. It may cause
an instantaneous load imbalance due to the serious access
skew. In order to eliminate the impact of burst traffic, we
adopt content adaptation policy in our system design. That
is, when server is overloaded, server can automatically
transmit an adapted document instead of requested
document to clients. Besides, if the overhead of periodical
displacement of documents is expensive, we can
re-calculate the dispatching probability to balance the
workloads of servers without reconfiguration of data
distribution by solving a network maximal flow with
minimal cost problem.

 The remainder of the paper is organized as follows. In
section 2, the design concept and principle of our system
architecture will be described. In section 3, we will present
the concept and principle of proposed method. Related
performance gains will be evaluated and analyzed in detail
in section 4. Finally, concluding remarks is given at the end
of this paper.

2.OUR SYSTEM ARCHITECTURE

We consider that content-based approaches are more
suitable for large-scale web server system than
mirror-based approaches due to the efficient data
management and the reduction of I/O operations. Moreover,
we are aware of the advantages of the content adaptation
approach. Hence, both of designing concepts are adopted
in our web server system design. We have designed a high
performance web server system. Basically, it can evenly
assign a request to an appropriate server based on the
requested document. It can also guarantee the QoS of the
overloaded server. As shown in Figure 2.1, our system
consists of a dispatcher and several web servers where
stored data are different. Once a new request coming, the
dispatcher will distribute it to an appropriate web servers
based on requested content. Then, back-end server will
transmit an adapted page or non-adapted page to clients
based on its load estimate. Our system architecture is very

 2

similar to existing infrastructure in the web server
environment except a simple process called “ load
monitor”, which is used to estimate the load of the server
and trigger content adaptation procedure, running on web
server. In our system design, we consider a page as a basic
unit for replication. For every page, we create several
additional adapted pages with various degree of sensitivity
to resources by off-line and store them in the same server
together. If we have to create additional page in another
server for load balance, these adapted pages have to be
created there together.

Figure 2.1 System Architecture

3.PROBABILISTIC DISPATCHING WITH

CONTENT ADAPTING METHOD

3.1 Popularity-based replication

We often create additional replicas for content in order
to evenly spread massive traffic among servers. However,
the entire web sites replication is not a practical approach
due to without considering popularities of documents.
Hence, documents should be replicated as their popularities
to meet the actual requirements. By access log, we can
gather statistics of access frequencies of documents and
distinguish the popular documents from the cold
documents. The more popular a document becomes, the
more replicas it should be kept in servers, and vice versa.
In [6-8], the concept of demand-based document
dissemination was proposed. Basically, it creates additional
replicas for a document in another server only when the
access frequency of the document is beyond a definite
threshold. They can be viewed as “ dynamic replication
technique”. However, they usually impose overhead of
collecting access behavior information. Therefore, we
adopt alternative technique called Period Adjustment
Policy [9-11]. Its basic idea is that we can adjust the
number of replicas within an appropriate time period (e.g.
every day or every two days). The reason is that the
popularities of documents may not change very
dramatically every day or every two days. If the
popularities of documents change dramatically, we can

adjust the time period to more short value. But, dissimilar
to dynamic replication, estimation of popularity in our
policy is based on access frequency prediction. In other
words, we can calculate the access frequency in the next
period based on statistics collected in the past and the
present periods. The popularity of document on the next
period can be expressed as a simple linear function shown
below [11]: Let Ni be the access number of document i, t
be the time period, and Ci(t) be the number of replicas for
document i at period time t. For document i, we have

1)-(3 0212 ≥−−−=),Ni(t)Ni(t)Ni(tNi(t)

Despite the simplicity of this formula, it is enough to
predict an approximate total access frequency of
documents [11]. So we can estimate the number of replicas
for document i in according to formula 3-2.

−
×−=

≥−
=

≥

 ,)(

5.0)()(if,)(
)(

and 1)(

2)-(3
)2(

)()1(
)(

otherwisetCi

tCitCitCi
tCi

tCi

tNi
tNitCi

tCi

3.2 Data Placement Scheme

The goal of our system design is to balance workloads
among servers. To achieve this goal, we can take advantage
of the predicted access frequency of documents. If we can
spread documents among servers such that the
accumulative access frequency of documents are the same
across all servers, then all servers may have equivalent
workloads within a time period. Assumed we have M
documents with predicted access frequencies, N1(t) ,
N2(t), …., NM(t), and corresponding replicas, C1(t),
C2(t),…, CM(t). Because document i has Ci replicas which
are marked as i1, i2 , … iC , access frequency of a replica can
be calculated and equal with others by formula 3-3.

3)-(3),(/)(.........)((t) 21 tCiNitNitNiNi C ====

We can employ these replicas as follows: First, we
sort all replicas of documents in a decreasing order based
on their access frequencies and create a list for the sorting
result. Second, a replica is extracted from the list and
placed on a server based on two principles. One is to
choose a server which current accumulative access
frequency is the least of all servers. And the other is never
to place identical replicas on a server. After placing a
replica on a server, the accumulative access frequency of
this server will be added by the access frequency of placed
replica. The procedure halts until the list is empty. By
this way, all servers will have equivalent accumulative
access frequencies in a period. Because elapsed time for
serving a request varies with size of requested documents,
accumulative access frequency of a server couldn’t
represent the accurate estimate of workloads on the server.
For more accurate estimate of workloads, we must take the
effects on size of documents into account. That is, we have
to redefine the new access frequency of a document i ,
Nnewi(t), as formula 3-4, where Si is the size of document i.

4)-(3 ,)()(new SitNitiN ×=

Client

dispatcher

1

2

3

4

�

v

w

L o a d
moni to r�

�

z

 3

For example, we assume that there are five documents
existed on our system. Their access frequency, number of
replicas, and access frequency for replica are listed in Table
3-1. We can take Figure 3-1 to explain how to evenly
spread these replicas among servers. The symbol sij
denotes the jth replicas for the document i. We can create a
list, NS21, NS22, NS11, NS12, NS13, NS14, NS31, NS32,
NS41, NS51, which is sorted in a decreasing order
according to access frequency of replica. We can clearly
see why the 'S13' is placed in server 1. Before placing the
'S13', the accumulative access frequencies of server1,
server 2, server 3, server 4, are 0.15, 0,15, 0.1, 0.1,
respectively. According to the first principle of our scheme,
the sever 3, which has the least accumulative access
frequency of all servers, should be chosen to place 'S13'.
Because 'S12', the identical replica of document 1, has
been placed in server 3, in order to follow the second
principle, we choose server 1 to place 'S13'. After the
placement of all replicas, we can show that all servers have
equivalent workloads (0.25, 0.25, 0.25, 0.25). The result of
this procedure is recorded in the placement table within the
dispatcher as shown in Table 3-2.

 Access
Frequency

 Replicas Access Frequency
of Replicas

S1 0.4 4 0.1

S2 0.3 2 0.15

S3 0.2 2 0.1

S4 0.05 1 0.05

S5 0.05 1 0.05

Table 3-1 Access frequencies of documents

Figure 3-1 An example of data placement

 Server 1 Sever 2 Server 3 Server
4

Document 1 0.1 0.1 0.1 0.1

Document 2 0.15 0.15

Document 3 0.1 0.1

Document 4 0.05

Document 5 0.05

Table 3-2 Placement table

3.3 Job Scheduling Policy

Basically, job scheduling is used to distribute
incoming requests among servers. It is one of the most
important techniques for web server system and affects the
load distribution deeply [2-3]. In [2], the dispatcher
distributes requests among servers based on dispatching
probabilities of documents. In order to avoid the dispatcher
from becoming the bottleneck and to simplify the
complexity of system design, we propose a viable policy
called dispatching probability policy enhanced from [2]. In
this policy, the dispatcher will spread incoming requests to
an appropriate server based on pre-computed dispatching
probabilities recorded in dispatching table. The
construction of the dispatching table is based on the
placement table. For example, if a requested document is 3,
then the probabilities of dispatching server 1 or 2 are both
0.5. The dispatcher generates a random number c and
dispatch the request to server 1 if c is smaller than 0.5. On
the other hand, if the range of c is between 0.5 and 1, the
request will be distributed to server 2. Our job scheduling
policy needs not to keep the latest load statuses of all
servers in a record all the time, so it can avoid massive
communication traffic and is easy to implement.

3.4 Content Adaptation Policy

Since our approach is to equalize the average
accumulative access frequency for each server over a large
period of time, we can’t ensure load balance in any
moment within this period. In other words, the skew access
arrival rates for documents may bring about burst traffic in
the system and overload a subset of web servers. In order
to reduce the impacts on burst traffic, we adopt the concept
of content adaptation approach in our system design [1].

Lines of words a 1(5) A small icon c 3(1)

A text file b 5(10) A JPEG file d 7(9)

Object A (symbol) (Text) Object B (symbol) (Picture)

Figure 3-2 An example for item selections

We can create several adapted pages for every page in
advance and store them in the same server together. That is,
every of those pages can be chosen to respond a specific
document request. As shown in Figure 3-2, a web page
may be composed of a text file and a picture. We create 3
additional adapted pages for it in advance. They are (a,c),
(a,d) and (b,c), where symbols in the parentheses represent
selected items. Content Adaptation technique can
efficiently reduce the impacts on burst traffic due to the
probabilistic dispatching policy. However, it is critical that
how to select an appropriate one from those adapted pages
when server is overloaded. Each page may have different
size and resource weight value. Therefore, we can give an
identity number for all adapted or non-adapted pages based
on both of their size and resource weighted value. The

0 . 1 5 (s 2 1) 0 . 1 5 (s 2 2) 0 . 1 (s 1 1) 0 . 1 (s 1 2)

0 . 1 (s 1 3)

L o a d 0 . 2 5

0 . 1 (s 3 1) 0 . 1 (s 3 2)

0 . 0 5 (s 4) 0 . 0 5 (s 5)

S e r v e r 1 S e r v e r 2 S e r v e r 3 S e r v e r 4

L o a d 0 . 2 5 L o a d 0 . 2 5 L o a d 0 . 2 5

0 . 1 (s 1 4)

 4

larger an identify number of a page is, the more
possessions of resources of the page has. The page which
consists of a text of file and a JPEG file will be set as 4 due
to the larger size and weight value (size is 12 and weight
value is 19). The size of the page composed of lines of
words and a JPEG picture is equal to the size of the page
composed of a text file and a small icon. However, the
former has the larger weight value, so its identity number,
3, will be larger than the identity number of the latter, 2.
For every back-end server, it possesses a decay factor
called i. The decay factor is an integer variable and is used
to control the section of pages. For example, if a requested
document is /home/adela.html, back-end server will view it
as /home/adela i.html and interpret i as 4 if server is not
overloaded. Conversely, if resource of the server is
exhausted nearly, i can be interpreted as 1 and
/home/adela1.html will be responded to a client request.
But, how to select an appropriate page from the adapted
pages affects the performance of the load reduction greatly.
Here, we adopt the concept of flow control in the TCP
network to control the size of transmitted page. That is, the
monitor module estimates the load of servers every second,
by which the decay factor will be either half or added
one[17]. The procedure is shown in Figure 3-3. By formula
3-5, we find that overloaded server will transmit a page
where its identity number is half of decay factor to a client.
This ensures that the overloaded server can reduce size of
transmitted page fast and cope with burst traffic efficiently.
However, in order to avoid the impacts on unpredicted
burst traffic, back-end servers would rather transmit a page
that its size and weight value are growing slowly to a client
even if server is not overloaded. It can reduce the
frequency that a server becomes overloaded from normal
status due to skew access rates.

Figure 3-3 Procedure of back-end server

3.5 Re-calculating dispatching table

 We can reorganize the configurations of deployment of
documents in the next period. However, the movement of
documents incurs substantial I/O operations and affects the
availability of the system. Hence, we would like to reduce

the overhead of reconfiguration of data distribution when
the popularities of documents are changed. Fortunately, we
can achieve this goal by adjusting the dispatching
probabilities on the dispatching table. We can demonstrate
a network-flow model for the mapping of data placement
problem. As shown in figure 3-4, the flow arcs from the
source to a document represent the predicted access
frequency for the corresponding document, the flow arcs
from documents to servers represent the access frequencies
of replica stored in server, and flow arcs from documents to
sink represent the accumulative access frequency for
servers. The result of mapping is equivalent to the result of
Table 3-2.

Figure 3-4 A network flow for data distribution

If the access frequencies of document 1 and 2 are both

changed as 0.3, we can achieve load balance without
reconfiguration of data distribution by modifying the
dispatching table. We can take advantage of the
network-flow model and map our problem domain to the
maximal-flow and minimal-cost problem domain. The
maximal-flow and minimal-cost problem can be defined as
follows : Given a G=(N, A) be a network with a cost cij
and a capacity uij associated with every arc (i,j) ∈ A. To
minimize the cost function Z(x), where Z(x)=∑ cij * xij ,for
0⊆ xij ⊆uij . That is to say, we will find a maximal flow
such that the defined cost is minimal. Our problem is how
to rebalance load without movement of documents when
access frequencies of documents are changed. If we view
the initial data dis tribution as a network model, we can
solve our problem by running a maximal flow with
minimal cost problem. As shown in figure 3-5, we expect
that every server should have equivalent accumulative
access frequency, 0.25, for the sake of balance. However, it
is probably unable to find a solution that access frequency
of each server is 0.25. Hence, in order to find an optimal
solution, we adopt the concept of least square error in
linear algebra that the difference between the found
solution and the ideal solution is minimal [13]. Hence, we
can define our cost function as formula 3-6:

In formula 3-6, 1/N is an ideal solution, so we denote
Xij as optimal solution if the square of its cost function is
minimal. After running the maximal flow and minimal cost,
we obtain the new dispatching probability and the new
dispatching table listed in Table 3-3.

Procedure for back-end processing a document request:

 While wait_queue is not empty

 Request=Extract_Head_Wait_Queue()

 URLi=Request.Url

 Call Monitor

 Set i as Deacy_Factor

 Transmit URLi to Request.IPaddress

End while

Procedure Monitor (3-5)

 +

=
 Otherwise, 2/_

Overloaded , 1_
_

FactorDecay

FactorDecay
FactorDecay

1

2

3

S i n kS o u r c e

d 1

d 2

d 3

d 4

d 5

0 . 4

0 . 3

0 . 2

0 . 0 5

0 . 0 5

D o c u m e n t

S e r v e r s

4

0 . 1

0 . 1

0 . 1

0 . 1

0 . 1 5

0 . 1 5

0 . 1

0 . 1
0 . 0 5

0 . 0 5

0 . 2 5

0 . 2 5

0 . 2 5

0 . 2 5

6)-(3 , 2)/1*()(
 Otherwise, 0

sin,, 1

∑ −=

=∀
=

kji
CijNXijCijxZ

 5

Figure 3-5 Network model with changed capacity

 Server 1 Sever 2 Server 3 Server 4

Document 1 0.667

(0.2/0.3)

0 0 0.333

(0.1/0.3)

Document 2 0.167

(0.05/0.3)

0.833

(0.25/0.3)

0 0

Document 3 0 0 0.667

(0.2/0.3)

0.333

(0.1/0.3)

Document 4 0 0 0 1

(0.05/0.05)

Document 5 0 0 1

(0.05/0.05)

0

Table 3-3 New dispatching Table

Figure 3-6 Algorithm for maximal flow and minimal cost

Thus, we can give a formal algorithm as shown in
Figure 3-6. The optimal computation complexity of
traditional maximal flow problem is O(VE2) [12], where V

is the number of nodes and E is number of edges. Hence, in
the worst case that each document has N replicas, the
computation complexity of our algorithm is
O((N+D)N2D2), which is approximate to O(N3D2), where
N is the number of servers and D is the number of
documents. Basically, if number of documents is enormous,
the complexity is expensive. However, it has not been a
serious problem due to the performance improvement of
processing unit. Compared the processing overhead of this
algorithm with the overhead of displacement of documents,
this algorithm may have less cost and is acceptable.

3.6 Overall procedures of our system design

Figure 3-7 Overall flowchart of our system design

Here, we put all schemes in our system design

together. The overall flowchart of our system design is
shown in Figure3-7. Every time period, we can adjust the
number of replicas according to their popularity or just
modify the dispatching table by solving the network
maximal-flow and minimal cost problem. It depends on the
overhead of displacement of replicas. If the overhead of
displacement of replicas is expensive, we would rather
adopt the former, and vice versa. Besides, the content
adaptation scheme will reduce the impact of probabilistic
dispatching scheme. Hence, combining probabilistic
dispatching with content adaptation scheme is an efficient
method to improve load balance in the web server system.

4. PERFORMANCE EVALUATIONS

Here, we will give the performance evaluations of our
scheme compared with other schemes such as " NCSA
[16]" and " Two-Tier RR [3]" in some detail. These
performance gains, cache hit rates, rejected probability and
maximum request capacity are evaluated and analyzed,
from which some distinguished features of our method can
be explored.

4.1 Simulation Parameters

1

2

3

S i n kS o u r c e

d 1

d 2

d 3

d 4

d 5

0 . 3

0 . 3

0 . 3

0 . 0 5

0 . 0 5

D o c u m e n t

S e r v e r s

4

0 . 2

0

0

0 . 1

0 . 0 5

0 . 2 5

0 . 2

0 . 10 . 0 5

0 . 0 5

0 . 2 5

0 . 2 5

0 . 2 5

0 . 2 5

Algorithm 2:

Find a maximal flow with minimal cost
Input: Let G=(N,A) is a network model where a cost c ij and

a capacity u ij associated with every arc (i,j) is belong to
A.

New access frequencies of documents: P
Number of Servers: N
Number of Documents D
A threshold integer: S
Output:
New dispatching table T such that every server has
equivalent workloads
Program:

for any arc (i,j) is belong to A
Cij = 1

end for
for q=1 to ∞

flow=Maxmial_Flow_by_Ford_Fulkerson()
Z(x)=S(cijxij-1/N)2 ,j =sink
if Z(x) <=S begin

output flow to T
halt

end if
end for

Popularity calculation

Initial
?

Data placement

Yes
Re-calculating
dispatching
probability

Job dispatching table
setup

displacement
overhead

is expensive ? No

No
Yes

client

dispatcher

Query

Server 1

Server n

monitor

Overload
?

Decay++

Decay/2

Updating
Decay
factor

…
..

Yes

No

Selecting
content

To Client

Dispatching

Start

Calculating Overhead of
Data placement

 6

In general, SpecWeb is the industry standard
benckmark for measuring web server performance [15].
Basically, it generates a finite number of HTTP requests
which retrieve different length files according to a
particular file size distribution. However, the variation of
data size generated by SpecWeb is so extreme that loses the
generality. In order to reduce extreme variation of data size,
we refer the average data size evaluated from [14] and set
document size as 64k, which is approximate to the average
data size generated by SpecWeb. Besides, the document
popularity is simulated based on actual workload on
several popular web sites[14]. That is, we will set zipf
parameter so as to meet a 90/10 access skew in www
environment. Several parameters will be given or defined
appropriately for our simulation. They are listed below
briefly. i)Number of requests: this denotes the number of
requests to arrive per second. We will evaluate this value in
400, 500, 600, 700, 800, 1000, and 2000. ii)Trigger content
adaptation threshold: this denotes the value determining if
a server is overloaded or not. If the proportion of the
number of waiting requests compared to the server
capacity is beyond this value, we claim that server is
overloaded and back-end servers will send an adapted
document to clients. We will evaluate this value in 0.8.
iii)Memory size: this denotes the maximal number of items
that can be cached in memory. We will set it as 32 by
default. Other parameters are shown in Table 4-1.

Parameter Notation Value

Back-end server number Nc 8

Document number Np 1000

Parameter for zipf

distribution

θ -0.345103

Document size S 64K

Adapted page number V 4

Size decay ratio for

adapted pages

R 0.5

Table 4-1 Simulation Parameter

4.2 Preliminary Performance Evaluations

We will compare PDCA with other schemes under
two different modes, normal mode and overloaded mode.
Normal mode means that arrival requests number is below
the capacity of system. On the other hand, overloaded
mode means that arrival requests number is beyond the
system capacity. The circumstance of overloaded mode
occurs frequently in popular web sites and is worthy of our
analysis. Based on the server capacity set by our simulation
environment, we view it as normal mode if request arrival
number is below 1000. Otherwise, we view it as
overloaded mode. Figure 4-1 shows the hit rate comparison
in normal mode. It is clearly that PDCA is much better
than others. This is because that PDCA has smaller data set
for each server than that of 2RR and NCSA. 2RR is very
close to NCSA due to common data set stored in servers.

As shown in Figure 4-2, the performance of reject
probability of PDCA is much superior to others due to its
high hit rate. Besides, 2RR is better than NCSA due to its
more even request distribution among servers. However,
2RR rejects a subset of requests when arrival rate are 800
and 1000 respectively for their low hit rate.

In order to observe the circumstance of overloaded
mode, we set arrival number as 2000 per second. Besides,
we disable our content adaptation policy to observe how
adaptation to reduce the impacts on massive traffic. It is
marked as "P_NA". As shown in Figure 4-3, PDCA has
very lower reject probability compared with others. It is
because that our adaptation policy can efficiently decrease
the length of waiting queue such that newly coming
requests has higher probability to be accepted. It is clearly
that NCSA is very close to 2RR due to their resource are
exhausted. However, in "P_NA", the popular document
requests are distributed to a particular subset of servers.
This improves the hit rate of these servers and causes that
rejected probability of P_NA is much lower than that of
NCSA and 2RR. But, we can find that the difference
between PDCA and P_NA is very obvious (about 37%).
That is, with cooperation of content adaptation policy, the
rejected probability can be decreased significantly in
overloaded mode. Figure 4-4 shows maximal requests
respectively. Because transmitted documents are adapted,
we can find that PDCA has the smaller latency and larger
maximal requests than others. Similarly, P_NA is better
than 2RR and NCSA for higher hit rate. NCSA is the worst
due to its unevenly load distribution.

0

0.2

0.4

0.6

0.8

1

hit rate

400 600 800

Request arrival rate

hit rate

PDCA

NCSA

2RR

Figure 4-1 Hit rate comparison in normal mode

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

1
0
0
0

PDCA

NCSA

3.9274

9.0921
13.1446

19.4514
25.1569

30.0538

0 0 0 0
0.0259

14.7031

0 0 0
0 0

0
0

10

20

30

40

R
e
j
e
c
t

P
r
o
b
a
b
i
l
i
t
y
(
%
)

Arrival Rate

PDCA

2RR

NCSA

Figure 4-2 Reject Probability Comparisons in normal

mode

 7

9.5105

57.3469
57.8573

46.6197

0

20

40

60

R
e
j
e
c
t

P
r
o
b
a
b
i
l
i
t
y
(
%
)

PDCA 2RR NCSA P_NA

Arrival_Rate_2000

Figure 4-3 Reject Probability Comparison in overload

mode

2000 1813

1067

842 853

0

500

1000

1500

2000

M
a
x
i
m
a
l

S
t
r
e
a
m

IdealPDCAP_NANCSA2RR

Arrival_Rate_2000

Figure 4-4 Maximal Stream Comparison in overload

mode

5. CONCLUDING REMARKS

In this paper, we have described an effective load
distribution method with popularity-based replication and
content adaptation techniques. We also build a simulation
environment to evaluate the performance of our methods
and compared with other methods in some detail. In
summary, the main features of our techniques are listed
below. i)A popularity-based replication concept is
introduced. According to the popularity of the document,
we assign it the different number of replicas. With
pre-computing access probability and replicas of
documents, we also propose a data placement scheme such
that all servers may have equivalent workloads within a
specific period. ii) An efficient load distributing policy,
named “ Probabilistic Dispatching with Content
Adaptation” is proposed. It distributes load among servers
based on pre-computing access probability. It is
unnecessary to communicate with back-end servers
frequently such that system design and implementation is
simplified. In order to reduce the impact of burst traffic due
to probabilistic load distribution, content adaptation
scheme is proposed. We find that our content adaptation
scheme not only cooperates our load distribution policy but
also guarantees QoS of overloaded servers. iii) The
evaluations show that our scheme has better performance
than 2RR and mirror in normal mode. Even in overloaded
mode, our scheme without content adaptation function is
also much better than them. Hence, we ensure that load
distribution should be determined by requested documents
and our scheme improves the load balance and

performance of web servers indeed. Besides, our
evaluations also show that our content adaptation policy
can provide a higher QoS than any of other schemes in
overloaded mode.

 In the future, we may enhance our method to the
following cases. i) More accurate access behavior
prediction. ii) Those heterogeneous web servers in the
system. And iii) Attaching server push technique.

6. REFERENCES

[1] T.F. Abdelzaher, Nina Bhatti," Web Server QoS
Management by Adaptive Content Delivery", 7th
International Workshop on Quality of Service,
pp.216-225, 1999.

[2] B.Narendran et al, " Data Distribution Algorithms for
Load Balanced Fault-Tolerant Web Access", Proc. of
16th Symposium on Reliable Distributed Systems,
pp.97-106, Oct,1997.

[3] V. Cardellini, M. Colajanni, P.S.Yu, "Dynamic Load
Balancing on Web-Server Systems", IEEE internet
computing, vol.3, issue.3, pp.28-39, May-June, 1999.

[4] Daniel M.Dias ,William Kish, Rajat Mukherjee ,Renu
Tewari, " A Scalable and Highly Available Web
Server", Proc. of Compcon '96, pp.85-92, Feb,1996.

[5] Michael Rabinovich, Amit Aggarwal, "RaDaR: a
scalable architecture for a global Web hosting service",
ACM Computer Networks, vol.31, pp.1545-1561, July,
1999.

[6] Azer Bestvaros, " Demand-based Document
Dissemination to Reduce Traffic and Balance Load in
Distributed Information Systems", Proc. of 7th IEEE
Symposium on Parallel and Distributed Processing,
pp.338-345, 1995.

[7] Vivek S. Pai, Mohi Aron, and Gaurav Banga,
"Locality-Aware Request Distribution in cluster-based
Network Servers", Proc. of the 8th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp.1-12, 1998.

[8] R. Vingralek, Y. Breitbart, and G. Weikum, "
SNOWBALL: Scalable Storage on Networks of
Workstations with Balanced Load", ACM Distributed
and Parallel Database, vol.6, pp.117-156, May,1998.

[9] W.S. Huang, An Effective Data Placement Scheme
For Supporting Fault-Tolerance in Distributed Video
Server Environment, Master Thesis, CSIE, NCTU,
June, 1999.

[10] Edith Cohen et al., " Efficient Algorithms for
Predicting Requests to Web Servers", Proc. of
INFOCOM '99, pp.284-293, 1999.

[11] Thomas D. C et al., " Popularity-Based Assignment of
Movies to Storage Devices in a Video-on-Demand
system". Multimedia Systems, Vol.2, No.6,
pp.280-287, January, 1995.

 8

[12] H. Cormen et al, Introduction to Algorithms,
McGraw-Hill Book Company, pp.579-599, 1989.

[13] Steven J. Leon, Linear algebra with applications,
Prentice-Hall, pp.233-241.

[14] Andy Myers, Peter Dinda, and Hui Zhang, "
Performance Characteristics of Mirror Servers on the
Internet", Proc. of IEEE INFOCOM '99, vol.1,
pp.304-312, 1999.

[15] The Workload for the SPECweb96 Benchmark,
http://www.specbench.org /osg/ web96/workload.html

[16] Kwan, T.T et al, " NCSA's World Web Server: design
and performance", IEEE Computer Vol. 28, Issues 11,
pp.68-74, Nov, 1995.Helen Meng., Senis
Busayapongchai, and Victor Zue, et al. “WHEELS: A
Conversational System in the Automobile
Classification Domain,” ICSLP ’96 Vol. 1. pp.
542-545, 1996.

[17] William Stallings, ”Data and Computer
Communications”, Fifth Editions, Prentice Hall
International Editions.

