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Abstract

Most rendering algorithms use Monte Carlo methods for
solving the part of direct lighting in rendering equation.
And those algorithms usually assume that the lights in the
scene are uniform distribution. This paper presents detail
of sampling on disc luminaire with non-uniform
distribution. We present several non-uniform light
distributions on disc luminaire and implement those light

distributions in a direct lighting rendering system. Each

light distribution causes different shading effect.

1.Introduction

The Photo-realistic image synthesis is a goal of computer
graphics. Physically based rendering algorithms use
physical rules to simulate the light transport and reflection.
In 1986, Kajiya introduced rendering equation [2]. He
used Monte Carlo method to solve the illumination
problem. Most implementations use Monte Carlo methods
to estimate the direct lighting calculation [9][10][11]. And
those algorithms generally assume the luminaires are
uniform distribution. In fact, there is no perfectly uniform-
distributed luminaire. Thus we try to define some non-
uniform light distributions with disc luminaire. The light
distributions of real-world luminaires are more

complicated than the light distribution discussed here, but

complicated distribution function is also too difficult to

find the sample point. Due to complexity and efficiency
considerations, we choose simplify the distribution
function to simulate the shading effect. The simplification
can speed up the lighting calculation. This paper presents
how to generate non-uniform random samples. In Section
2 we describe Monte Carlo method and how to generate
random sample on disc with uniform distribution. In
Section 3 we present several non-uniform sampling
techniques. In Section 4 are our experiment results. In

final section we discuss our techniques and future works.

2.Related works

In this section we describe basic Monte Carlo Integration
and apply Monte Carlo method [1][5][6][7] to direct
lighting calculation. We also present how to how to

generate random sample on disc with uniform distribution.
2.1 Monte Carlo method

If we want to find an approximate solution of integral I:

1= Ih(x)d/,l(x)

There exists a set of random  variables,
{X1,X5,,Xn}~p. The probability density function
(pdf) p(x) is defined over S. These random variables can
be used to approximate /. Let & = f p then we can estimate

I with following equation:
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Monte Carlo method is simple, only sampling and point

evaluation are required. The standard decreases with the

square root of the number of samples N.

2.2 Direct lighting

The separation of direct lighting and indirect lighting can
speed up the lighting calculation [9]. The rendering
equation shows that outgoing radiance is the sum of the
emitted radiance and the radiance from all visible surfaces.
The rendering can also be expressed as multiple terms:
emitted, direct and indirect radiance.

Ls(x,®) = Le(x, ) + J'p(x, @, &)L (x') cos '
Q.
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Then we can express L, as following equation:
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where x is a point on the surface, x’ is a sampling point on

the luminaire. g(x,x') is geometry term>when g(x,x')

is 1, it means x is visible for x". If g(x,x') is 0, x is
invisible for x”. p(x,y,y") is the Bi-directional Reflection

Distribution Function » ' and {J are incoming direction
and outgoing direction respectively. Ly(x,¢') is the
radiance contributed to x from incoming direction ('. 6
is the angle between the -(' and the surface normal at x.
6' is the angle between (J' and the luminaire normal at
x|
we apply p(x) = 1/A To solve direct lighting integral,

where A4 is the total area of the luminaire. The primary
estimator is
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2.3 Sampling disc luminaire

To choose a random sample form a disc [3][5][9], first we
suppose that its center is at the (0,0), the radius is R.

Thus a point x(u,v) on the disc can be describe as
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p(x)= l Efor sampling disc luminaire. We

proceed as follows:
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Thus we can find (@',7'), where
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To apply the sampling method to a disc luminaire in ray



tracing system, we must transform the sample x to x* in
ray tracing coordinate. Suppose the center of disc is ¢, and

its normal N =W in its @vw coordinate system. Then
the transformation is

@, v, wRe, cos2mg)0
x'=c+ %{y v, w, EBQ\/Z sin(271g)
@Z vZ WZ % 0 %

x is the uniform distribution sample point on the disc.

3.Non-uniform disc luminaire sampling

In previous section we present the uniform disc luminaire
sampling. But in the real world the most luminaires are
not in non-uniform distribution. In this section we some
non-uniform distribution sampling: linearly decreasing,
linearly decreasing and then increasing, linearly
increasing, linearly increasing and then decreasing,
hyperbolically decreasing, and hyperbolically increasing.
To reduce variance we design probability density function
with importance sampling. We take distribution function

of luminaire as a part of probability density function.
3.1 linearly decreasing sampling

We develop a pdf for linearly decreasing and then linearly
increasing:
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where ¢ is the turning point.
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Because r’ doesn’t have analytical solution, we use

numeric method to find the solution of .
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In this case we assume t = R/2.
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There is an integral of absolute value, we separate the
integral into two integral to find the solution of each
integral. Before calculate the sampling point we must
generate another random €3 variable to determine what

integral we should use.



3.2 linearly increasing sampling
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In this case we assume ¢ = R/2
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3.4 hyperbolically decreasing

This case is that the intensity decreases hyperbolically

form the center of the disc. The pdf = ]’—T}l Ghdrd® = 27R
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The sample points on disc luminaire can be estimated by
following equation:

x=r"[¢osO’

y=r[Bing
These sample points can be used to solve the render
equation. Because some above distribution functions don’t
have analytic solution, we must numerically solve the

equation.

4.Results

In this section we verify our sampling methods and also
implement the disc luminaire in a rendering system,
Rayshade. Each distribution case has three figures. First
figure shows the 5000 points on a disc with their own
distribution function. In secondary figure we divide the
radius of the disc into ten sections and create ten
concentric circles. X-axis is ith concentric circle range. Y-
axis is the number of sampling points in unit area of each

concentric circle. There are forty thousand sampling

points in this figure totally. Third figure is the direct
lighting image that is rendered by Rayshade. And there
are 400 samples on luminaire and 1 sample per pixel.
While Comparing figure 1.3 with figure 2.3 we can
find the shadows of tow red torus are clearly different.
Figure 1.3 is uniform distribution and its shadow of red
torus is blurry and the shadow is almost a circle, not a ring.
Because figure 1.3 is uniform distribution and the
luminaire is bigger than the torus. Almost entire shadow is
penumbra. But In figure 2.3 the shadow of torus is almost
a ring. Because the intensity of the luminaire is more
centralized. It causes shadow like the point luminaire, but
unlike point luminaire causes sharp shadow. In Figure 3.3
the torus has two shadows. One is produced by the
luminous intensity gathered round the center of luminaire.
The other is produced by the luminous intensity round the
edge of disc luminaire. In figure 4.3 the shadow of the
torus is a little like figure 1.3, but more blurry. This
intensity of disc luminaire is distributed round the edge. In
figure 5.3 the intensity is distribution round concentric
circle with the half of radius of the disc luminaire. Its
shadow is like the figure 2.3’s but a little blurry and
bigger. The shadow of red torus in figure 6.3 is more
sharp and smaller than figure 4.3. The shadow of red torus
in figure 7.3 the more sharp than figure 2.3. Because the
luminous intensity in figure 6.3 is more centralized than
figure 4.3. And figure 7.3 is similar condition. In all
experiments we find that if the intensity is more
centralized, the variance of the image will be lower. It
means converge rate of Monte Carlo method will be

higher.

5.Conclusion

In this paper we present some non-uniform light



distribution function for direct lighting calculation. Each
distribution causes different shading effect. They also
have different converge rate. To simplify the complexity
of integrals we choose the constant probability density
function for disc luminaire. This may cause higher
variance, but increasing sampling numbers will reduce the
variance. We also simplify the light distribution function.
It may be inappropriate, but it also produces vivid shadow.
We can take it as a special case of light distribution.
Future work should include more sophisticated ways
to develop the light distribution function and construct
better probability density function to produce lower-

variance image.
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(1) Uniform distribution (5) Linearly increasing then decreasing (t=R/2)
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(4) Linear increase form center(t=R)
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