A SPATIAL REPRESENTATION MODEL AND
SIMILARITY RETRIEVAL METHOD OF ICON IMAGES

Ying-Hong Wang and Tai-Lung Chien
{inhon, 053672} @mail.tku.edu.tw

Department of Information Engineering, TamKang University,
Tamsui, Taipei Hsien, 25137, Taiwan, R.O.C.

Abstract

In this paper, a new spatial knowledge representation
model named ‘“Two Dimension Begin-End Boundary
String”(2D Be-string) is proposed. The 2D Bé-string
represents an icon by its MBR boundaries and a number
of “dummy objects”. The 2D B&-string can intuitively and
naturally represent the pictorial spatial information
without any spatial operator. In addition, an image
similarity evaluation method based on the modified
“Longest Common Subsequence” (LCS) algorithm is
presented. By the proposed evaluation method, not only
those images which all of the icons and their spatial
relationships fully accord with the query image can be
sifted out, but also those images which partial icons
and/or spatial relationships are similar to the query image
can be applied to. It resolves the problems that the query
targets and/or spatial relationships are not certain. Our
representation model and similarity evaluation also
simplify the retrieval progress of linear transformations,
including rotation and reflection of an image.

Keyword: image retrieval, image database, spatial
knowledge, spatial reasoning, similarity
retrieval, 2-D Strings, LCS algorithm, 2D
Be-string

1. Introduction

In pictorial spatial application systems, it is very
important to abstract the information existing in original
images. For example, how the image icons and their
characteristics are recognized, how the symbolic image is
encoded and constructed, how to index and retrieve these
images and evaluate their similarity corresponding to a
query image, ... etc. All of these are very important issues
in the information retrieval and/or content-based retrieval.

There are three basic types for image indexing and
retrieval: (1) by features (e.g., color, texture, shape) of the
icons in images, such as the QBIC project [9] and the
Virage search engine [11]; (2) by size and location of the
image icons, such as R-tree [1], R*-tree [6], Quadtree [4],

and Mou’s [13]; (3) by relative position of the icons, such
as the 2-D Strings [2] model and its variants
[3,7,8,10,12,15,16,17]. The third is very suitable for those
applications that do not care the actual coordinates of icon
objects. For example, one may find all images which icon
A locates at the left side and icon B locates at the right.

Spatial representation by 2-D Strings and its variants
have gained increasing attention in a pictorial spatial
database. But most of them need a series of cutting for
icon objects in an image. The icons must be associated
with a lot of spatial operators to accomplish the
representation of related spatial information, but their
representations are not intuitive. They always generate
more split objects after cutting, require more space for
saving, and use more complicated algorithm for image
retrieval. Their similarity retrievals require massive
geometric computations and focus only on those database
images that own all of the icons and spatial relationships
of the query image. They, however, do not mention that
only part of icons and of spatial relationships are similar to
the query image.

In this paper, we propose a new spatial knowledge
representation model named “Two Dimension Begin-End
Boundary String”(2D Be-string). The 2D Be-string does
not need to cut any image’s icons because it simply
represents an icon by its MBR (Minimum Bounding
Rectangle) boundaries. And by applying a number of
“dummy objects”, the 2D Be-string can intuitively and
naturally represent the pictorial spatial information
without any spatial operators. An algorithm is also
introduced, which takes into account the O(n) space
complexity in the best and worst cases, to generate a
symbolic image, the 2D Be-string .

In addition, we also propose an image similarity
evaluation method based on the modified “Longest
Common Subsequence”(LCS) algorithm [5]. By our
evaluation method, not only those images that all of the
icons and their spatial relationships fully accord with the
query image can be sifted out, but also those images which
icons and/or spatial relationships are partially similar to
the query image. It resolves the problems that the query
targets and/or spatial relationships are not certain. The

modified LCS algorithm takes O(mn) as the space and
time complexity, where m and n are the number of icons
in a query image and a database image, respectively. It is
much easier to retrieve the linear transformations of an
image represented by 2D Be-string. The transformations
include 90, 180, 270 degrees clockwise rotations and the
reflections on the x-axis or y-axis.

The remainder of this paper is organized as follows.
Section 2 reviews the approaches of 2-D Strings and its
variants. In Section 3, we propose a new spatial
knowledge representation model, called 2D Be-string, as
well as an algorithm to construct a symbolic picture using
the 2D Be-string. A similarity retrieval algorithm,
modified from LCS, and the corresponding similarity
evaluation progress are introduced in Section 4. In Section
S, we present a demonstration system, a visualized
retrieval system, implemented by the 2D Be-string and
modified LCS algorithm. Finally, the conclusion and the
future work are given in the last section.

2. Related Work

2.1. The representation model of 2-D Strings
and its variants

Chang ef al. [2] proposed an approach, called 2-D
Strings’, to represent the spatial information in a picture or
image. The 2-D Strings uses the symbolic projection of a
picture along the x-axis and y-axis. The 2D G-string [3], a
variant of 2-D Strings, extends the spatial relationships
into two sets of spatial operators R, and R,, and cuts all the
objects along their MBR boundaries. The 2D G-string
unifies the spatial relationship between two cut objects.
Only those operators in the set R, are enough to specify
the relationship between two cut objects.

The 2D C-string [7, 10], another variant of 2-D Strings,
proposes an approach to minimize the number of cutting
objects. The 2D C-string leaves the leading object as a
whole. It eliminates some problems associated with
superfluous cutting objects generated at the 2D G-string
cutting progress. It, however, is O(#%) cutting objects in
the worst case.

Instead of using the cutting process, the 2D B-string [8]
represents an object by two symbols. One stands for the
beginning boundary of that object, the other for the end.
The 2D B-string reduces spatial relationships to a single
operator ‘=’. It means that two objects have the same
boundary projection if ‘= is appeared.

2.2. The similarity retrieval and evaluation

The basic similarity retrieval and evaluation idea for
2-D Strings [2], 2D G-string [3], 2D C-string [7] and 2D
B-string [8] is the same. First, they always define three
types of similarity, type-i (i = 0, 1, 2). Each is constricted

by some conditions. Type-1 is stricter than type-0 and
type-2 is stricter than type-1. Second, they examine all
spatial relationship pairs between any two objects in the
query image versus those pairs in the image of database.
They build type-i subgraph if the pair satisfies type-i
constraints. After examining, they find the maximum
complete subgraph for each type-i graph. The number of
objects in the maximum complete subgraph is the
similarity of the query image and the images of database.

The space and time complexity to examine all spatial
relationship pairs requires O(x°), where # is the number of
object in an image. Finding maximum complete subgraph
is an NP-complete problem [18]. It is a time consuming
task. It is not suitable for a large number of icon objects in
an image.

3. The Spatial Representation Model Using
2D Be-string

3.1. The model of 2D Be-string

There are many approaches proposed to represent an
icon in an image, such as MBR (Minimum Bounding
Rectangle) [3,7,8,10], MBE (Minimum Bounding Ellipse)
and MBC (Minimum Bounding Circle) [13]. The
approach used in the 2D Be-string is MBR. Conceptually,
it is similar to the 2D B-string. However, the 2D Be-string
adopts a quite different idea to address the spatial
relationship between two boundary symbols. The 2D
B-string uses a spatial operator (=) to describe the
projection of two boundaries that is IDENTICAL. In the
2D Be-string, we use a dummy object to describe the
projection of two boundaries that is DISTINCT!

We define a ‘Dummy Object’ in the following way:

A ‘Dummy Object’ is not a real object in the
original image. It can be specified as any size of space
and be memorized as symbol ‘€’.

The 2D Be-string with » icons thus can be defined as

(U, v) = (dpxidixod;...dsy X205, dydiysds...dsy
Yonllzn)-

Where d; is a dummy object € or a null string, i = 0,
1, ... 2n, and x; and y; are real icon objects that are
either the beginning or the end projected boundaries on
the x-axis and the y-axis, respectively. Set d, to € if
there is space between the beginning boundary of the
leftmost (bottommost) object and the left (bottom) edge
of an image. Similarly, set d,, to € if there is an interval
between the end boundary of the rightmost (topmost)
object and the right (top) edge of an image. For the rest,
set d; to € if the boundary projections of x; and x;.; (y;
and y;.,) are different.

The 2D Be-string showed in Figure 1, for example, is
written as (u, v) = (€4,€BpeA CreCEB.E, EByEALEB,CpeC.E

A.€). The dummy object d; is set to a null string because
the end boundary of object 4 and the beginning boundary

of object C are projected at the same location on the x-axis.

A similar case is applied to the end boundary of object B
and the beginning boundary of object C on the y-axis.

Figure 1: An image with three objects

Observably, the 2D Be-string has the following
advantages: First, the object location in original images
and symbolic pictures was mapped directly, as showed in
Table 1. There is no operator required for representing the
spatial relationship between objects. It is intuitively.
Second, it does not need to cut the objects of image, which
simplifies the construction of image database. And the
space complexity for an image with » objects in the worst
and best cases is O(n). It requires 4n+1and 2n+1 symbols,
respectively. Third, it simplifies the similarity retrieval
because there is no combination of the result of spatial
reasoning required.

Table 1: Mapping of spatial relationships.

Symbolic picture| Original image
1| eAeA£CEeCe |F— ——
2 | eAACECeE |F—/—Et——
3 | eAECEAECE | FT————=
4 | eAeCreC.AE |
5 | eAeCreCeAE | FT—oT
6 | eACeA£LCe B —=
7 | €ACLEA.CE e
8 | eA,CLeC.EAE —
9 | eCreAEAECE | ———
10| eCpeAeACE —]
11| eCpeAeCEAE | ——T
12| eCeCAEAE | T—F——
13| eCeCEAEAE |——a =——

A /= C /=

3.2. Algorithm for constructing a symbolic
picture

The algorithm Convert-2D-Be-String, showed in
Table 2, transforms an original image to a symbolic
picture. Lines 1-12 explain the meaning of variables.
Lines 14-19 sort the input data by coordinates and object
identifiers in ascending order for the x-axis and the y-axis
separately. Lines 21-32 construct the 2D Be-string on the
x-axis, and lines 34-45 do the same thing for the y-axis.

The time complexity on loops in lines 14-18, 24-30,
and 37-43 is O(n), and never exceeds the sorting algorithm
called in line 19. If we don’t care the sorting algorithm,

the space complexity is O(n) too.

Table 2: Algorithm to construct a symbolic picture.

Convert-2D-Be-String (1n,C,X3,X,, Y5, Y osXpaxV max)

1. // n...number of objects in an image

2. /I C ...name of objects, C={cy, ¢y, ..., ¢y}

3. /I Xj ...beginning boundaries on the x-axis, X;={x5;,
Xb2s +ees xbn}

4. /X, ...end boundaries on the x-axis, X,={X.;, X¢2 ...,
xen

5. /1'Y, ...beginning boundaries on the y-axis, Y;={ys;,
J’bz,---’J’bn} . .

6. /'Y, ...end boundaries on the y-axis, Y, ={Ves, Ve2, -..»
Yen}

7. I/ x,,,ezx ...maximum coordinate on the x-axis

8. /! Viax -..maximum coordinate on the y-axis

9. /I Xp ...2D Be-string on the x-axis

10. // Y4, ...2D Be-string on the y-axis

11. //S...asort work for x-axis, S={s; | i=1,2,..., 2n}
12. // T...a sort work for y-axis, 7={¢; | i=1.2,..., 2n}
13. // Combine MBR and object identifier as a key
14. fori=1ton

15. S8 —XpiCi
16. Sitn < XeiCi
17. ti < YbiCi

18. t_i tn < YeiCi A
19. Sorting S and 7 by ascending order
20. // Construct 2D Be-string on the x-axis

21, Xp <" // Initialized by a null string
22. ifx; of s; # 0 then // Insert € at the leftmost?

23. Xpo— €

24. for i=1 to 2n-1

25. iftype of x in s; is x, then ~ // Convert to

26. Xpo — XpeChi // boundary symbol
27. else

28. Xbe ‘_Xbecei

29, if x of s; # x of 5,4 then

30. Xpe — Xpe€

31. ifx, of $5; Z Xpmae then // Insert € at the rightmost?
32. Xpe — Xpo€
33. // Construct 2D Be-string on the y-axis

34, Y "
35. ify, of 11 # 0 then // Insert € at the bottommost?
36. Yie— €

37. for =1 to 2n-1

38. iftype of y in #;is y, then ~ // Convert to

39. Y « YioCai // boundary symbol
40. else

41. Ybe e Ybecei

42. ify of t; # y of t;4; then

43, Ybe — YbeE

44. if y, of ts,, # Yimax then // Insert € at the topmost?
45. Ybe — Y},ef
46. return Xj,, Y,

4. Image Similarity Retrieval and Evaluation
4.1. Algorithms of similarity retrieval

In the similarity assessment, we take care the number
of spatial relationships formed by every two objects and
appeared in the query image and database image at the
same time. In order to find the number of common spatial
relationships, we propose an algorithm to find the longest
common subsequence (LCS)[5] length from the 2D
Be-strings of a query image and database image. Then

measure the similarity by evaluating this LCS string with
respect to the original 2D Be-strings. The time complexity
of the LCS algorithm [S] is O(mn), depends on only the
length of the strings.

It is not necessary to examine all the spatial
relationships for every two boundary symbols. Because
the LCS string implies that, in query images and
database images, all the spatial relationships of every
two boundary symbols in LCS string are the same. So,
the similarity can be evaluated in a reasonable time.

This algorithm is shown in Table 3, and named as
2D-Be-LCS-Length. This algorithm is modified from the
LCS algorithm discussed by Cormen et al. [5]. There are
two factors to revise the original LCS algorithm. First, we
avoid picking dummy objects continuously because only
one dummy object sufficiently represents the relative
spatial relationship between two boundary symbols. The
if-statement in line 21 makes this decision. Second, we
omit the LCS path recording matrix by evaluating the left
and up paths first, as shown in lines 16-19, and evaluating
the left-up diagonal path next, as shown in lines 23-24.
The LCS path, however, can still be inferred from the
matrix recording the LCS length.

Table 3: Algorithm to calculate the LCS length.

dimension is 4m+1, including 2m boundary symbols and
at most 2m+1 dummy objects. With the same derivation,
the maximum length of the 2D Be-string of a database
image with n objects is 4n+1. The LCS-length inferring
table W needs (1+(4m+1))(1+(4n+1)) storage units;
therefore, the space complexity is O(mn).

In the initialization of the first row and the first column,
as shown in lines 7-8 and 10-11 in Table 3, each string
symbol must be set once. They will be executed 4m+1 and
4nt+2 times, respectively. The outer loop, in line 13,
examines each row of W 4m+1 times. The inner loop, in
lines 14-26, examines each cell of W (4m+1)*(4n+1) times.
Thus, the time complexity is O((4m+1)+(4nt2)+(4m+1)*
(4nt1)), same as O(mn).

We also give a recursive procedure to print a longest
common subsequence string of two 2D Be-strings. This
algorithm is shown in Table 4. The initial invocation is
Print-2D-Be-LCS (Q, W, length(Q), length(D)). From the
last cell of the LCS-length inferring table W, this
procedure decreases i and/or j along the directions left
and/or up in each recursive call until either 7/ or j reaches
zero. Then all symbols of LCS string are printed out in the
proper, forward order.

Table 4: Algorithm to print LCS string.

2D-Be-LCS-Length (Q, D)

1. m«<length(Q)

2. n«length(D)

3. //Qisa2D BE-string of'a query image, O={q;|i=
1,2,.

4. //Disa 2D BE- string of a database image, D = {d; | j
=1,2,.

5./l Wisthe LCS length inferring table, W= {w; ;| i =
0,1,2,...,mj=0,1,2, ..., n}.

6. // Initialize the first column of W by zeros.

7. fori—1tomdo

8. Wio«— 0

9. // Initialize the first row of W by zeros.

10. forj—0tondo

11. Wo 0

12. // Infer each cell until all cells was evaluated.

13. fori=1tomdo

14. forj=1tondo

15. // Set current cell value.

16. lflw,_1J| 2 |W,‘]]‘_1| then
17. W,-J- - wi-l,j

18. else

19. W Wy

20. // Check the symbol q,, d; and the last symbol of LCS
path from left-up dlagonal

21. if (g; = d;) and ((g; # €) or (w;1,.1 2 0)) then
22. //Ifall are hold

23. if (fw;.q 51| +1) > [w; | then

24. Wij— |W, 1,j- l| +1

25. if g; = € then

26. Wij—-W;;

27. return W

The algorithm 2D-Be-LCS-Length takes Q and D, two
2D Be-strings, as input parameters and returns the
LCS-length inferring table W. In a query image with m
objects, the maximum length of the 2D Be-string in each

Print-2D-Be-LCS (Q, W, i, j)

1. // Qisa?2D Be-string of query image, O ={q;|i=1,
2, ..., m}.

2. // Wis the LCS-length inferring table induced from
algorithm in Table 3.

3. ifi=0orj=0then

4 return

5. if|wyj|=|wj;-1 jl then

6. Print-2D-Be-LCS(Q, W, i-1,)

7. elseif |w; j| =|w; j_1| then

8 Print3D-Be-LCS(O. W, i.j-1)

9. else

10. Print-2D-Be-LCS(Q, W, i-1, j-1)

11. print g;

12. return

Due to the revision of finding the LCS length from the
two 2D Be-strings in Table 3, we need to compare the
LCS string length of the current cell with the string length
of up one before printing LCS string symbols. It certainly
implies that the LCS paths are induced from up direction
if they are the same. The corresponding boundary symbol
or dummy object doesn't belong to a symbol of LCS string,
We ignore this symbol and continuously induce along the
up direction, as lines 5-6. On the other hand, if they are
not the same, we need to compare current cell's LCS string
length with the left cell's length. If they are the same, the
LCS is induced from the left direction. With the same
reason as in the preceding case, we also ignore this symbol
and continuously induce along the left direction, as lines
7-8. If the LCS is not from the up or left direction, it must
be induced from the left-up diagonal direction. The current
cell associated with the boundary symbol or dummy

object must be part of the LCS string. After processing all
cells on the left/up direction recursively, we print out this
symbol, as lines 9-11.

When recursively calling in lines 6, 8 and 10 each time,
either i or j is decreased by one. This algorithm can print
out all LCS string symbols after m+n times recursive calls
are implemented at most. The time complexity is O(m+n).

4.2. The similarity evaluation

After obtaining the LCS length and the LCS string of a
query image and a database image, we need to evaluate
their similarity. Conceptually, the longer the LCS string is,
the more two images look similar. For example, string in
one dimension of 2D Be-string is:

Query image 1: EB,ECLEB.EALECEA.E,

Database image 1: éByeB.ED,EALEDEA.E,

LCS string 1: eB,eB.EALEAE,

Database image 2: €éBy€C,EB.EDpEALEDEC.EA.E,

LCS string 2: eByeCEBEALECEA,E.

With the same query imagel, database image 2 is a
better result than database image 1 because its LCS string
is longer than the LCS string 1. However, two database
images with the same LCS string length do not necessarily
lead to the same similarity. For example:

Query image 2: eB,eC,eB.AeCEA,,

Database image 3: EByEB.ED,EALEDEA.E,

LCS string 3: eB B A €A,

Database image 4: EByEDyEBApEDEALE,

LCS string 4: EByEB.ALEA..

The database image 4 has a better matching result than
the database image 3, because the object B adjoins the
object A in the query image 2 and database image 4, but
not in the database image 3. Thus, the database image 4
has better similarity than the database image 3.

As analyzed above, we propose an assessment to
identify the similarity of the preceding phenomena. Before
describing this assessment, we define the following
notations for the 2D Be-string;:

N : number of objects in a query image;

0, : string length along x-axis in a query image;

0, : string length along y-axis in a query image;

L, : length of LCS string with dummy objects along

X-axis;

: length of LCS string with dummy objects along
y-axis;

: length of L, string without dummy object;

: length of L, string without dummy object;

: length of boundary symbols with spatial
relationships in database image based on M,;

: length of boundary symbols with spatial
relationships in database image based on M,;

: similarity weight along x-axis, 0 < W _<1;

S pEE &

SIS

: similarity weight along y-axis, 0 < Wy SLW +
W, =1

S, : similarity along x-axis, 0<§ <1,

g =0 7@.+ D —2L) AN +1) M, >0,
=5 . =o.

S, : similarity along y-axis, 0 < Sy <1,

g _0-(Q,+D,-2L)/(4N +1) if M, >0,
*~Ho M, =0
§': similarity of a query image and a database
image,

S=WS +WS, 0<S<1.

The LCS string length L, and L, can be obtained by
using the algorithm in Table 3. The value of M, and M,
can be calculated by subtracting the number of dummy
objects from the value of L, and L,, respectively. W, and
W, can emphasize the importance of similarity in the
x-axis or y-axis.

As mentioned in Section 3.1, an image with n objects
has at most 4n+1 symbols on each dimension of its 2D
Be-string. Among which 2n symbols are boundary
symbols and the rest 2n+1 symbols, interspersed among
the boundary symbols, are dummy objects. Now let’s
picture each symbol as a bucket. Thus, an image with n
objects will have at most 4n+1 buckets. If the symbol
doesn't exist, the associated bucket is considered as empty.
For example, the query image 2 with three objects A, B,
and C has at most 4*3+1=13 symbols. The boundary
string is EB,ECpeB.ALECEA.. Due to the lack of a dummy
object € between B, and A,, the bucket 7 (Figure 2) is
empty. Because the ending boundary of object A is same
as the right-edge of the image, the end of boundary string
also lacks a dummy object; therefore, the bucket 13 is
empty. Another example shown in Figure 3 for the
database image 4, the boundary string EByeD,EB.AyED,E

A€ also has an empty bucket 7.
090060
O

1 3

O © ©

7 9 10 11 12 13
Figure 2: Symbols in the buckets of query image 2.
CRCHCNONC
0O ® 0 ® ®

10 11 12 13
Figure 3: Symbols in the bucket of database image 4.

*@) .

=@ .

In comparison with the query image in Figure 2 and the
database image in Figure 3, we categorize those buckets in
query images into four classes and summarize the number
of buckets for each class listed in Table 5.

Note that the class IV represented the LCS information
of a query image and a database image. Class I and IV
together represents the similar portion of both images. The
similar portion also can be obtained from the
complementarily normalized portion of the total buckets
number in the class II and III. The number of symbols in
class I and IV along the x-axis and y-axis are (4n+l) -
(Ox-L,+Dy-Ly) and (4n+1) - (O)-L,+D,-L)), respectively.
The similarity on the x-axis (S;) is 1-(Q,+D,-2L,) / (4n+1)
and the similarity on the y-axis (S,) is 1-(Q,+D,-2L,) /
(4n+1). Clearly, the similarity of the entire image is the
sum of S, and S, with a proper weight, that is,
S=W.S+W,S,.

Table 5: The classifications of buckets.

Class Descriptions Number | Buckets

There is no dummy object
between two boundary symbols

I . . ? 7
in both query image and
database image.
There is no dummy object
between two boundary symbols | p |, ,
II in query image, but has a X 13

dummy object of them in Yoy
database image.

i Symbols in a query image but Q-L, | 4,510
not in a database image. Q-L, and 11
Symbols with same spatial 1,2,3,6,

IV | relationship in both query L,L | 89and
image and database image. 12

Finally, we explain the detail steps for calculating
similarity by an example. The query image in Figure 1 has
three objects, so N=3. The 2D Be-string is presented by
(EALEBLEACLECEBE, EBLEALEB.CLeC.EAE) and the
string length on the x-axis and y-axis, (O, 0,), is (12, 12).

The database image in Figure 4 has a 2D Be-string
(8Eb8Ab£Bb€Ae£Cb€FbEESECSEBeEFes, €EeByEE.ALEB.Cy,
€F,EC.EAEF£). The LCS-length inferring table on the
x-axis and y-axis of a query image and database image
with dummy objects are shown in Table 6 and Table 7,
respectively. The LCS strings are €A,EB,EACpeCEBE
and eByeA,EB.CyeC.EAE; thus, the length pair (L,, L)
equals to (12, 12). The value of (M,, M,) can be calculated
by subtracting the number of dummy objects in the LCS
string from (L, L), thus, (M,, M,) equals to (6, 6). The
boundary symbols with spatial relationships in a database
image based on the strings of M, and M, are
€AEBLEA£C,eC.EB.€ and eBeAEB.C,eC.EA,E; thus, (D,
D,) equals to (13,12). Clearly the similarity on the x-axis
and y-axis can be calculated by

S, =1-(Q, +D, —2L)/[(4N +1) S, =1=(Q, + D, =2L) (4N +1)

S1-(12+13-2%12)[(4*3+1) =1-(12+12-2*12)/(4*3+1)
=1-(25-24)/13 =1-(24-24)/13

=1-0.0769 =1-0.0

=0.9231 =1.0

The weights along each axis (W,, W,) are given as (0.5,
0.5). Then, for the database image, the similarity is
5=0.5%0.9231+0.5*%1.0=0.9616.

Figure 4: Database image.

Table 6: LCS-length inferring table on the x-axis.

Wi 0|1]12|314|5]|6(7|8]|9]|10[11|12]13|14|15[16[17]18]19

d|e|E,| e |Ay| e |By| € [A] € |Cof € |Fy| € |E.| € |Cf € |B.]| &
0[q;|0|0)OfO|O|O|Of[O]JO]|O[O[0O]O]|O]|O]|O|O]|O|[O]O
1 [elolaalal - afaaaalaalaaalaala o]
2 Aol a2z 2]z 222 2 [2 |2 |2 [2|2 2 |2 | 2
3 [elola]-t|1] 2 [B]-3]3]3]3[33[3]-3]|3|3]3]3 |3 |3
4 [Bolal-1[a[2|3[ala[alalaalala|alaala4]4
S1e|0f-1]-1]-1) 2 [-3|4 |-5]-5|-5[-5[-5]|-5|-5|-5[-5|-5|-5|-5]-5
6 |Afof-1[-1]-1| 2 [-3]4|-5|6|6]|6|6|6[6|6]6]6]6]|6]6
7 |G O |-1|-1|-1| 2 |-3|4 (5|6 |6|2|7|7|7|7|7|7|17|7]|7
8 e |0f-1|-1])-1)12(-3[4[-5|6(7|-7|-8|-8|-8|-8|-8|-8|-8|-8]-8
9 |C|of-1[-1]-1| 2 [-3] 4 |-5]|6(-7]|-7]|-8]|-8(-8[-8]-8]9| 9|9 |9
10 e |0]-1)-1|-1| 2 |-3]|4|-5|6(7|-7|-8]|-8]|-8|-8[-8|9 |-10|-10]|-10
11 {B[0|-1]|-1|-1| 2 |-3| 4 |-5| 6 [-7[-7]|-8-8|-8(-8]-8] 9 [-10f 11| 11
12 e |0]-1]-1|-1| 2 |-3]| 4 |-5| 6 |-7]|-7|-8]|-8]|-8|-8[-8| 9 |-10] 11 |-12

Table 7: LCS-length inferring table on the y-axis.

W. 0(112]3[4]|5]|6|7]8|9(10)11{12|13]14(15]16]17[18[19 |20
dngbngsEegAbgBecthbgcggAes F,
0|q|0jOfOfOJOfOJOfOfO]JOJOfOfOJOfOJOfO]O]O]O]O
1 1€ |0|-1|-L|-0-1|-1(-1]-1|-1 [-T|-2 |- -2 f-2f-T|-2f-2 |- [-1[-1]-1
2 |By|of-1|-1{-1}2(2[2]2|2|2|2|2|2]|2|2]|2|2|2|2(2]2
3 e |o|-1|-1{-1]2 [3|3|3-3]|-3]|-3[-3[-3]|-3[-3]-3[-3]|-3]|-3]|-3]|-3
4 |AL|O|-1[-1]-1]|2|-3|-3]|-3| 4 [4|4|4|4a]|a]|a]|a|a]a]|a]|4]|4
5 1e|0f-1]-1)-1{2|-3]-3]|-3] 4 |-5|-5]|-5|-5|-5|-5(-5|-5|-5|-5|-5|-5
6 |B.|O|-1]-1|-1] 2 [-3[-3]-3| 4 |-5|6|6|6|6|[6|6|6[6|6[6]6
7 |C|of-1[-1]-1] 2 |-3|-3]-3| 4 |[-5|6 |2 |7|7|7|7(7|7|7|7]|7
8 [e|0f-1]-1)-1[2|-3]|-3|-3]4|-5[6]|7|-8|-8]|-8|-8]-8|-8[-8[-8|-8
9 |C|of|-1[-1]-1] 2 |-3|-3]-3| 4 [-5|6|7[-8]-8]-8/9[9]9|9]|9]|9
10 e |Of-1{-1|-1]2 [3]-3]-3|4|-5|6]|7|-8]-8|-8|9 |-10]-10|-10|-10(-10
11 |A|0|-1|-1-1| 2 [-3]|-3]|-3| 4 |-5| 6|7 |-8]|-8|-8[9 |-10 11|11 |11 |11
12 |0f|-1]-1]|-1]2 |-3]-3]-3|4|-5[6]|7|-8]-8|-8|9|-10] 11 |-12|-12|-12

4.3. The rotation and reflection of an image

If we consider the rotation (90, 180, 270 degrees
clockwise) or reflection (on the x-axis or y-axis) of an
image, we must perform similarity retrieval and evaluation
eight times. In 2-D String, 2D G-string, and 2D C-string,
we must do a proper string transformation for each
dimension each times. It includes that the string may need
to be reversed, and a sophisticated formula to transform
spatial operators is required [14]. Even thought the 2D
B-string, it still needs to recalculate their rank values.

If an image is represented by a 2D Be-string, then the

similarity retrieval of rotation and reflection for an image
becomes very easy. Before evaluation, it needs to reverse
the string only, if required. Because the dummy object is
not a spatial operator, its meaning is not varied while the
image is rotated or reflected.

Assume that (u, v) is a 2D Be-string with m and »
symbols in the x-axis and y-axis, respectively, that is,
u={ustty... Uy Uy}, V={vv7..v,.;v,}. We can define the
reversed string u'1:{umu,,,_,...u2u,} for u and
Vv'={v,,..vov;} for v. The 2D Be-strings between the
original image and the image after rotation and/or
reflection are summarized in Table 8.

Table 8: The rotation and reflection checklist.

Rotation/reflection 2D Be-string
1 Original image (u,v)
2 90 degree clockwise v, ul)
3 180 degree clockwise @', v
4 270 degree clockwise)
5 Reflect vs. x-axis W, v
6 Reflect vs. y-axis w',v
90 degree clockwise and reflect
7 . (v, u)
VS. X-axis
3 90 degrfee clockwise and reflect o, u)
Vs. y-axis

5. The Implementation

We have implemented a visual image retrieval system
using the approaches of 2D Be-string spatial
representation model and the modified LCS similarity
evaluation algorithm. The system architecture is showed
in Figure 5.

l Image icons Draw query image

v v

Generate Specify Generate
2D Be-string weights 2D Be-string
for
X-axis
Image database and 2D Be-string

of 2D Be-strin y-axis

v v

Match and evaluate similarity

<Display similar images>

Figure 5: System architecture.

After the retrieval system is started, the user can load
an image databases from storage and browse them one by
one thru the scrolling bar. The user may form the query
image by putting a number of available icons in the work
area, dragging them to an appropriate location, scaling
them to an apposite size (Figure 6), and hit ‘Search’ button

while completing the layout. The system will transform
the query image to 2D Be-string, and compare with the
database images. Then the most similar image and its
similarity information are displayed (Figure 7). One can
switch to the 2D Be-string (Figure 8) of that image by
clicking on ‘2D Be-string’ tab. The user may browse those
images next a lower degree of similarity thru the scrolling
bar too.

2D Be-String

Tnage [uery

Teons [
Search “
. H axis [sAbshecChoCesPbabes
Clearkll ¥ axis [AbehecPhePesCheles

i3 [z

Figure 6: Arrange icons in the query image.

- 2D Be-String Sinilarity
Al Bl Lx[13 Ly [13| Dx[13 Dy[13 Score [foox Rank [17350
Search =2 ¥
. s K[eRehesCoaCochberor
Clearhll ¥[cibeheePrepesthates

Figure 7: Show the most similar image with similarity.

2D Be-String 1 Sinilarity 1

24 nage 57500 Teons [Length X[i7 T
[Seareh | |5 s [Fpe e e Che e eV eThete e e e elb el e T e M el cFecPo e B e
Clearhll | | ¥ axis [<Ev e Db < b cEe cDeche cFbclb e PbcHb ¢ b ¢ Fe e Vb e Pe s 2o cNe e Yo o CF

Figure 8: Show the most similar image with 2D
Be-string.

6. Conclusions and Future Work

A spatial representation model, called “2D Be-string” is
proposed. This model does not need to cut any icon in an
image. Instead, an icon object is represented by its MBR
boundaries. It depicts the spatial relationship between two
boundary symbols by apply a ‘dummy object’. It can
intuitively represent the spatial relationship associated

with an image. In addition, the 2D Be-string is formed by
the object boundaries directly; thus, an image with »
objects has the space complexity O(n).

We introduce an algorithm, named Convert-2D-Be-
String, to convert an image with MBR coordinate into a
symbolic image presented by the 2D Be-string. The space
and time complexity of this algorithm is O(n). We also
present a similarity retrieval algorithm, named 2D-Be-
LCS-Length, modified from the LCS algorithm, for the
2D Be-string representation model. All the space and time
complexities of our proposed algorithm are O(mn).

Moreover, we provide an evaluation process, which can
evaluate all similarity no matter how the matched LCS
string appears or not all query objects or all spatial
relationships. For the similarity retrieval of rotation and
reflection, our approaches only need to reverse the string
and apply the similarity retrieval and evaluation as
mentioned above. This process does not need any
conversion of spatial operators. It is more efficient and
much easier than before.

In comparison with other 2D string methodologies, the
2D Be-string simplifies the representation of spatial
relationships and improves the efficiency of similarity
retrieval. Even so, further research is still required.

At first, when an object area in an image differs very
much from its MBR area, the similarity is not obvious no
matter what to use, 2D Be-string or other 2D strings. Due
to the 2D Be-string and other 2D strings obscure this
information while abstracting. The distance between
objects is obscured too. Therefore, how to clarify the size
and distance information in the 2D Be-string
representation model is worthy studying.

In addition, we can evaluate the similarity more
accurate. The original LCS algorithm does not calculate
the number of LCS paths, neither do we here. For a query
image from different images of database, even with the
same length and content of LCS strings, conceptually, the
more number of LCS paths the more similar is. Thus, we
suggest further study to take account into the number of
LCS paths in our similarity retrieval and evaluation
approaches.

It is easy to expand the 2D Be-string representation
model and similarity assessment to retrieve objects in
three-dimension case by adding the third dimension's
string directly. We would like to integrate the temporal
information into the video frame indexing in the near
future.

References

[11 A. Guttman, “R-tree: A Dynamic Index Structure for
Spatial Searching”, Proc. ACM SIGMOD Int’l Conf. On
the Management of Data, 1984

[2]

131

[4]

[3]

[6]

7]

(8]

[l

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. K. Chang, Q. Y. Shi and C. W. Yan, “Iconic indexing by
2-D Strings”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-9, No. 3, May 1987,
pp.413-428.

S. K. Chang, E. Jungert and Y. Li, “Representation and
Retrieval of Symbolic Pictures Using Generalized 2D
String”, Technical Report, University of Pittsburgh, 1988.
H. Samet, “Applications of Spatial Data Structures,
Computer Graphics, Image Processing, and GIS.”
Addison-Wesley Publishing Company, 1989.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, “Introduction to Algorithms”, MIT Press, 1990, pp.
314-319.

N. Beckmann, H. Kriegel, R. Schneider and B. Seeger,
“The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles”, Proc. ACM SIGMOD Int’l Conf-
On the Management of Data, 1990

S. Y. Lee and F. J. Hsu, “2D C-string: a New Spatial
Knowledge Representation for Image Database Systems”,
Pattern Recognition, Vol. 23, 1990, pp. 1077-1087.

S. Y. Lee, M. C. Yang and J. W. Chen, “2D B-string: a
Spatial Knowledge Representation for Image Database
Systems”, Proc. ICSC’92 Second Int. Computer Sci. Conf.,
1992, pp. 609-615.

W. Nibalck, R. Barber, W. Wquitz, M. Flickner, E.
Glasman, D. P. P. Yanker, C. Faloutsos and G. Taubin,
“The QBIC Project: Querying Images by Content Using
Color, Texture and Shape”, SPIE, 1908, 1993.

P. W. Huang and Y. R. Jean, “Using 2D C'-string as
Spatial Knowledge Representation for Image Database
Systems”, Pattern Recognition, Vol. 27, No. 9, 1994, pp.
1249-1257.

J. R. Bach, C. F. A. Gupta, A. Hampapur, B. Horowitz, R.
Humphrey, R. Jain and C. Shu, “The Virage Image Search
Engine: An Open Framework for Image Management”,
SPIE, 2670, 1996.

En-Hui Liang, Sheau-Chuang Wu, “Similarity retrieval of
image database based on decomposed objects”, Graduate
Institute of Information Management, Tamkang University,
1996

En-Hui Liang, Duen-Liue Mou, “A method of computing
spatial similarity between images”, Graduate Institute of
Information Management, Tamkang University, 1997

B. C. Chien, “The Reasoning of Rotation and Reflection in
Spatial Database”, Systems, Man, and Cybernetics, 1998.,
1998 IEEE International Conference, Vol. 2, 1998, pp.
1582—1586.

Xiaobo Li and Xiaoqing Qu “Matching Spatial Relations
Using DB-tree for Image Retrieval”, Pattern Recognition,
1998., Proceedings. Fourteenth International Conference,
Vol. 2, 1998, pp. 1230-1234.

En-Hui Liang, Guo-Jang You, “Similarity retrieval using
String Matching in Image Database Systems”, Graduate
Institute of Information Management, Tamkang University,
1999

F. J. Hsu, S. Y. Lee and B. S. Lin, “2D C-Tree Spatial
Representation for Iconic Image”, Journal of Visual
Languages & Computing, Vol. 10, No. 2, Apr 1999, pp.
147-164

Michael Sipser, “Introduction to the
Computation”, PWS Publishing Company,
245-253.

Theory of
1997, pp.

