
Optimal Contour Approximation and Applications

Yu-Tai Ching

Department of Computer and Information Science

National Chiao Tung University

Hsinchu, Taiwan

ytching@cis.nctu.edu.tw

FAX 03-572-1490

Abstract

A contour of n vertices is a polygonal path
which is represented using a sequence of ver-
tices P = < v0; v1; : : : ; vn >; v0 = vn; where
vi; v(i+1) is an edges on the path. A con-
tour approximation problem is to substitute
the contour P by another simpler contour
Q while maintaining the deviation between
P and Q. In this article, we present a result
that we can �nd aQ with the least number of
edges for a given error bound. Keywords

Polygon approximation, level of detail, dy-
namic programming.

1 Introduction

We studied a contour approximation prob-
lem in this work. Given a contour P , we
look for an approximation of P , denoted Q.
Q has less number of edges than P does. Fur-
thermore the deviation between Q and P is
under an error allowance �.
One of the motivations of this study is

for an application in Geographic Information
System. A contour map obtained from a
Digital Terrain Map (DTM) generally con-
tains many small line segments on each
closed contour. It could take a large number
of space to store a contour map. If a small

error is allowed, we could have a chance to
replace numeral consecutive line segments on
the contour by using a line segment. We can
use a contour with less number of line seg-
ments to approximate the original contour so
that we can reduce the memory storage re-
quired. Another possible application is to re-
duce the triangular patches in surface repre-
sentation of an object. Suppose that we use
a set of triangle patches, which is obtained
from a contour map, to model a terrain. If
an error is allowed, we can reduce the num-
ber of triangles by reducing the number of
points on the contour. Or in medical appli-
cation, we can reconstruct geometric model
of the region of interest (ROI) from a set of
CT or MR volume images. The reconstruc-
tion is generally carried out by connecting a
pair of contours representing the boundary
of the ROI extracted from consecutive slices.
Reducing the number of points on the con-
tours can reduce the number of triangular
patches.

Previous work having similar motivation
was the studies of the geometric compres-
sion and the level of details[1, 2, 3, 4, 5, 6].
The formal discussed method to reduce the
memory space required for storing triangle
patches. And the level of detail studied the
techniques to use �ner meshes for the places

1



close to the view point and using coarse
meshes for the places far away from the view
point. The problem studied in this work is a
view point independent level of detail study.
An approximation should meet an error

constraint. The error describe how much de-
tails should be preserved.
In this article, we model the contour

approximation problem as an optimization
problem. A contour is a simple closed poly-
gon. Let P =< v0; v1; : : : ; vn >; v0 = vn
denote the contour. For a given �, a path
< vi; vi+1; : : : ; vj > on P is �-approximated
by the line segment vi; vj if the distance be-
tween every vertex to vi; vj is less than �.
Given a contour P and an error bound �,
the contour Q �-approximates P if

1. Q =< u0; u1; : : : ; um > consists of a sub-
set of the points on P ,

2. uk = vi and uk+1 = vj, every
edge uk; uk+1 on Q �-approximates <

vj; : : : ; vk > on P .

Q is an optimal �-approximation of P if the
number of points on Q is minimized.
In this article, we show that the optimiza-

tion problem can be solved using the dy-
namic programming technique.
In the next section, we describe the dy-

namic programming technique. Section 3
shows the experimental results.

2 Dynamic Programming

In this section, we present the dynamic pro-
gramming algorithm to solve the optimiza-
tion problem. We �rst consider the case
of �nding an optimal �-approximation for a
piecewise linear path < vi; vi+1; : : : ; vj >.
Let U(i;j) be a path that �-approximates <

vi; vi+1; : : : ; vj >. The number of edges on
U(i;j) is the cost for U(i;j). The least cost for
U(i;j) is the optimal cost denoted c(i;j).

For the boundary condition that i = j,
we let c(i;j) = 0 since there are no edges. If
j > i, there are two cases.
Case 1 U(i;j) is the line segment vi; vj.
This case occurs when all the distances be-
tween vertices vk, i � k � j, to vi; vj
are less than �. vi; vj �-approximates <

vi; vi+1; : : : ; vj > and thus c(i;j) = 1.
Case 2 U(i;j) consists of two or more line seg-
ments.
In this case, U(i;j) can be divided into two
paths U(i;k) and U(k;j) where vk is a ver-
tex on the polygonal path < vi; : : : ; vj >.
Note that both U(i;k) and U(k;j) are the �-
approximations of the polygonal paths <

vi; : : : ; vk > and < vk; : : : ; vj >. The cost
for U(i;j) is thus equal to the cost for U(i;k)

plus the cost for U(k;j). Furthermore, sup-
pose U(i;j) is the optimal �-approximation of
< vi; : : : ; vj >, both U(i;k) and U(k;j) must be
the optimal �-approximations for the paths
< vi; : : : ; vk > and < vk; : : : ; vj >. Since if
this is not the case, improving either U(i;k)

or U(k;j) reduce the cost for U(i;j), a con-
tradiction to that U(i;j) is an optimal �-
approximation for < vi; : : : ; vj >. Since vk
can be any vertex on < vi; : : : ; vj >, the
cost for the optimal �-approximation c(i;j) =
mini<k<j c(i;k) + c(k;j).

Based on the above discussion, the optimal
cost can be written in the recurrence

8><
>:

c(i;i) = 0;
c(i;j) = 1; if vi; vj ��approximates < vi; : : : ; vj >

c(i;j) = mini<k<j c(i;k) + c(k;j):

(1)
To implement the dynamic program, we
need two n by n matrices, M and K, where
n is the number of vertices on the con-
tour. M[i][j] stores the optimal cost for
�-approximation for < vi; : : : ; vj >. K[i][j]
stores an integer k that the optimal approx-
imation for < vi; : : : ; vj > consists of the
two �-approximations for < vi; : : : ; vk > and
< vk; : : : ; vj >. K[i][j] = i if M[i][j] is

2



equal to 1. Since both M[i][j] and K[i][j]

are triangular, these two matrices are stored
in the matrix M. The cost for optimal �-
approximation for < vi; : : : ; vj > is stored in
M[i][j] and the corresponding k is stored in
M[j][i]. The same as all the dynamic pro-
gramming, the optimal solution is obtained
in a bottom-up manner. In the ith iteration,
we calculate the optimal �-approximations
for < vj; : : : ; v(j+i) >, j = 0; : : : ; n�1�i. us-
ing Equation 1. The implementation is sum-
marized in the following pseudo code.

for (i=1;i<n;i++) f
for (j=0;j<n-i;j++)f

Evaluate(j,(j+i),�,MinCost,k);

M[j][j+i]=MinCost;

M[j+i][j]=k;

g
g

The function Evaluate �rst determines
whether vj; vj+i epsilon-approximates <

vi; : : : ; vi+k > or not. If this is the case,
the function returns MinCost = 1 and k =
j. Otherwise, Evaluate computes MinCost
and k using Equation 1.

Suppose that the polygonal path P is a
closed contour, i.e., v0 = vn. The opti-
mal �-approximation from v0; : : : ; vn might
not be the optimal �-approximation for the
closed contour since that the optimal ap-
proximation might not contain the ver-
tex v0. In order to �nd the optimal �-
approximation for a closed contour, we can
calculate the optimal �-approximations for
every < vi; : : : ; v(i+n)modn >, i = 0; : : : ; n� 1.
The approximation has the least cost is the
optimal �-approximation.

We now analysis the time complex-
ity for the dynamic programming ap-
proach. The time required for the function
Evaluate(j,(j+i),�,MinCost,r) is O(i)
since in the worst case, we need to calculate

the distances between i points to the line seg-
ment vj; v(j+i). Evaluate is executed O(n2)
times. The total time required is O(n3) since
k is O(n). To �-approximate a closed con-
tour, we calculate the �-approximations for
all the paths starting vi, i = 0; : : : ; n � 1.
The total time required is O(n4).

3 Experimental Results

The proposed approach was tested in two
cases. The �rst case was to reduce the num-
ber of vertices on a contour. The contour
was obtained by converting a set DTM (dig-
ital terrain model). A contour had 1314 ver-
tices was studied. The second case stud-
ied was the reconstruction of a pulmonary
artery from a set of electron beam CT scan
of heart. The boundary of the pulmonary
artery in each slice of CT scan was obtained
by intensity thresholding and a user interface
process. The boundaries representation of
the pulmonary artery were obtained by con-
necting the corresponding contours between
consecutive slices. The dynamic program-
ming approach was applied to minimize the
number of points on each contour so that the
number of triangles for the boundary repre-
sentation are reduced.
Figure 1 shows a contour in 6 di�erent

resolutions. The coordinates of the points
on the original contour are in the 202 by
384 window. The contour consists of 1314
vertices. The number of vertices on the �-
approximations for di�erent � are shown in
Table 1. Note that there are only 43 vertices
on the 2:0-approximation which is still very
similar to the original contour.
Figure 2 shows the pulmonary artery re-

constructed from a set of CT scan images.
The four images are the rendered images ob-
tained from di�erent resolution of model.
The proposed algorithm calculate the op-

timal �-approximation for a closed contour.

3



Figure 1: The above contours display the
same contour in di�erent resolutions. The
above three images from left to right respec-
tively have 1314, 220, and 64 line segments.
The other three in the lower row have 43, 15,
and 11 edges.

Table 1: The error bound and the number of
vertices in the approximated contour. There
are 1314 vertices in the original contour map.

� 0.5 1.5 2.0 5.0 8.0
Number of vertices 220 64 43 15 11

Figure 2: The pulmonary artery recon-
structed from a set of CT scan of heart is
shown in four di�erent resolutions. The up-
per left image was rendered from a model
containing 8338 triangles. The model for the
upper right images consists of 3841 triangles.
The images in the lower row were produced
using models having 2445 and 1453 triangles
respectively.

4



Table 2: The computing time required for
processing contours of di�erent length using
dynamic programming approach and greedy
approach. The computing time is obtained
from a PC with AMD k-3 400 CPU. The
PC runs Linux operating system. Row
A shows the number of vertices. Row B
and C present the computing time used
for dynamic programming approach and the
greedy approach respectively.

A 86 153 1314 3030
B 0.06 0.19 68.39 859.7
C < 0:02 < 0:03 0.13 0.26

However, the proposed approach need O(n2)
memory space and O(n3) time to calculate
the optimal �-approximation for a contour
starting a vertex. If the length of a contour
is too long, the proposed algorithm is infea-
sible in both time and space required con-
sideration. The computing time required for
di�erent length contour is shown in Table 2.
When the length of a contour is greater than
1000, the computing time required is more
than one minute. Table 2 also shows the
computing time required for for the greedy
approach. The computing time taken by
the greedy approach is much less than the
dynamic programming approach especially
when the length of the contour is long. How-
ever, the greedy approach cannot �nd the
optimal �-approximation. The di�erence be-
tween the solution obtained from the greedy
approach and the optimal �-approximation
increase as the length of the contour increase.

Table 3: The number of vertices, which ob-
tained using di�erent approach, on the �-
approximation for di�erent length contours.
The number of vertices on the original con-
tours are shown in Row A. Row B and Row
C demonstrate the number of vertices on the
optimal contour and the contour obtained by
using the greedy approach.

A 86 153 1314 3030
B 41 92 550 1509
C 44 93 565 1553

References

[1] Deering, M, \Geometric Compression",
Comput. Graph. (Proc. SIGGRAPH),
1995, pp. 13-20.

[2] Eck, M., DeRose, T., Duchamp, T.,
Hoppe, H., Lounsbery, M., and Stuet-
zie, W., \Multiresolution Analysis of
Arbitrary Meshes," Comput. Graph.

(Proc. SIGGRAPH) 1995, pp. 173-182.

[3] Gueziec, A., \Surface Simpli�cation
with Variable Tolerance," Second An-
nual International Symposium on Med-
ical Robotics and Computer Assisted
Surgery, Baltimore, MD., 1995.

[4] Hoppe, H., \Progressive Meshes,"
Compu. Graph., (Proc. SIGGRAPH)
1996, pp. 99-108.

[5] Hoppe, H., DeRose, T., McDonald,
J., and Stuetzle, W., \Mesh Opti-
mization," Compu. Graph., (Proc. SIG-
GRAPH), 1993, pp. 19-26.

[6] Kalvin, A., and Taylor, R. H., \Super-
faces: Polygonal Mesh Simpli�cation
with Bounded Error," IEEE Comput.

Graph. Appl. 16, 3, 1996, pp. 19-26.

5


