
AN IMPROVEMENT OF CONNECTIVITY COMPRESSION
FOR TRIANGULAR MESHES

B. S. Jong T. W. Lin
Department of Information andComputer Engineering Department of Computer and Information Science

Chung-Yuan Christian University Soochow University

Abstract
Polygonal meshes have been used as the primary

geometric model representation for networked gaming and
for complex interactive design in manufacturing. Accurate
polygonal mesh approximation of a surface with sharp
features requires extremely large number of triangle. The
need for succinct representation is not only to reduce
storage requirements, but also to consume less network
bandwidth and thus reduce the transmission time. In this
paper, we propose a new method for compressing the
connectivity of triangle meshes homeomorphic to a sphere.
In average, it encodes with less than 1.19t bits of any t-
triangles mesh. Furthermore, it is suitable for compressing
all models and particularly attractive for compressing large
object for remote instant access without overhead.

1. Introduction
Compression of 3D objects has becoming important

not only for storage but also for interaction. Although
complexity of industrial CAD models significantly raises
the size of memory for storing these models, new
production technology dramatically reduces storage cost
such that the storage cost for these models is lower. The
performance of graphics display affects user interaction.
High-level display adapters is limited by a data transfer
bandwidth or insufficient onboard memory to store the
whole model. In particular, 3D models is distributed over
the internet for collaborative design, gaming, learning, etc.
The virtual interaction is seriously limited by the available
bandwidth. The 3D object compression is one of possible
method for providing feasible human-machine interaction
[1-6].

There are many representations for 3D objects. The
polyhedral models remain the primary 3D representation
used in manufacturing, architectural, GIS, geoscience, and
entertainment industries [7-8]. In particular, polyhedral
models are effective for hardware-assisted rendering,
which is important for video games, virtual reality, fly-
through, and electronic mock-up applications involving
complex models.

A set of non-overlapping triangles may be rendered
efficiently using hardware-assisted rasterizers. Triangle
count is a suitable measure of a model’s complexity and
triangle-meshes are an appropriate target for current efforts
on compression [8]. A triangle mesh may be represented by
its vertex data and by its connectivity. Vertex data
comprises coordinates of all the vertices and optionally the
coordinates of the associated normal vectors and textures.
Connectivity captures at least the incidence relation
between the triangles of the mesh and their bounding
vertices. For most meshes in practice, the number of

triangles is roughly twice the number of vertices [8].
Consequently, when pointers or integer indices are used as
vertex-references and when floating point coordinates are
used to encode vertex locations, connectivity data
consumes twice as much storage as vertex coordinates.
Furthermore, for most applications, vertex data may be
compressed down to about a fifth of the uncompressed one,
with an average of 12 bits per vertex location and 6 bits per
vertex normal.

There are many approaches to compress the
connectivity data. Automatically computed triangulation
may be used as a first guess for connectivity and then only
a little information is necessary to be stored for producing
the correct connectivity. Unfortunately, these approaches
are not compatible with the schemes for compressing
vertex data. They require the connectivity information for
predicting the data for each new vertex from previously
encoded neighbors. The lack of connectivity information
would considerably increase the storage needed to encode
vertex data.

Therefore a new compression scheme is necessary to
solve the bottleneck. It individually encodes the
connectivity information and the vertex data of triangle-
meshes. In this scheme, the connectivity information of a
triangle can be compressed in which the required memory
is between 1.7 and 2 bits. Apply entropy codes to the
compressed connectivity information, the required memory
could be reduced to 1.3 bits per triangle. There is a major
drawback of this method. It requires two passes for
decompressing the compressed connectivity information.

In this paper, we propose new idea to trace the
connectivity relations between triangle-meshes. Only little
information may be kept in the tracing boundary edges. In
this manner, our method is effective and efficient not only
in compression but also in decompression. Only single pass
is performed in them. The required memory for
connectivity information is reduced to about 1 bit per
triangle in average.

2. Related work
Although many representations have been proposed

for 3D models, polyhedra are the de facto standard for
exchanging and viewing 3D data sets. This trend is
reinforced by the wide spread of 3D graphic libraries and
3D adapters for personal computers. Current works in
polyhedra compression may be subdivided into three
categories: polyhedral simplification, compression of
attributes, and encoding of the connectivity information [1-
8].

In polyhedral simplification methods, the number of
vertices in the mesh is reduced by changing the model’s

connectivity. To minimize the error produced by the
simplification, the positions of the remaining vertices may
be adjusted. The major purpose of these techniques is to
accelerate graphics speed and to reduce data volume.
Multiple levels of detail of meshes for an object are
generated to achieve these aims. Representations of level of
detail could be considered for lossy compression. They are
inappropriate for applications that require access to the
exact connectivity of the model.

Lossy or lossless compression methods are used to
reduce the storage necessary for the attributes of an objects
such as vertex locations, normals, colors, and texture.
Applying general purpose data compression algorithms to
the data stream of attributes leads to suboptimal solutions.
In the approach of normalizing the geometry into a unit
cube, vertex coordinates could be rounded off fixed length
integers. The rounding controls the amount of lost
information. Within a spatial organization of vertices into a
spanning tree and geometric predictors of positions and
properties, attributes may be encoded losslessly with fewer
bits and further compressed with standard lossless entropy
encoding techniques.

Connectivity encoding is the central part of any 3D
compression method. It guides the geometry and
photometry coding. Single-resolution compression does not
change the connectivity in the sense that the decoder can
perfectly recover the connectivity. For an input mesh,
vertex-layers and triangle-layers are constructed by using a
traversal algorithm. The entire connectivity encoding
procedure is: (1) encode the total number of layers; (2)
encode the information of each vertex-layer; and (3)
encode all triangle information in each triangle layer.

3. New compressing method
The compression algorithm is restricted to manifold

representations of triangle meshes. In a manifold mesh,
each edge is bounding one or two triangles and the star of
each vertex v (i.e., its incident triangles and edges) remains
connected, when v is removed. Edges that bound two
triangles are called interior edges. Edges that bound exactly
one triangle are called exterior edges. The union of exterior
edges of all triangles is called the boundary of these
triangles. Vertices that do not bound any exterior edge are
called interior vertices. The other vertices are called
exterior vertices.

Our compression algorithm performs a series of steps.
Each step removes one triangle from the current mesh. At
each stage, the remaining portion of the mesh is a
maximally connected component of the interior of the
union of the remaining triangles {T}. Boundary B of such a
component is kept. One edge of these exterior edges is
referred as the active gate, g.

At each step, we identifies the unique triangle, X, that
is part of {T} and is incident upon g. Let v be the only
vertex of X that does not bound g. We analyzes the relation
that v has with respect to B and g. There are three basic
relations labeled C, L, and R. The selection of the
appropriate relation may be performed by the following
sequence of tests:

If v ∉ B then relation C
Else If v precedes g then relation R
Else If v follows g then relation L

To clarify some implementation details, we introduce
a data structure for storing the connectivity of the mesh.
This data structure is based on the concept of a half-edge
used in many polyhedral representations. A half-edge h is
an edge of a triangle T whose interior is traceing around the
border of the triangle in the clockwise direction. With each
half-edge h, we associate the following entities:

• h.s is the starting vertex for h.
• h.e is the ending vertex for h.
• h.v is the third vertex of T that does not bound h.
• h.n is the half-edge that follows h in the boundary

of T.
• h.p is the half-edge that precedes h in the

boundary of T.

We use a doubly linked list for storing the links between
the successive boundary edges B. With each boundary edge
b, we associate the following entities:

• b.p is the boundary edge that precedes b in B.
• b.n is the boundary edge that follows b in B.
• b.f is a flag associated with b.

It is clear that the active gate g is contained in B. The
boundary edge e associated with g is called active edge.

To determine appropriate relation, the condition v ∉
B must be examined. A simple examination is by tracing
around the boundary edges to determine whether the vertex
v is an interior vertex. It consumes much execution time.
To eliminate this drawback, a binary flag is associated with
each vertex. Initially, the binary flag of each vertex is set to
zero. When a vertex is traced, i.e. the vertex becomes a
exterior vertex, its binary flag is set to one. Therefore, the
condition v ∉ B could be checked by verfying its binary
flag v.f.

Compression algorithm identifies the relation type
using:

If not g.v.f then relation C
Else If g.p = e.p then relation L
Else If g.n = e.n then relation R

For each relation, the corresponding changes to the half-
edge and boubly linked list data structures must be
performed as follows.

a) relation C:
g.v.f = 1
new a node b
b.p = e.p
b.n = e
b.f = 0
e.p = b
g = reverse(g.n)

b) relation L:
b = e.p
e.p = b.p
destroy node b
g = reverse(g.n)

c) relation R:
b = e.n
e.n = b.n
destroy node b
g = reverse(g.p)

Only these three basic relations could not compress a
triangle meshes with manifold representation. For example,
a mesh is shown in Fig. 1. This mesh may represent the
final stages of the compression of a large region in the
mesh or the full compression of a small mesh with
boundary. Starting at gate g, our algorithm removes
triangles by following the arrows shown in Fig. 2. The
active gate g in Fig. 2 has no relations within these three
cases. In such a situation, we increase a relation called
jump relation. In the jump relation, no triangles are
removed. The operations to be performed is to set the flag
of the active edge and to move active gate g along the
boundary edges B until a boundary edge whose flag is not
set.

g = e

Fig. 1: A triangle mesh

g

Fig. 2: Triangles are removed by following successive
arrows

The compressed format is simple for our algorithm.
Suppose the boundary edges are compressed in a compact

representation. Only the relation C involves a new interior
vertex. Only in such a situation, a vertex coordinates must
be encoded. For the simplicity of decompression, the code
length of coordinates for a vertex is assumed to be fixed.
Only an indicator is necessary to be stored for other
relations. Therefore it is easy to decompress the
compressed data and to obtain the original triangle meshes.

4. Experimental studies and conclusions
The area of 3D compression will grow significantly

over the next few years. There are many techniques to be
used. A famous method, Edgebreaker, has been proposed
to compress the connectivity information of simply
connected manifold triangle meshes down to between 1.3
and 2 bits per triangle. We make an experiment with many
3D object files. The experimental result is listed in Table 1.
It is almost that the storage bit for a triangle required by
our algorithm is less than the one required by the
Edgebreaker.

The execution time of compression stage for our
algorithm and Edgebreaker is similar. In the decompression
stage, Edgebreaker needs two passes to complete its
decompressing work. Our algorithm needs only single pass
for decompression. Therefore our algorithm works better
than the Edgebreaker not only in a compact compressed
data but also in a quick decompressing stage.

There is a drawback within our algorithm. When the
object composed with many thin branches, the average
storage bits for our algorithm is large. In such a situation,
many jump cases will occur within our algorithm. There
are no triangle to be removed within the jump case.
Therefore, the number of jump cases must be decreased to
reduce the average storage bit for a triangle. It is a hard
work for improving our algorithm in the future.

References
1. R. Bar-Yehuda and C. Gotsman, Time/space tradeoffs

for polygon mesh rendering, ACM Trans. Graphics, Vol.
15, No. 2, pp. 141-152, Apr. 1996.

2. M. Deering, Geometry compression, Computer Graphics
Proc. SIGGRAPH'95, pp. 13-20, Aug. 1995.

3. F. Evans, S. Skiena, and A. Varshney, Optimizing
triangle strips for fast rendering, Proc. IEEE
Visualization'96, pp. 319-326, 1996.

4. S. Gumhold and W. Strasser, Real time compression of
triangle strips for fast rendering, Proc. ACM
SIGGRAPH'98, pp. 133-140, July 1998.

5. H. Hoppe, Progressive meshes, Proc. ACM
SIGGRAPH'96, pp. 99-108, Aug. 1996.

6. J. Li and C.C Kuo, Progressive coding of 3D graphic
models, Proc. IEEE, pp. 1052-1063, June, 1998.

7. G. Taubin and J. Rossignac, Geometric compression
through topological surgery, ACM Trans. Graphics, Vol.
17, No. 2, pp. 84-115, Apr. 1998.

8. J. Rossignac, Edgebreaker: connectivity compression for
triangle meshes, IEEE Trans. Visualization and
Computer Graphics, Vol. 5, No. 1, pp. 47-61, 1999.

our algorithm Edgebreaker

triangles # bits bits/triangle # bits bits/triangle

50 56 1.12 84 1.68

240 174 0.72 387 1.61

392 484 1.23 650 1.66

448 302 0.67 711 1.59

534 828 1.55 877 1.64

624 534 0.86 984 1.58

768 2066 2.69 1389 1.81

1148 940 0.82 1825 1.59

1354 2498 1.84 2421 1.79

1388 2446 1.76 2336 1.68

2000 3580 1.79 3575 1.79

2268 1498 0.66 3499 1.54

2594 1940 0.75 4018 1.55

2992 4940 1.65 5027 1.68

3634 4403 1.21 6039 1.66

3640 4015 1.10 5938 1.63

3732 4194 1.12 6105 1.64

4204 4430 1.05 6890 1.64

5116 7302 1.43 8372 1.64

5660 9132 1.61 9572 1.69

6128 5941 0.97 9788 1.60

8468 16701 1.97 14871 1.76

8956 9407 1.05 14635 1.63

9558 15248 1.60 16302 1.71

10412 8094 0.78 16322 1.57

19208 15836 0.82 29919 1.56

20928 23831 1.14 34169 1.63

34404 49111 1.43 57199 1.66

39698 64512 1.63 67630 1.70

49172 37164 0.76 78431 1.60

75616 74406 0.98 123069 1.63

111000 58430 0.53 167605 1.51

average 13164.94 1.19 21231.48 1.6

Table 1: experimental results

