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ABSTRACT

Splatting is a technique for reconstruction in feed-
forward volume rendering, which consumes large portion
of time in the entire rendering process. In this work, we
exploit object space coherence in the splatting process.
Sparse-matrix data structure is introduced to take
advantage of object space coherence in order to save
computation time and memory storage. With the spatial
data structure, no computation is performed for those
uninteresting voxels during the splatting process. It is
known that volume rendering may take several seconds to
hours to render a 3D dataset on a typically single-
processor. We also present data-parallel volume rendering
algorithms in order to achieve real time applications.
Experiments are conducted to assess our proposed
schemes. Results show that the proposed sparse-matrix
algorithm performs very well.

1. INTRODUCTION

Computer graphics and scientific visualization are
fast growing applications domains. There are many
volume visualization techniques that help users to extract
meaningful information from simulation or experimental
results [2]. Volume rendering enable users to visualize
scalar and vector fields defined on three-dimensional grids.
The task for volume rendering is to render 3D models on
2D graphic displays. Some typical data sources for
volume rendering are Magnetic Resonance Imaging
(MRI), Computed Topography (CT), Ultrasound, and etc.

Indirect volume rendering is an early volume
visualization technique, which converts the 3D voxel
representation into 2D graphic primitives (such as curves
and lines) and then displays them on conventional graphic
devices [6]. Indirect volume rendering suffers from
disadvantage such as hard to yield a satisfactory result for
certain studies [22]. Direct volume rendering is a new
technique, which does not employ intermediate graphic
primitives that do not really exist in the volume datasets.
In general, direct volume rendering is to map each voxel
with its color and opacity in the volume dataset to pixels
on the image plane. One major advantage of direct volume

rendering is that which enables us to visualize internal
structure of any volume datasets much more easier.

By Westover’s definition [19], direct volume
rendering can be divided into two broad categories: feed-
backward and feed-forward mapping methods. The
difference between them is the mapping direction. In feed-
backward mapping methods, the renderer first calculates
effect of each voxel onto pixels on the image plane, stores
it in an image buffer, and finally sums up contribution
from all voexls to make the final image. Splatting [18] is
one of the most popular feed-forward techniques. In feed-
backward mapping methods, a ray from each pixel on the
image plane is casted into the volume dataset. The graphic
value of each pixel is calculated by integrating the color
and opacity along a ray. Ray casting is a one of the most
popular feed-backward techniques [5,15].

It is known that the computation cost of direct
volume rendering increases exponentially as the size of
the volume datasets increases. Therefore, it is an
important issue to reduce the computation work in order
to have fast volume rendering. Existing studies [4,20]
have reported that about 70%~95% voxels of volume data
are uninteresting, which means that they play no role in
constructing the final image. For CT or MRI, many
uninteresting voxel points may come from air, which can
be identified and hence need not be processed after some
classification procedure. It is clearly that by rendering
only interesting, according to users’ choice, voxel points
can save computation time. Many works have employed
this idea to speed up the volume rendering. One of such is
to exploit object space coherence in the volume by using
spatial data structure. The idea of using spatial data
structures is to encode the location of interesting voxels in
a compact way in order to enable fast rendering. The k-d
tree [16], pyramids [3,4,21] and run-length encoding [7,13]
are examples among them. Levoy has developed a ray-
casting algorithm [4] using octree to explicit object space
coherence, which can achieve a 3 to 5 times speedup over
a regular ray-casting algorithm. Several studies have
reported that, by using spatial data structure, feed-forward
volume rendering algorithm is more effective than feed-
backward one because of traversal order [3,4]. Hence
designing of spatial data structures is an important issue in
obtaining efficient feed-forward volume rendering
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Figure 1. The four stages of a feed-forward volume rendering pipeline.

Splatting is a technique for reconstruction in feed-
forward volume rendering, which consumes large portion
of time in the entire rendering process. In this work, we
exploit object space coherence in the splatting process. We
propose to use spatial data structure that efficiently
records location of interesting voxels. With the spatial data
structure, no computation is performed for those
uninteresting voxels during the splatting process. Voxels in
a 3D space can be viewed as elements in a 3D matrix. To
exploit the object space coherence, we employ three
different sparse-matrix (SM) representations in our
proposed spatial data structure, which are Compressed
Row Storage (CRS), Bit-Map (BM), and Run Length
Encoding (RLE). Volume rendering is normally processed
in a pipeline fashion. With the introduction of spatial data
structure, we add a new stage called sparse-matrix
encoding before the reconstruction stage. The sparse
matrix representations will reduce both rendering time and
storage requirement. It is known that volume rendering
may take several seconds to hours to render a 3D dataset
on a typically single-processor [10]. We also present data-
parallel volume rendering algorithms in order to achieve
real time applications.

The rest of this paper is organized as follow. In
Section 2, we give a brief review of feed-forward volume
rendering process and some splatting algorithms. In
Section 3, we present three sparse-matrix representations
to exploit object space coherence for fast splatting. Data-
parallel volume rendering algorithm based on SM
splatting is presented in Section 4. Experimental results
are reported in Section 5. Finally, we give our concluding
remarks in Section 6.

2. PRELIMINARIES

In this section we review feed-forward volume
rendering pipeline and some splatting algorithms. Figure 1
shows the four stages of a typical feed-forward volume
rendering pipeline [23]. Task performed in each stage is
described as follow.

Transformation is the first stage, which converts
input data in object space to image space. Each voxel is

transformed by multiplying its coordinate vector with the
transformation matrix, which is constructed from viewing
parameters such as position of the eye. A value of opacity
is assigned to each voxel based on user’s choice in the
classification stage. A good classification function can
help users to extract meaningful information from the data
for visualization. To get more realistic images, shading is
necessary. Phong shading algorithm [9] is the most
popular one, which requires surface normal determined by
gray-level gradient scheme [11]. Reconstruction is
achieved by splatting each voxel onto a 2D image plane.
Splatting can be viewed as throwing a snowball (voxel’s
contribution) onto a glass window (image plane). All
pixels lying in the footprint extent of a voxel are
contributed by its splat through a change in color and
opacity. In the la st stage of the rendering pipeline, the
composition rules [12] are responsible for summing up
color and opacity contributions from each pixel of 2D
image plane for display. Once the composition process is
complete, the feed-forward volume rendering pipeline
produces a final image.

Splatting, proposed by Westover [17,18,19], is an
object order traversal algorithm, where voxels of volume
are properly splatted onto a 2D image plane. In the
original splatting method [19], the voxels are sorted slice
by slice where each slice is most orthogonal to the viewing
direction. During the reconstruction, each voxel in a slice
is represented by a 3D reconstruction kernel, which is pre-
integrated into a 2D footprint, weighted by the voxel value
and then accumulated to an image buffer. The contribution
of each voxel to the 2D image plane is calculated by
convolving with a 3D reconstruction kernel that distributes
the discrete voxel value to all pixels lying in the footprint
extent. This reconstruction process is illustrated in Figure2.
The idea to use spatial data structure to skip uninteresting
voxels in order to speed splatting has been reported in the
past.

In [3], a pyramid data structure is proposed to
represent volume data, which allows a hierarchical
splatting for progressive refinement. After transformation
and shading, an octree is constructed, where each node
contains the average RGBA value of all its children and a
value indicating the average error associated with that
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Figure 2: Splatting Process

node. Then reconstruction is started at the root of the
octree. For each level, if the checked node is completely
filled with data and its average error is below a user-
defined limit, then an appropriate splat size
(corresponding to the tree node) is projected on to the 2D
image plane. Therefore the object space coherence areas
such as constant-value and empty areas are rendered with
a lower resolution to speed up the rendering time of
splatting. If the node’s average error is below a user-
defined limit or the node is not completely filled with data,
the algorithm has to down one level and continue the work
until the final image is completed. One disadvantage of
this approach is that it trades off image quality for speed.

Our proposed SM splatting has two features
compared to the hierarchical splatting: (1) It is simpler in
implementation. Only one extra stage is added to the
original pipeline, and (2) No image quality is traded for
speed.

3. SPARSE-MATRIX DATA STUCTURE
FOR SPLATTING

Sparse-matrix data structure is introduced to take
advantage of object space coherence in order to save
computation time and memory storage. The original
volume data can be viewed as a 3D matrix, or a set of 2D
matrices (slices). In our proposed work, only voxels with
opacity in certain range will be considered interesting or
valid. We use three different schemes to exploit object
space coherence. As the sparse-matrix encoding algorithm
traverses voxels of volume, it encodes interesting voxels
into a special sparse-matrix data structure for later
processing. It is known that there are many ways to
represent a sparse-matrix. To explore different sparse-
matrix representation schemes and ease our software
development, we devise a common structure for all three
schemes studied in this work.

3.1 Data Structure for Sparse-Matrix

Figure 3 displays the common structure for the
sparse-matrix volume. There are three structured array
components: 1) encoded data array (EA), 2) interesting
voxels array (IA), and 3) slice pointers array (PA). The EA
records positions of interesting voxels that need to be
processed during the splatting. Data (opacity and color) of
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Figure 3: Common data structure for sparse matrix

each interesting voxel is stored in IA. The volume data is
divided into slices. Each element of PA has two pointers:
one points to the position and the other points to the data
of the first interesting voxel. This will enable us to do fast
random access on any slice, which is an important feature
for interactive rendering.

Volume data in each slice can be viewed as a 2D
matrix. In our common data structure we intend to use two
separate arrays to record volume data. By doing this, we
can easily explore different sparse matrix data structures
with minimum software overhead. This is because we need
to properly construct EA according to different
representation schemes. However, in all schemes the IA
remains the same.

3.2 Sparse-Matrix Representation Schemes

In this section we examine three different sparse-
matrix representation schemes. They are: Compressed
Row Storage (CRS), Bit-Map (BM), and Run Length
Encoding (RLE).

3.2.1 CRS Scheme

CRS [1] is a common scheme to represent sparse
matrices. Figure 4 illustrates an example, which shows a
sparse matrix O is represented by EA and IA. The EA
indicates positions of those interesting voxels. Each voxel
value is stored in IA. In CRS the EA consists of two arrays:
element i in INDR array points to the starting address of
the first non-zero element in the i-th row; value in COL
indicates the column index of the voxel.
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Figure 4: A sparse matrix and its CRS representation.

3.2.2 BM Scheme

The bit-map is also called binary matrix [14] scheme,



where one is used to represent whether a matrix element is
zero or not. For a matrix with n elements, the EA consists
of a string of exactly n bits one for each element. The
interesting voxels are stored in IA. Figure 5 is an example
of bit-map scheme, which shows a sparse matrix O is
transformed to binary matrix, then bit map and finally to
EA with 8 bits per byte. Since IA is the same as the
previous CRS scheme, it is not shown in Figure 5.

(1)O (2)Binary-Matrix (3)Bit-Map
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Figure 5: Bit-map representation: (1) sparse matrix O,(2) binary
matrix, (3) BM, and (4)EA for BM.

3.2.3 RLE Scheme

One bit is required to represent each voxel in bit-
map scheme. Continuity is one characteristic for most
volume datasets. By continuity we mean that neighbors of
an interesting voxel are mostly interesting. Therefore, the
run length encoding scheme will take less memory storage
to represent the binary matrix. Another effect of RLE is
that it allows us to skip uninteresting voxels more easily
during the splatting. The only difference between BM and
RLE schemes is the representation in EA. The binary
matrix can be viewed as a string consisting of alternate
runs of interesting and uninteresting voxels. Hence, run
length of uninteresting and interesting voxels is recorded
in EA alternately. Each run length is represented by an 8-
bit byte, which results in a maximum length 255. A run is
split into several runs if its length exceeds 255. Figure 6 is
an example that shows a sparse matrix O is transformed
into binary matrix then into RLE.

(1)O (2)Binary-Matrix (3)RLE-Temp
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Figure 6: RLE representation:(1) sparse matrix O, (2) binary
matrix, (3) RLE, and (4) EA for RLE.

4. PARALLEL SM SPLATTING
ALGORITHM

In general, a volume rendering process takes several
seconds to hours to render a 3D volume data on a typically
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Figure 7: Parallel rendering pipeline with SM Splatting.

single-processor, which may not be acceptable in certain
applications. Parallel processing is one direction for fast
volume rendering. Sparse data structure has been
proposed to speed splatting. In this section, we present
data-parallel volume rendering algorithm based on sparse
data structure. The data parallel volume rendering
algorithm is based on Single Program Multiple Data
(SPMD) model, where each processor executes the same
program code on different dataset. Our proposed

/*Decomposition stage for parallel volume rendering*/
01 On each processor Pi with slices S0, S1,…….,Sj

/*Depend on shading or not*/
02 Initialize light and shade table if need
03 Precompute normal vector and gradient sizes for

Shading
/*Encoding input volume into sparsematrix volume*/
04 for each slice
05 Transfer to image space
06 Encoding slice by Sparse-Matrix technique

according to user-defined
/* SM splatting algorithm with decoding the sparse-matrix
volume*/
07 for each slice
08 for each meaningful voxel based on EA array
09 Compute an appropriate footprint extent
10 Project footprint onto the 2 D image plane
11 for each pixel lying in the footprint extent
12 Weighted by the voxel value and

accumulated to an image buffer
13 Composite successive slices to produce the local

Image
/*Combining stage using hierarchical scheme*/
14 for i =1to log(N)
15 if (PE’s State == “send”)
16 Send local image information to its partner PE
17 else
18 Receive and Combine image information from

its partner PE
19 if ( Pi = display processor )
20 Display final image

Figure 8: Pseudo-code for a parallel volume rendering process.



algorithm requires few data to be communicated among
processors. Figure 7 illustrates the parallel volume
rendering pipeline, which is similar to the traditional
rendering pipeline except with a few changes.

The Slab Decomposition (SD) is introduced to
distribute object space data to all the processors. Suppose
that we have n processors, then the entire volume is
partitioned into n most equal sized slabs, where the i’th
slab is assigned to the i’th processor. Each processor
receives a slab of several slices data, then processes
sequentially the four pipeline stages of volume rendering
slice by slice. The four stages are Transformation (T),
Classification and shading (C&S), and Reconstruction (R)
and Composition (Cp). After these, each processor has a
local image corresponding to the assigned slab.
Combination (Cb) is introduced to glue n local images to
form a single final image for display. To take advantage of
spatial coherence, the Encoding (E) stage is added before
reconstruction (splatting), which employs our proposed
sparse matrix data structure to represent volume data. It is
clear that data communication only occurs in slab
decomposition and combination stages. Pseudo-code for
parallel volume rendering process is presented in Figure 8.

5. PERFORMANCE RESULTS

Some experiments are performed to assess our
proposed SM parallel volume rendering.

5.1 Experiment Platform

We have implemented parallel splatting algorithm
based on our proposed sparse-matrix data structures on an
IBM SP2 machine. The system consists of 80 IBM
POWER2 CPU with 66.7 MHz clock rate, 128KB 1st-
level data cache, 32KB 1st-level instruction cache, and
128MB of main memory. Nodes are connected through a
low-latency, high-bandwidth interconnection network
called the High Performance Switch (HPS).

We have used C language with MPI [8] message-
passing library to implement our algorithm. This makes
our parallel SM splatting algorithm portable to many
distributed memory or shared memory multiprocessor
systems.

5.2 Test Dataset

We select three different volumetric datasets for
performance evaluation. Table 1 summarizes their size
and sparse ratio (SR). The SR is defined as percentage of
uninteresting to the total number of voxels in the dataset.
As SR increases, the number of uninteresting voxels
increases, and hence the amount of work taxed by
splatting decreases. We use a voxel’s opacity value to
define its interestingness. A voxel with its opacity value

Density_ThresholdVolume
Datasets

Volume
Dimensions SR_0 SR_10 SR_30

Cube 256×256×110 98% 98% 98%

Head 256×256×113 0% 47% 70%

Engine 256×256×110 27% 77% 81%

Table 1: Test Datasets.

No sparse matrix used Using CRS with SR_10

Figure 9(a): Images of test datasets: Engine

No sparse matrix used Using CRS with SR_10

Figure 9(b): Images of test datasets: Head

No sparse matrix used Using CRS with SR_10

Figure 9(c): Images of test datasets: Cube

greater(less) than the user-defined threshold is called
(un)interesting. Opacity value for our test datasets is
between 0 and 255. SR_x denotes that the user-defined
threshold is x. Hence, SR_10 indicates the percentage of
uninteresting voxels with opacity less than 10.

In our experiment, volume dataset may become
sparse by varying user-defined threshold. A gray-level
image of size 256×256 is generated for each dataset using



Volume Datasets SM splattingOriginal
Splatting CRS Bit-Map RLE

Type Threshold
SR

Ave. (Sec) Ave. Perf. Ave. Perf. Ave. Perf.
Cube 10 / 30 98% 4.081 ������ ���� ���	�� 
	�� ����	� 
���

10 47% 7.644 	��
�� ��� 	��
�� ���� 	�	�� ����
Head

30 70% 7.102 ���
�� 	��� ���
�� ���� ���
� ����

10 77% 6.490 ����� 		�� ����� ��� ��	��� �
��
Engine

30 81% 5.518 ��	��� 	��� ����� ���� ���
	� ����

Table2: A comparison of original and three SM Splatting
methods.

parallel projection in the rendering process. Figure 9(a),
9(b), 9(c) shows the rendering images of the original
dataset and with SR_10, respectively. It can be seen that
there is almost no observable difference.

5.3 Experimental Results

Sparse ratio is a determinant factor for our proposed
SM splatting algorithm. A comparison of the original and
three SM splatting algorithms is summarized in Table 2.

For each threshold value, there are four splatting
times (original and three SM) and three relative
performance gains listed. The time reported for SM
methods includes both encoding to SM structure and
splatting. The performance gain (Perf.) is defined as
follow:

100
)_(

)_()_(
(%)_ ×

−
=

SplattingOriginalTime

SpalttingSMTimeSplattingOriginalTime
GainePerformanc

It can be seen that the SM methods have a
performance gain of 23~73%. In the best case (Cube with
threshold 10), the CRS scheme results in a speed up about
3.7. In the worse case (Head with threshold 10), the RLE
scheme still results in a speed up about 1.3. These values
indicate that the SM method provides a new technique that
speeds the splatting without trading off image quality. The
size of footprint table is also a major factor that affects the
performance of SM methods.Table 3 and Figure 10 shows
that as the footprint size increases the performance gain
also increases for both head and engine datasets. This is
because large footprint table requires more work to do. By
exploring sparse property, we save more time on splatting.

After examining the effects of sparse ratio and
footprint table size, we move our attention to parallel
implementation. We run parallel splatting with 1,2,4,8,16
and 32 computing nodes. Two forms of speedup are
defined in order to give us further insight of parallel SM

SM splattingOriginal
Splatting CRS Bit-Map RLE

Volume
Datasets

Footprint Size
Ave. (Sec) Ave. Perf. Ave. Perf. Ave. Perf.

2×2 7.102 ������ ��	� ��
��� ��	� ������ �
	�

3×3 12.81 ��
�� �
	� ������ ��	� ����
� ��	�

4×4 20.47 ����� ��	� �
��� ��	� ������ �
	�
Head_30

5×5 31.52 ������ ��	� �
���� ��	� �
�
�� �	�

Table3: A comparison original and SM methods with different
footprint size.

Head_30(Footpprint size=2*2)
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Figure 11: Speedup (Sn) relative to the original splatting
algorithm.

��������	

���������������

�

�

��

��

��

��

��

� � � � �� ��

��������	�
���������

�
�
�
�
�
�
�
�
�
��
	

��

���

���

Figure 12: Speedup (S’n) relative to algorithm itself.

splatting. Figure 11 displays speedup values relative to
original splatting with single node. On the other hand,
figure 12 shows speedup values for each splatting
algorithm relative itself with single node. More precisely,
Sn and S’n are defined as follow:

n
n T

T
S 1=

where T1 is the execution time of the original splatting run
on one processor, and Tn is the execution time of a SM
splatting run on n processors. From figure 11, we can see
that the CRS scheme has the best speedup in general.

n
n T

T
S

'

'
' 1=

where T’1(respectively, T’n) is the execution time of a SM
splatting run on one(respectively, n) processor(s). Figure
12 shows that all SM methods scale well as processor
number increases.

6. CONCLUSIONS

In this work, we exploit object space coherence in
the splatting process. Sparse-matrix data structure is
introduced to take advantage of object space coherence in
order to save computation time and memory storage. With
the spatial data structure, no computation is performed for



those uninteresting voxels during the splatting process. We
also present data-parallel volume rendering algorithms in
order to achieve real time applications. Experiments are
conducted to assess our proposed schemes. Results show
that the proposed sparse-matrix algorithm performs very
well.

Splatting(reconstruction) is one stage in the
rendering pipeline. At present, our proposed sparse-matrix
scheme only applies to the splatting process. We are
investigating on extending the sparse-matrix scheme
before the shading process, which should further improve
the performance of the entire rendering process.
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