Video Content Representation and Indexing using Hierarchical Structure

Suh-Yin Lee, Chi-Yi Wu and Duan-Yu Chen
Department of Computer Science and Information Engineering
National Chiao Tung University

{svlee, ciwu, dychenl@csie.nctu.edu.tw|

Abstract

An efficient representation and indexing of video content
are proposed using hierarchical structure. The hierarchical
structure is constructed through shots grouping and scenes
clustering. The video representation provides browsing
capabilities for digital video databases. The video indexing
supports more efficient content-based queries and retrieval
capabilities for digital video databases. To implement the
video representation and indexing system, hierarchical
video structure is constructed. For constructing the
hierarchical video structure, some techniques of video
processing must be investigated and implemented,
including segmenting the video as shots, grouping the shots
into scenes and clustering the scenes. The process is
designed to work on MPEG-II sequence, where only a
partial decoding is required.

Keywords

Video content representation,
indexing, clustering.

hierarchical structure,

1. INTRODUCTION

With the advance of computer technology and
electronic storage, the potential of digital video is
growing rapidly. The rapid development of video and
multimedia applications has enabled users to handle
large amounts of visual information. However, tools
and algorithms for effective organization and
management of video databases and for content-based
search and retrieval are still limited.

Most existing approaches organize the video-content
by clustering shots on the basis of the similarity
among the visual contents contained in their key
frames. Approaches in [1] present an optimal
extraction of the most characteristic scenes, which is
accomplished by clustering similar scene feature
vectors and selecting a limited number of cluster
representatives. In addition to key frames, temporal

content variations in a shot can be used. Story
structures are extracted by using time-constrained
clustering and Scene Transition Graph in [2,3] and
story units are identified by temporally connecting
different shot clusters.

We propose mechanisms of shots grouping and scenes
clustering to construct hierarchical video structure.
The hierarchical video structure represents and
indexes video content efficiently. The primary tasks
are depicted in Fig. 1. We first segment a video into
shots, which wusually mean the duration of a
continuous action. Secondly, the similar shots within
constrained duration will be grouped into scenes.
After that, the similar scenes will be clustered
together. Finally, a hierarchical video structure is built.

Original Video

i

Video Parsing

‘ Video Segmentation ‘

'

‘ Shots Grouping ‘

'

‘ Scenes Clustering ‘

|

Hierarchical Video Structure
Fig. 1. Video parsing process

2. OVERVIEW OF HIERARCHICAL
VIDEO STRUCTURE

We use the hierarchical structure to provide video
content representation and indexing. We dissect a
video into three levels, including shot, scene and
cluster as depicted in Fig. 2.

mailto:sylee@csie.nctu.edu.tw

video

v v v
’ cluster ‘ ’ cluster ‘ ’ cluster ‘
; { }
’ scene H scene H scene ‘
{ i }
’ shot H shot H shot ‘

Fig. 2. Hierarchical Video Structure

The basic level is shot, which means a continuous
action. It can be extracted by shot segmentation. The
next higher level is scene. Similar shots are grouped
into the same scene. The highest level is cluster,
which is composed of similar scenes.

3. DESIGN METHOD AND PROCEDURE

In this section, we will present the design methods on
video content representation and indexing. Section 3.1

describes our proposed scheme on video segmentation.

In section 3.2, the process that groups shots into
scenes is introduced. In section 3.3 we will present
our proposed method on scenes clustering.

3.1 Video Segmentation

Some approaches in scene change detection have been
proposed. It can be noted that most of the approaches
detect occurrence of scene change frame by frame.
However, the scene change does not happen on every
frame. Therefore, it is not necessary to detect every
frame sequentially for finding scene change. In shot
segmentation, we use GOP-based approach of scene
change detection [4], which saves more processing
time than scene change detection frame by frame.

The workflow of the GOP-based scene change
detection approach is shown in Fig. 3.

Inter-GOP scene change
detection

Calculate the difference in each
consecutive GOP-pair

Step 1.

A

v

no
Is difference more
than threshold?

Step 2. Intra-GOP scene change

detection

Find out the actual scene change
frame within the GOP

Fig. 3. Workflow of the GOP-based scene change
detection approach.

In the first step (Inter-GOP), we detect the possible
occurrence of scene change GOP by GOP. If the
possible occurrence of scene change is detected, the
check process will enter the second step (Intra-GOP),

which finds out the actual frame of scene change
within the GOP.

3.2 Shots Grouping

We group similar shots into scenes. Logically a scene
can be considered as an essence of a video, because a
scene means the occurrence of a whole event. For
example, scenes of activities in a house, scenes of
activities in a car and so on constitute a video. Our
goal of shots grouping is to group the semantically
related shots as scenes in a video.

In section 3.2.1, we describe the definition in shots
grouping. In section 3.2.2, we present the algorithm of
shots grouping.

3.2.1 Definition in shots grouping

In this section, we define some terms used in our
approach of shots grouping.

1. Key frame Fk and FI: we set the first I-frame, Fk
and the last I-frame, F/ of a shot as the key frames.

2. Image feature of a frame FTE: Since video
sequences are compressed in MPEG- II, DC
images are adopted to present key frames, which
are typically 64 times smaller than the original
frames (8*8discrete cosine transform blocks are
used). We separate the whole DC image to several

regions. By summing all DC values in each region,
we can get a frame image as Fig. 4.

iDiff (FTE,,FTE,)= 5 R, = R,| ()
i

Frame image

DC image R,; is the ith region in FTE, and R, is the jth

FTE

region in FTE,, where the R is the matched

n?o

region to R,, with the smallest distance. In Fig. 6,

regions on two sides of arrowhead are matching
regions.

FTEkK FTEn

Fig. 4. Frame Image to FTE

3. Average image feature of the shot AFTE: we
sum up the image features of all the I-frames in a
shot, and divide by the number of I-frames to get

the average image feature of the shot. An AFTE,

Fig. 6. Comparsion of FTEk with FTEn by matching regions

of shot n is shown as Eq. (1) and Fig. 5.
q- (1) g from each region of FTEk with each region of FTEn

1 K
AFTE, =— FTE . 1
" K ; " O 5. Image distance of shots: the image distance SIMG

of shot i and shot j is represented as Eq. (3).

K is the number of I-frames in shot n and FTE
SIMG(, j) = W, x DiffK (i, /) + W, % DiffA(i, j)

is the ith FTE of shot .
Two I-frames in shot n AFTEn gDiﬁ”(Fk(i), Fk(]'))ﬁ
s . ODiff (Fk(i), FI()))
D =
RI(D) | RIQ2) R01) | R2(2) Rl(l);RZ(l) n iffK (i, j) = min EF Diff (FIG), Fk(j)) B

HiDiff (FI(i), FI(;)) H
DiffA(i, j) = iDiff (AFTE(i), AFTE(j)) 3)

DiffK in Eq. (3) is the minimum of image distance
of key frames between two shots. Diff4 is image
distance of the average image feature between two
shots. Wk and Wa are the weights of DiffK and
Diff4, respectively. We take into consideration
both the image distance of the key frame and
distance of the average image feature in the
determination of shots distance.

rE3) | r@) o) | R RIB)+ R2Q)JRI4) + R2(4)

2 2

RIGS) | RI©) R25)

RI(5) + R2(5)}RI(6) + R2(6
R2(6) 0+ Rl + 226

FIE, FTE,,

Fig. 5. Average Image feature of the shot n

4. Image distance of two image features: the image
distance is calculated by summing all distances

between regions in two image features [5]. Each 6. Time distance function of shots: besides small

region R, in image feature FTE, has a unique
correspondence to a region an in the other image

feature F'TE, . The image distance of two image

features iDiff of FTE, and FTE, is shown as
Eq. (2) and Fig. 6.

image distance, similar shots also possess the
relation of time locality. Thus, we set the time
distance function STIM of shot i and shot j as
Eq. (4).

STIME(, j) = Dis(i, j) 4)

Dis(i, j) in Eq. (4) is the frame distance of shot i

and shot j. In other words, it represents the
location of the first frame of shot ;j subtracts that of
the last frame of shot i if shot j is behind shot i in
time order. From this equation we can see, the
farther the distance of the shots, the weaker the
time relation between these shots is.

7. Distance function of shots: After defining the
image distance of shots and time distance function
of shots, we combine these two distances to
evaluate the distance of two shots, which is
defined in distance function DSHOT of shot i and
shot j as Eq. (5).

DSHOT, j) =W, x SIMGi, j) +W, xSTIME, j) (5)

Wi and Wt in Eq. (5) are the weights of SIMG and
STIME, respectively. The smaller the DSHOT(i,j)
is, the more similar shot i and shot j are.

3.2.2 Algorithm of shots grouping

In a movie, there is a situation that the same shot may
appear again after some other shots. In this situation,
the shots of repeated occurrence and other shots in
between them usually have a semantic relation. Thus
we consider this sequence of shots may belong to the
same scene. For example, if the shot of global view of
a park is first presented, the shots of trees, flowers,
people’s walking and the blue sky are followed, and
then the shot of global view of the park is presented
again, we can treat this sequence of shots as the scene
of a park in a video. According to these characteristics
of scenes, we can detect scenes by finding the shots of
repeated occurrence within a short range, which can
be called similar shots, because similar shots usually
have a time locality. For each intermediate shot in
between the similar shots, we consider they have
semantic relation with the similar shots, thus they
belong to the same scene as the similar shots. For
example, suppose we have a video sequence with 12
shots, which have been assigned group id according to
their similarity:
A,B,C,A,D,E,F,G,H,1,D,J

The first shot and fourth shot are similar, thus they
have the same group id, A. And the fifth shot and 11™
shot are similar, thus they have the same group id, D.
According to the above discussion that any
intermediate shot in between the similar shots belongs
to the same scene as similar shots, the first scene is

the sequence of ABCA, because shot B and C are
intermediate shots in between the similar shots A.
Analogously, shot E, F, G, H and I are intermediate
shots in between the similar shots D, thus the second
scene is DEFGEHD. Based on the above discussion,
we can build a scene structure through the following
algorithm.

® Alg. 1. Shots Grouping Algorithm
Input: all shots of a video:{shot 0, shot 1,..., shot i}
Output: the scene structure of the video

1 Assign 0 to the group id and story-unit id of shot 0.
Initialize the number of group, NumGrp and the
number of scene, NumScn both to 1.

2 If all the shots have been processed, then quit;
otherwise get the next shot and denote it as shot i.

3 Compute the distances between shot i and the
shots before shot i. But not every shot before shot i
is compared, because similar shots usually have
time locality. Thus we define a comparison range,
N = 10, which is determined through the statistics
in the experiment that if the shot distance of two
shots is over N, the probability of similarity
between two shots is very small. Only the shots in
the comparison range will be compared with shot i.
The comparison process is called subroutine
[ComputeDistance].

4 Find the minimum distance value from N
compared-pairs and test if the minimum distance
value is less than the predefined threshold. We set
Tshot as the shot with the minimum distance value
compared with shot i.
<Ifyes>

4.1Merge group id of shot i to the group id of
Tshot.

4.2Merge the scene id of shot i to the scene id of
Tshot

4.3Update the video structure: call subroutine
[UpdateStructure].

4.4Go to step 2.

<Otherwise>

4.5 Assign new group id, NumGrp to shot i.
4.6 Assign new scene id , NumScn to shot i.

4.7Increase the number of group, NumGrp and the
number of scene, NumScn both with 1.

4.8Go to step 2.

[ComputeDistance]
Input: two shots, named shot s/ and s2, respectively.
Output: the distance value DSHOT of the two shots
DSHOT (sl,s2) =
W.xSIMG(sl,s2) + W, x STIME(s1,s2)
[UpdateStructure]

Input: Current shot, group and scene id of the video

Output: The updated shot, group and scene structure
of the video

1. Denote the group of the current shot as group 4.

2. For any shot whose group id is not equal to group 4
and in between two shots of group 4, merge scene id
of the shot to that of the shot of group 4.

In this algorithm, we first compare each shot with its
previous shots within a comparison range. If two
shots are dissimilar, we assign the current shot a new
group id and scene id. In the contrast, if two shots are
similar, then the shots in between these two similar
shots will be assigned the scene id. The example is
illustrated in the following.

Before update:

Shot i Shot i+1 Shot i+2 Shot i+3 Shot i+4
Group / |Group 2 Group 3 Group 4 Group /

Scene 9 [Scene 10 Scene 1/ Scene /2 Scene 9

After update:

Shot i Shot i+1 Shot i+2 Shot i+3 Shot i+4
Group / |Group 2 Group 3 Group 4 Group /

Scene 9 [Scene 9 Scene 9 Scene 9 Scene 9

An example of update process is: before update, shot
i+1, shot i+2 and shot i+3 are in between shot i and
shot i+4 whose group id are both 1. After update,
story-unit id of any intermediate shot in between shot
i and shot i+4 is replaced by 9.

After the shots grouping algorithm, each shot will
have a scene id. One scene id represents a scene, thus
the shots with the same scene id will belong to the
same scene.

3.3 Scenes Clustering

In scenes clustering, our criterion is to make the
number of scenes in each cluster approximately the
same and the variation of the size is not so big. We
employ concept of modification of Self-Organizing

Map (SOM) [6,7] based on scene feature vectors to
achieve the goal.

3.3.1 Definition in scenes clustering

In this section, we define some terms used in our
approach of scenes clustering.

1. Scene Feature SF: we use the scene image as the
feature of scene. The scene image of an example
scene 7 is shown in Fig. 7.

SFn

-

AFTE of shot 1

\
>

AFTE of shot 2

Fig. 7. Scene Image n example
(Two shots in a scene n)

The scene feature includes average image feature
AFTE of all shots in the scene.

2. Average scene feature of a scene ASF: we sum
up the average image features AFTE of all the
shots in a scene, and divide by the number of the
shots to get the average scene feature of the scene.
An example scene n with two shots is shown in Fig.
8. We denote ASF as scene center.

Two shots in scene n ASFn
RI(1)+R2(1) +
RO | R || RO | R22) 2h Sseh
RI(3) RI(4) R2(3) R2(4) — R1(3);R2(3) R1(4)-;R2(4)

RI(S) + R2(5)JR1(6) + R2(6)
2 2

RIGS) | RI©) R2S) | R26)

AFTE AFTE,,

Fig. 8. Average scene feature of the scene n

3. Cluster Feature CF: we use the cluster image as
the feature of a cluster. A cluster image n
consisting of scene SF/ and SF2 is shown in Fig. 9.

CFn

-

SF1
(Two shots
inscene 1)

\
>

SF2
(Three shots
inscene 2)

\

Fig. 9. Cluster Image n
(Two scenes in a cluster n)

The cluster feature includes scene feature SF of all
scenes in the cluster.

4. Average cluster feature of a cluster ACF: we

sum up the average scene features ASF of all the
scenes in a cluster, and divide by the number of the
scenes to get the average cluster feature of the

cluster as Fig. 10. We denote ACF as cluster center.

Two scenes in cluster n ACFn

Rl(l) R1(2) R2(l) R2(2) RI(1) + R2(DRRI(2) + R2(2)|

2 2

RQ) | R4 RO | 2@ R1(3)2R2(3) R1(4)*2-R2(4)

RI(S) R1(6) RQ(S) R2(6) RI(5) + R2(5)JR1(6) + R2(6)|

2 2

ASF,

nl

ASE,

Fig. 10. Average cluster feature of the cluster n

5. Image distance between scene and cluster: The
distance between scene and cluster is analogous to
image distance of the image feature. The
difference is that unit of image distance is region
but unit of distance between scene and cluster is
average image feature AFTE.

The distance between scene, and cluster, is

calculated by summing all distances between

average image features AFTE in scene k and those
in cluster #» and dividing by the number of shots in
scene, or cluster,. If the number of shots in

scene, is smaller than that in cluster,, each
AFTE,, of shot, in scene, has a unique
correspondence to an AFTE, of shot, in
cluster,. Oppositely if the number of shots in
cluster, is smaller than that in scene,, each
AFTE,; of shot, in cluster, has a unique
correspondence to an AFTE,, of shot, in

scene, . In other words, this is a one-to-one

matching. The detail is shown as Eq. (6) and Fig.
11.

1
scDiff(k,n) = 7 Z iDiff (AFTE,;, AFTE,) (6)
[N
L in Eq. (6) is the smaller one between the number
of shots in scene, and that in cluster,. AFTE,,

is the ith AFTE in scene, and AFTE,, is the jth
AFTE in cluster,, where AFTE,, is the matched
AFTE to AFTE,, with the smallest distance.

CFn
(Two scenes in cluster n)

SF1
SFk
(Two shots in scene K) (_TWo shots
inscene 1)
AFTE,in shot 1 i
AFTE, in shot 2
SF2
(Three shots
inscene 2)

Fig. 11. Distance between scene k and cluster n

6. Image distance between scene center and
cluster center: The distance between scene center
and cluster center is analogous to the distance
between scene and cluster. The difference is that
distance between scene and cluster is calculated by
average image feature AFTE but distance between
scene center and cluster center is calculated by
average scene feature ASF and average cluster
feature ACF. The distance between scene center k
and cluster center » is shown as Eq. (7).

AscDiff (k,n) = iDiff (ASF, , ASF,) 7)

7. Number distance function: We set the number
distance function SNuml of cluster » as Eq. (8).

C
SNuml(n) = ——— ®)
SceneNum(n)
C in Eq. (8) is constant. From this equation we can
see, the larger the number of scenes in a cluster,
the smaller the SNuml is.

8. Distance function between scene and cluster:
Our criterion of scenes clustering is to make the
variation of cluster size not so big. Thus, we take
into consideration the number of scenes in a
cluster in the definition of distance function
between scene and cluster as shown in Eq. (9).

DScene(k,n) = scDiff (k,n) — SNumI(n) (9)
The larger the number of scenes in a cluster, the
smaller the Snuml is, and the larger the Distance is.

9. Distance function between scene center and
cluster center: The distance function between
scene center and cluster center is similar to the
distance function between scene and cluster. It is
shown as Eq. (10).

ADScene(k,n) = AscDiff (k,n) — SNumlI(n) (10)

10.Inaccuracy of cluster: For getting inaccuracy of
cluster n, we sum all the distance function between
all scene centers in the cluster » and the cluster
center n as shown in Eq. (11).

K
Clnaccuracy(n) = Z ADScene(i,n) (11)

K is the number of scenes in cluster 7.

3.3.2 Algorithm of scenes clustering

Considering time complexity, we use a simple one
pass clustering method for scenes clustering. The
scenes clustering algorithm is shown as Alg. 2.

® Alg. 2. Scenes Clustering Algorithm

Input: all scenes of a video:{scene 0, scene 1,..., scene
if

Output: the cluster structure of the video

1 Create a new cluster and assign 0 to the cluster id
of scene 0. Initialize the number of clusters
ClusterCount to 1. Call subroutine [NewCluster].

2 If all scenes have been processed, then quit;
otherwise get the next scene and denote it as scene
i

3 Compute the value of distance function between
scene i and all clusters. The computation process is
called subroutine [ComputeSCDistance]

4 Find the minimum distance value and test if the
minimum distance value is less than the predefined
threshold. We set Tcluster as the cluster with the
minimum distance value computed with scene i.

<If yes>
4.1 Assign Tcluster to cluster id of scene i.

4.2 Update the cluster information: call
subroutine [UpdateCluster]|

4.3 Gotostep 2
<Otherwise>

4.4 Create a new cluster and assign ClusterCount
to cluster id of scene i. Call subroutine
[NewCluster].

4.5 Assign ClusterCount to cluster id of scene i.
4.6 Increase the number of clusters, ClusterCount.
4.7 Goto step 2

[ComputeSCDistance]

Input: scene s/ and cluster ¢/

Output: the distance value, DScene of the scene and
cluster

DScene(sl,cl) = scDiff (s1,cl) — SNuml (cl)
[NewCluster]
Input: Current scene s/ and cluster c/
Output: The new cluster information

1. Assign 1 to the number of scenes in cluster c/.

2. Assign the number of shots in scene s/ to the
number of shots in cluster c/.

3. Copy SF of all shots in scene s/ to CF of cluster ¢/

4. Assign ASF of scene s/ to ACF of cluster c/.

[UpdateCluster]|

Input: Current scene s/ and cluster c/

Output: The updated cluster information

1. Increase the number of scenes in cluster c/.

2. Update the number of shots in cluster c/.

ShotNum(cl) = ShotNum(sl) + ShotNum(cl)

3. Add SF of scene s/ to CF of cluster c/

4. Update ACF of cluster c/.

ACF, x(SceneNum(cl) —1) + ASF,
SceneNum(cl)

After the simple one pass clustering, we get
approximate scenes clustering. For getting better
scenes clustering result, we adjust each clustering
iteratively as Alg. 3.

ACF,, =

® Alg. 3. Scenes Clustering Adjusting Algorithm

Input: the cluster structure of the video constructed by
Alg. 2

Output: the adjusted cluster structure of the video

1. Initialize variable count to 0 and variable iteration
to 0.

2. If count is large than the number of clusters or
iteration is larger than ten, then quit; otherwise get
the next cluster and denote it as cluster i.

3. Compute the Inaccuracy of the cluster i. The
computation process is called subroutine
[ClusterInaccuracy].

4. If the distance is larger than the predefined
threshold, then go to step 5; otherwise increase the
value of count and go to step 2.

5. If all scenes in cluster i have been processed, then
set count to 1 and go to step 2; otherwise get the
next scene and denote it as scene j.

6. Compute the distance function between scene j and
all clusters. The compute process is called
subroutine [ComputeSCADistance].

7. Find the cluster with the minimum distance value
computed with scene i and denote it as cluster

Mcluster. If Mcluster is not equal to 1, call
subroutine [AdjustScene]. Go to step 5.

[ClusterInaccuracy]
Input: cluster ¢/

Output: the inaccuracy of the cluster ¢/
K
Clnaccuracy(n) = Z ADScene(i,n)
i=0

[ComputeSCADistance]
Input: scene s/ and cluster ¢/

Output: the distance value, ADScene of the scene and
cluster

ADScene(k,n) = AscDiff (k,n) — SNuml (n)
[AdjustScene]
Input: scene s/ and old cluster ¢/ and new cluster ¢2

Output: The updated scene information and cluster
information

1. Decrease the number of scenes in cluster c/.
2. Increase the number of scenes in cluster c2.
3. Update the number of shots in cluster c/.

ShotNum(cl) = ShotNum(sl) — ShotNum(cl)

4. Update the number of shots in cluster c2.

ShotNum(c2) = ShotNum(sl) + ShotNum(c2)

5. Remove SF of scene s/ from CF of cluster ¢/

6. Add SF of scene s/ to CF of cluster ¢2

7. Update CAF of cluster c/.

CAF, = CAF,, X (SceneNum(cl) +1) — SAF,

SceneNum(cl)

8. Update CAF of cluster c2.

CAF, = CAF,, x(SceneNum(c2) —1) + SAF,
SceneNum(c2)

9. Change cluster id of scene s/ to ¢2

4. EXPERIMENTAL RESULTS

The proposed algorithms were tested using several
video sequences from video database. Some results
obtained from a video sequence of total duration 3
minutes (3050 frames) are presented in the following
figures. The video sequence was first segmented into
24 shots and then shots were grouped into 8 scenes.

Finally, scenes were clustered into 4 clusters. Fig. 12
illustrates all scenes in the video sequence. The
clustering results are shown in Fig. 13. Let us focus
on the scene 7 in Fig. 12. The two shots in scene 7 do
not seem to belong to the same scene by looking at the
pictures on the paper. They are grouped into the same
scene in our system because the two shots are similar
in colors. The two shots are both out-of-doors and
their backgrounds are sky and sea, which are both
blue. From Fig. 12 and Fig. 13, the results of our
system are satisfactory. The shots in the same scene
and scenes in the same clustering are similar in
content.

It is somewhat subjective how good the video
structures are. The way of performance testing is to
ask users to evaluate the system. We have requested
several users to construct video structures after
viewing the test video sequences. The grouping and
clustering results of our system are very close to the
results of users.

5. CONCLUSION

The proposed hierarchical video structure provides efficient
video content representation and indexing. Users can obtain
general overall view of contents through browsing the
hierarchical structure. Because the hierarchical structure is
already gained, video indexing can be established thereafter.
Through the video indexing, users can retrieve any scene in
any cluster quickly.

For constructing the hierarchical video structure, some
works of video processing have been done, including
segmenting a video as shots, grouping the shots into scenes
and clustering the scenes. We propose an efficient method
of shot segmentation, which only examines frames on
possible scene changes. We design an algorithm to group
shots into scenes, which form logical building units of a
video. Finally, the two algorithms for scenes clustering are
proposed. The experimental results validate the
effectiveness of the system. More testing and refinement are
worthy of further investigation.

6. REFERENCES

[1] Nikolaos D. Doulamis, Anastasios D. Doulamis,
Yannis S. Avrithis and Stefanos D. Kollias, “Video
Content Representation Using Optimal Extraction of
Frames and Scenes,” IEEE conference on Image
processing, Vol. 1, pp. 875-879, 1998.

[2] M. Yeung, B. L. Yeo, and B. Liu, “Extracting Story
Units from Long Programs for Video Browsing and

Navigation,” Proc. IEEE Conf. on Multimedia
Computing and Systems, pp. 296-305, 1996.

[3] M. Yeung, B. L. Yeo, and B. Liu, “Video Browsing
using clustering and scene transitions on compressed
sequences,” Proc. IEEE Conf. on Multimedia
Computing and Systems, 1996.

[4] J. L. Lan, “Video Summary and Browsing Based on
Story-Unit for Video-on-Demand Service,” Master
thesis, National Chiao Tung University, Dept. of CSIE,
June 1999.

[5] Alan Hanjalic, Reginald L. Lagendijk, Jan Biemond,
“Automated High-Level Movie Segmentation for
Advanced Video-Retrieval Systems,” IEEE
Transactions on Circuits and Systems for Video
Technology, Vol. 9, No 4, 1999.

[6] Duane DeSieno, “Adding a Conscience to Competitive
Learning”, IEEE International Conference, Vol. 1, pp.
117-124, 1988.

[7]1 J. Michael Rozmus, “The Density-Tracking Self-
Organizing Map”, IEEE conference on Neural Network,
Vol. 1, pp. 44-49, 1996.

[8] Kohonen, T., “Self-Organizing Maps”, Proceedings of
the IEEE, Vol. 78, No 9, September 1990.

[9] Marc Cavazza,Roger Green and Ian Palmer,
"Multimedia Semantic Features and Image Content
Description", IEEE Multimedia modeling, pp. 39-46,
1998.

[10]A.W Wardhani and R Gonzalez, "Automatic Image
Structure Analysis", IEEE Multimedia computing and
System, pp.180-188, 1998.

[11]Jeongnam Youn, Ming-Ting Sun, Fellow, IEEE, and
Chia-Wen Lin, "Motion Vector Refinement for High-
Performance Transcoding", IEEE Transactions on
Multimedia, Vol. 11, pp. 30 —40, 1999.

[12]A. Mufit Ferman and A. Murat Tekalp, "Efficient
Filtering and Clustering Methods for Temporal Video
Segmentation and Visual Summarization", Journal of
Visual Communication and Image Representation,
1998.

[13]Adnan M. Alattar, "Wipe Scene Change Detector for
Use with Video Compression Algorithms and MPEG-
7", IEEE Transactions on Consumer Electronics, Vol.
441, pp. 43-51, 1998.

Scene 1 Cluster 1

Scene 3 (Scene 2)

(Scene 7)
Cluster 3

(Scene 4)

(Scene 6)

(Scene 8)

~I(Scene 5)

Fig. 13. The four clusters generated by the clustering
algorithms

Fig. 12. The 8 scenes of the test video sequence

