
A Simple Cell Scheduling Mechanism for ATM Networks �

Ming-Chi Lee, Tsung-Chun Chen, Hsin-Tai Yang, and Shie-Jue Lee

Department of Electrical Engineering

National Sun Yat-Sen University

Kaohsiung 804, Taiwan

E-mail: fmcleej nomadj styangj leesjg@water.ee.nsysu.edu.tw

ABSTRACT

Carry-Over Round Robin(CORR) is a simple mecha-
nism for scheduling cells in asynchronous transfer mode
networks. It is competitive with much more complex
scheduling disciplines in terms of performance, espe-
cially in operational simplicity. However, CORRmakes
some extra design to maintain a maximum frame size,
which leads to an unfair allocation of bandwidth and
increases complexity of operations. In this paper, we
propose a modi�ed scheme to simplify CORR. We pro-
vide a mathematical analysis and show that this scheme
achieves better performance than CORR.

1 INTRODUCTION

Integrated services networks are required to support
a variety of applications with a wide range of Qual-
ity of Service(QoS) requirements. At a switch node in
high-speed networks, hundreds of thousands of sessions
belonging to di�erent services interact with each other
and contend for the same output link. Scheduling [1, 2]
is a discipline that allocates the sequence in which the
packets of di�erent sessions are sent. The design of a
tra�c scheduling algorithm involves tradeo� among its
delay, complexity of implementation, and fairness.

Concerning the delay and fairness, Packet by Packet
Generalized Processor Sharing (PGPS) is considered
an ideal scheduling algorithm and achieves nearly per-
fect performance [3]. However, PGPS requires O(N)
work per packet, where N is the number of
ows that
are currently active at the switch node. Several ap-
proaches were proposed to reduce the complexity of
PGPS [4, 5, 6]. They exhibit desirable performance
characteristics compared with PGPS and achieve high
network utilization. All of the protocols mentioned
above, called Flow Timestamps schedulers, have in
common the requirement of transmitting packets in a
priority order according to timestamps. Since main-
taining a sorted priority queue [7, 8] introduces signif-
icant overhead, these algorithms are di�cult to imple-
ment with a large number of active sessions at high
speed.

�This work was supported by the National Science Council

under the grant NSC-89-2213-E-110-010.

Another class of category based on frame-based [9]
or round-robin [10] usually has O(1) time complexity.
Although they perform a little worse than Flow Times-
tamp schedulers in delay and fairness, these algorithms
are simple and e�cient in a high-speed network. In gen-
eral, frame-based schedulers are nonwork-conserving
and waste network bandwidth. Round-robin schedulers
usually su�er from poor delay performance. Carry-
Over Round Robin is essentially a frame-based sched-
uler. However, it is work-conserving and yields low
delay independent of the number of connections.

2 CORR ALGORITHM

CORR is a variation of the frame-based scheduling dis-
cipline in ATM networks [11]. It divides the time line
into cycles of maximum length T . At the time of ad-
mission, each connection Ci is allocated a rate Ri ex-
pressed in cells per cycle. Unlike simple round-robin
schemes, where Ri has to be an integer, CORR allows
Ri to be any real number. Although Ri can be real in
CORR, the actual number of slots allocated to a con-
nection in a cycle is still an integer. The debits and
credit due to imperfect allocation are carried over into
the next cycle.

The CORR scheduler (see Figure 1) consists of three
asynchronous events | Initialize, Enqueue, and Dis-
patch. The event Initialize is invoked when a connec-
tion is admitted. If a connection is admissible, it simply
adds the connection to the connection list fCg. Note
that the connection list must be in the decreasing order
of Ri � bRic, i.e., the fraction part of Ri. Intuitively,
arranging connections in a decreasing order of the frac-
tional part of Ri can make sure that the connections
with higher fraction requirement are served earlier. Let
us walk through an example(as shown in Figure 2) re-
ferred to [11]. Consider a system with cycle length T=4
cells serving three connections, C1; C2, and C3, with
R1 = 2; R2=1.5, and R3=0.5, respectively. For ease
of exposition, assume that all the three connections
are backlogged starting from the beginning of the sys-
tem busy period. In the major cycle of the �rst cycle,
CORR allocates C1; C2 , and C3; bR1c = 2; bR2c = 1,
and bR3c = 0 slots, respectively. Hence, at the be-
ginning of the �rst minor cycle, r1 = 0:0; r2 = 0:5,
and r3 = 0:5. The only slot left for the minor cycle

Constants

T :Cycle length.
Ri:Slots allocated to Ci

Variables

fCg:Set of all connections
t:Slots left in current cycle
ni:Number of cells in Ci

ri:Current slot allocation of Ci

Events

Initialize(Ci);/*Invoked at connection setup time*/
add Ci to fCg;
ni 0; ri 0;

Enqueue();/*Invoked at cell arrival time*/
ni = ni + 1;
add cell to connection queue;

Dispatch();/*Invoked at the beginning of a system
busy period*/
8C: : ri 0;
while not end of busy period do

t T
1. Major Cycle:
for all Ci 2 fCg do /* From head to tail*/
ri min(ni; ri +Ri);xi min(t; bric);
t t� xi; ri ri � xi;ni ni � xi;
dispatchxi cells from connection queue Ci;

end for

2. Minor cycle:
for all Ci 2 fCg do /*From head to tail*/
xi min(t; drie);
t t� xi; ri ri � xi;ni ni � xi;
dispatch xi cells from connection queue Ci;

end for

end while

Figure 1: CORR algorithm.

goes to C2. Consequently, at the end of the �rst cy-
cle, r1 = 0:0; r2 = �0:5, and r3 = 0:5. The adjusted
requirements for the second cycle are

r1 = r1 +R1 = 0:0 + 2:0 = 2:0

r2 = r2 +R2 = �0:5 + 1:5 = 1:0

r3 = r3 +R3 = 0:5 + 0:5 = 1:0

Since all the ri's are integers, they are all satis�ed in
the major cycle of the second cycle.

The main attraction of CORR is its simplicity, which
is regarded as the most important criterion for the se-
lection of an algorithm for use in a real system. Never-
theless, we believe CORR should be simpli�ed due to
several reasons as follows.

1. The sorted connection list increases the complexity
of implementation. Although CORR still main-
tains O(1) work per cell, it will probably drive up
the cost of routers.

2. A CORR scheduler makes at most two passes
through the connection list in each cycle{one dur-
ing the major cycle and the other during the minor

Figure 2: An example of CORR.

cycle. Thus CORR performs twice the number of
operations performed by a round-robin scheduler
in the worst case. If we combine the two subcycles
into one, or eliminate either of them successfully,
the algorithm will be more e�cient.

3. CORR allows ri to be negative. It implies that
some connections getting a slot in the minor cycle
would exceed their allocated quotas. Hence, the
allocation of bandwidth is a little unfair.

In fact, the drawbacks of CORR mentioned above
come from maintaining the maximum frame size. In
order to derive the worst-case end-to-end delay, a max-
imum frame length is helpful at the beginning. How-
ever, it doesn't mean such a step is necessary. In the
next section, we will present a modi�ed scheme to sim-
plify CORR. Also, we will show that the scheme pro-
posed has a similar delay bound and better fairness.

3 THE MODIFIED SCHEME

The minor cycles in CORR allow ri to be negative.
It has been proved that �ri � 0 at the beginning of
each cycle. After updating ri to ri + Ri, the num-
ber of cells dispatched during one cycle is smaller than
T . Combined with the sorted connection list, CORR
guarantees that the bandwidth allocated to each frame
never exceeds T . Under this condition, the worst-case
delay encountered by the ith cell in a CORR scheduler
can be derived. A detailed proof can be found in [12]
and [11].

The basic idea of our modifying CORR is to reduce
operations. Now, assume we erase the minor cycle of
the Dispatch event in CORR. Then a much larger frame
with a probably in�nite length may be generated. Since
a larger frame leads to a larger delay, a similar bound
after modifying CORR seems di�cult to derive. Thus
the key to simplify CORR is to derive a delay bound
without a maximum frame size.

Let us consider the similar example presented in the
previous section. However, at this time there are no
minor cycles (as shown in Figure 2). Let cycle length

Figure 3: An example of our algorithm.

T=4 and R1 = 2; R2 = 1:5, and R3 = 0:5. Observe
that from time t0 to t2, the scheduler dispatches 8 cells
during this interval. r1 = r2 = r3 = 0 at the beginning
of Cycle 1 and the end of Cycle 2. That is almost the
same as CORR. Observe that in time interval (t1; t2),
cells allocated in Cycle 2 are 5. r1 = 0:0; r2 = 0:5, and
r3 = 0:5 at the beginning of Cycle 2. r1 = r2 = r3 = 0
at the end of Cycle 2. Cycle 2 is allowed to send one
more cell than T . Note that �ri = 1 at the beginning
of Cycle 2. We generalize our observations as follows.

1. If we don't consider the initial values of ri (or as-
sume all ri are set to zero), the following expression
holds (the situation is shown in Figure 4).

n�1X
k=0

Ck �
n�1X
k=0

T = nT

That is the case we observe at t0:C1 = 3 is smaller
than the ideal length T and C1 + C2 = 8 is equal
to the ideal length 2T .

2. If we consider the initial values of ri, the above
inequality becomes

n�1X
k=0

Ck � nT +
N�1X
i=0

ri

This case is like the observation at t0. C2 = 5 �
T + �ri = 5.

Now we solve the problem of the maximum frame
size. The delay without minor cycles is at most N � T
plus �ri. So we can follow the steps used by CORR
to analyze the delay performance. It is clear that the
operational complexity of CORR can be reduced. The
sorted connection list and the minor cycle are not nec-
essary for deriving the delay bound. Thus we propose
another scheduling algorithm as shown in Figure 5.
The main di�erence between CORR mechanism and
ours is that we erase the minor cycle in the new scheme.
Hence each ri becomes a non-negative number and con-
nection list doesn't have to be sorted anymore. The

Figure 4: The un�xed cycle length of our scheme.

Constants

Ri:Slots allocated to Ci.
Variables

fCg:Set of all connections
ni:Number of cells in Ci

ri:Current slot allocation of Ci

Events

Initialize(Ci);/*Invoked at connection setup time*/
add Ci to fCg;
ni 0; ri 0;

Enqueue();/*Invoked at cell arrival time*/
ni = ni + 1;
add cell to connection queue;

Dispatch();/*Invoked at the beginning of a system
busy period*/
8Ci :: ri 0;
while not end of busy period do

for all Ci 2 fCg do /* From head to tail*/
ri min(ni; ri + Ri);
ri ri � bric;ni ni � bric;
dispatch bric cells from connection queue Ci;
end for

end while

Figure 5: The modi�ed algorithm.

number of the basic operations such as +, -, *, / is
approximately reduced half as many as CORR. In the
next section, we analyze the fairness properties and de-
lay performance of the new scheme. Then we compare
with CORR and typically Flow-Timestamp methods.
The results show that, albeit its simplicity, this scheme
outperforms CORR in terms of fairness. As long as the
frame size T close to 1, the performance of delay and
fairness is also similar to Flow-Timestamp methods.

4 MATHEMATICAL ANALYSIS

A.Fairness

In a work-conserving server, when the system is not
fully loaded, the spare capacity can be used by the
busy connections (a connection is busy if its queue is
nonempty) to achieve better performance. One of the
important performance metrics of a work-conserving
server is the fairness. Here the fairess means how fair

the server is in distributing the excess capacity among
the active connections. In this section, we analyze the
fairness property of our scheduling algorithm and com-
pare with CORR.

Formally, if Ri is the reserved rate of
ow i and
sendi(t1; t2) is the aggregate service (in cells) received
by it in the interval [t1; t2], then an allocation is fair
for any intervals [t1; t2] in which both
ows i and j are
backlogged. That is,

sendi (t1; t2)

Ri

=
sendj (t1; t2)

Rj

This is an idealized de�nition of fairness as it assumes
that
ows can be served in in�nitesimally divisible
units. The objective of fair scheduling algorithms is
to ensure that����sendi(t1; t2)Ri

�
sendj(t1; t2)

Rj

����
is as close to zero as possible. However, it has been
shown that if a scheduling algorithm guarantees that

����sendi(t1; t2)Ri

�
sendj(t1; t2)

Rj

���� � H(i; j)

for all intervals [t1; t2], then

H(i; j) �
l

2c
(
1

Ri

+
1

Rj

)

where H(i; j) is a function of the property of
ows i and
j, c denotes the capacity of the output channel, and l
denotes the cell length in bits. The function H(i; j) is
referred to as fairness measure. Like CORR, we assume
that our sampling points coincide with the beginning of
the allocation cycles only. Now, when a connection is
busy during the cycles (c1; c2) , the amount of services
received is

sendi(c1; c2) = b(c2 � c1)Ri + �ic

where �i is the initial value of the counter at the begin-
ning of cycles. Note that �i has to be nonnegative and
smaller than 1. In the following, we let

Wi(c1; c2) =
b(c2 � c1)Ri + �ic

Ri

Thus,

jWi(c2 � c1) �Wj(c2 � c1)j

=
���b(c2�c1)Ri+�ic

Ri
�

b(c2�c1)Rj+�jc
Rj

���
=
��� (c2�c1)Ri+�i�xi

Ri
� (c2�c1)Rj+�j�xj

Rj

���
=
����i�xiRi

+ xj��j
Rj

��� 0 � xi; xj < 1

In the worst case,

jWi(c2 � c1)�Wj(c2 � c1)j �
1

Ri

+
1

Rj

Under the same scenario, it has been proved that in
a CORR scheduler the following equation holds at all
times.

jWi(c2 � c1) �Wj(c2 � c1)j �
2

Ri

+
2

Rj

Clearly, the fairness measure of CORR is within two
times that of our scheme.

B. Delay in single node

The delay su�ered by any cell in a scheduler is the
di�erence between its arrival time at and departure
time from the system. The arrival time of a cell can
be obtained from the tra�c envelope associated with
the connection it belongs to and is determined by the
shaping mechanism used. In the rest of the section, we
derive delay bound for arrival function characterized
by the composite leaky bucket.

Let's consider a composite leaky bucket consisting
of n component leaky bucket (bi; �i); i = 1; 2; 3:::; n. It
has been proven in [13] that the departure time of the
ith cell from the composite shaper, denoted by a(i), is

a(i) =
Pn+1

k=1(i� bk + 1)�k[U (i �Bk)� U (i� Bk�1)];

i = 0; 1; :::;1

where

Bk =

8>>>><
>>>>:

1 k = 0

b bk�k�bk+1�k+1
�k��k+1

c k = 1; 2; :::; n

0 k = n+ 1

and

U (x) =

8><
>:

0 x < 0

1 x � 0

We regard a(i) as the arrival time of the ith cell at
the network entry point. Now we have to derive the
departure time of the ith cell. Assume a connection
enters a busy period at time = 0. Let d(i) be the
latest time by which the ith cell departs the system.
It's di�cult to know the exact time when the cells exit.
To capture the worst case, we assume that all cells
served during a cycle leave at the end of cycle. Now,
if cell i departs at the end of the Lth cycle from the
beginning of the connection busy period, the number
of slots allocated by the scheduler is L � R + �, and
the number of slots consumed is i+1(assuming packet
number starts from 0). As a result,

L �R + � � i � 1

Since � is between 0 and 1, in the worst case, � =
0.Thus we get

L �
1 + i

R

From the above inequality and noting that L is an in-
teger and d(i) = L � T , we get

d(i) =
l

c

�
1 + i

R

�
T +

l

c

N�1X
k=0

rk

Now we can compute the delay bound from the di�er-
ence between d(i) and a(i). It has been proven in [11]
that the maximum delay encountered by any cell is at
most as large as the delay su�ered by cell Bj (with
composite leaky bucket) and a(Bj) can be derived as
follows.

a(Bj) = (Bj � bj + 1)tj when
1

tj
<

R

T
<

1

tj+1

Therefore, the delay bound is

Delay � d(Bj)� a(Bj) =
l
Bj+1
R

m
T � (Bj � bj + 1)tj

+
PN�1

k=0 rk when 1
tj
< R

T
< 1

tj+1

C. Delay in multi-nodes

Consider a connection traversing n switching nodes
between source and destination. Let's denote by ak(i)
the arrival time of the ith cell of the connection at node
k. The service time of the ith cell at node k is denoted
by sk(i). The service time of cells p � q at node k is
Sk(p; q). Assume the propagation delay between nodes
is zero. Then the departure time of cell i from node k
is ak+1(i). A theorem in [12] is descirbed as follows.

Theorem: For any node k and for any cell i, the fol-
lowing holds:

ak(i) = max
1�j�i

fa1(j)+ max
j=l1�l2�:::�lk=i

(
nX

h=1

Sh(lh; lh+1))g

where n is the number of switch nodes between the
source and the destination.

The theorem presented above is very broad in the
sense that it does not assume any speci�c arrival pat-
tern of scheduling discipline. It means that if the ith
cell never encounters any queuing in the system, its de-
parture time can be computed as the sum of its arrival
time into the system and its service time at di�erent
nodes. If the ith cell encounters queuing in the sys-
tem, its departure time may potentially depend on the
arrival time of any cell that entered the system before
it. A detailed description of the theorem can be found
in [11]. However, computing exact service time of dif-
ferent cells at each node is quite di�cult. Fortunately,
computing the worst case bound on departure time and
the worst case delay for speci�c service discipline and
arrival patterns is not that di�cult. Thus we can re-
place the service time Sh(:) at nodes h = 1; 2; :::n with
the worst case service time Sw(:) in the expression for

ak(i) in the above theorem. That becomes

ak(i) = max
1�j�i

fa1(j)+ max
j=l1=�l2�:::�lk=i

(
nX

h=1

Sw(lh; lh+1))g

Recall that we have computed the worst case service
time d(i). Now we can derive the end-to-end delay
bound by replacing

Sw(lh; lh+1) =
l

c

�
(lh+1 � lh) + 1

R

�
T +

l

c

N�1X
k=0

rk

Also,

Pn

h=1 Sw(lh; lh+1) =
l
c

Pn

h=1

l
(lh+1�lh)+1

R

m
T

+ l
c

Pn

h=1

PNh

k=1 r
h
k

� l
c

Pn

h=1

h
(lh+1�lh)+1

R
+ 1

i
T + l

c

Pn

h=1

PNh

k=1 r
h
k

� 1
c

�
n+ n�1

R

�
T + l

c

h
ln+1�l1+1

R

i
T + l

c

PNn

k=1 r
n
k

+ l
c

Pn�1
h=1

PNh

k=1 r
h
k

� 1
c

�
n+ n�1

R

�
T + Sw(l1; ln+1) +

l
c

Pn�1
h=1

PNh

k=1 r
h
k

� 1
c

�
n+ n�1

R

�
T + Sw(j; i) +

l
c

Pn�1
h=1

PNh

k=1 r
h
k

(l1 = j and ln+1 = i)

Hence, the end to end delay bound is ak(i)� a1(i).

Delay(i) � l
c

h
n+ n�1

Rw

i
T +max1�j�ifa1(j) + Sw(j; i)g

+ l
c

Pn�1
h=1

PNh

k=1 r
h
k � a1(i)

D. Comparison with CORR

Now we compare the performance with CORR(as
shown in Table 1). As we expect, the fairness of our
scheme is better than that of CORR since the counter
value ri is limited to be nonnegative. The worst case
complexity is still O(1), the same as CORR. However,
CORR has two subcycles in a frame. Thus CORR has
nearly as twice the number of operations as our scheme.
The worst case end to end delay of these two schedulers
seems similar. So we assume all rhk = 1 and each node
has the same number of connections N . Therefore,
the di�erence in maximum delay that a cell may incur
employing CORR and our scheme is

DCORR(i) �DOURS(i)

= l
c
(n�1
Rw

T �
Pn�1

h=1

PN�1
k=0 rhk)

= l
c
(n�1
Rw

T �N (n� 1))

= l
c
(n� 1)(T

Rw
�N)

Observe that the maximum delay of cells of a con-
nection in our scheme is smaller than in CORR if

CORR Our approach

Fair 2
Ri

+ 2
Rj

1
Ri

+ 1
Rj

End to End Delay l
c

h
n+ 2n�1

Rw

i
T +max1�j�ifa1(j)+

l
c

h
n+ n�1

Rw

i
T +max1�j�ifa1(j)+

Sw(j; i)g � a1(i) Sw(j; i)g+
l
c

Pn�1
h=1

PNh

k=1 r
h
k � a1(i)

Complexity O(1) O(1)

Table 1: Comparison with CORR.

Rw < T=N . In other words, a connection of CORR
has a smaller delay if Rw > T=N . Since T=N is the
average rate of all connections in full load, we can ex-
pect that half of connections would have reserved rate
smaller than T=N . That is, half of them have a smaller
delay than CORR if the system employs our scheme.
Thus, the delay performance of our algorithm is not
worse than CORR. However, this algorithm has a bet-
ter fairness and lower operational complexity.

E. Comparison with Flow-Timestamps

As mentioned earlier, the schedulers based on com-
puting timestamps are the best of breed. Although
it is hard to implement in high-speed networks, they
are still very attractive. The author of CORR has
compared with SCFQ and PGPS, two typically
ow-
timestamp schedulers, in terms of fairness and delay.
It seems CORR is competitive with them. However,
this comparison is not suitable due to the di�erent
tra�c models and de�nitions. For example, CORR
uses the begging of allocation cycles (c1; c2) instead
of real time(t1; t2) to derive fairness measure. Then
CORR compared fairness with SCFQ directly. In fact,
the fairness measure should have two properties|long-
term fairness and short-term fairness. The long-term
fairness implies fair allocation of bandwidth and the
short-term fairness implies the size of tra�c burst of a
connection. Unfortunately, to derive the fairness mea-
sure using cycles instead of real time does not have the
short-term fairness property. The scheduler may pro-
duce a large burst during any cycle even though the
distribution of bandwidth is fair at the end of this cy-
cle. This situation may occur in any frame-based but
not in
ow-timestamps schedulers. However, we can
not see such a property in mathematical analysis as we
derive fairness measure like CORR. Therefore, we pro-
vide another analysis similar to
ow-timestamps and
compare with them in Table 2.

As expected,
ow-timestamps schedulers always per-
form better except complexity. The larger the frame
size is, the worse ` the delay and fairness are. For-
tunately, our scheduler is designed for asynchronous
transfer mode networks. Since the cell length is �xed
in ATM networks, the frame size can be reduced to a
minimum as small as 48 bytes(one cell length). Then
the performance is very similar to any
ow-timestamps
scheduler as shown in Table 3. However, it is not ef-
�cient if the frame size T is 1. The overhead of each
pass through the connection list is high. It may lead

to a bottleneck in the system as well as sorting in the

ow-timestamps schedulers.

5 CONCLUSION

In this paper, we have proposed a modi�ed scheme
of CORR algorithm, which is a variation of frame-
based scheduling discipline in ATM networks. We also
have shown that our algorithm improves the fairness
of CORR and reduces the operational complexity. In
addition to CORR, we provided another analysis to
compare with
ow-timestamps schedulers. The result
shows that our scheme performs as well as SCFQ and
PGPS if the frame size is limited to one cell length.
However, the implementation of ours is much easier.
Like the scheduling mechanisms with high complex-
ity of implementation, the frame size limited to 1 may
cause a serious bottleneck in high-speed networks. We
believe the problem can be solved if the frame size is dy-
namically adjusted. When the tra�c load is light, the
smaller frame size limits the burst to be small. When
the tra�c load is heavy, the larger frame size leads to a
lower average delay than SCFQ and PGPS. Although
a larger burst is produced in heavy tra�c load, our
scheduler is still simpler and more e�cient than SCFQ
and PGPS.

References

[1] S. Iatrou and S. I., \A dynamic regulation and
scheduling scheme for real-time tra�c manage-
ment," IEEE/ACM Trans. Networking, vol. 8,
pp. 60{70, February 2000.

[2] S. D., Z. H., and J. Bennett, \Implementing
scheduling algorithms in high-speed networks,"
IEEE J. Select. Areas Commun., vol. 17, pp. 1145
{1158, June 1999.

[3] K. Parekh and R. G. Gallager, \A generalized pro-
cessor sharing approach to
ow control in inte-
grated services network: The single node case,"
in Proc. IEEE INFOCOM'92, vol. 2, pp. 915{924,
May 1992.

[4] P. Goyal, V. H. M., and C. H., \Start-time fair
queuing:A scheduling algorithm for integrated ser-
vices network," IEEE/ACM Trans. Networking,
vol. 5, pp. 690{704, 1997.

[5] J. A. Cobb, M. G. Gouda, and A. El-Nahas,
\Time-shift scheduling-fair scheduling of
ows in

CORR Our approach

Fair l
c

�
1
Ri

+ 1
Rj

�
l
c

�
2T + 1

Ri
+ 1

Rj

�
End to End Delay 1

R
l
C
+ l

C
PGPS

�
1
R
+ 1

�
lT
C
+ (N � 1) l

C
1
R

l
C
+ (N � 1) l

C
SCFQ

Complexity O(logN) or O(N) O(1)

Table 2: Comparison with Flow-Timestamps.

CORR Our approach

Fair l
c

�
1
Ri

+ 1
Rj

�
l
c

�
2 + 1

Ri
+ 1

Rj

�
End to End Delay 1

R
l
C
+ l

C
PGPS

�
1
R
+ 1

�
l
C
+ (N � 1) l

C
1
R

l
C
+ (N � 1) l

C
SCFQ

Complexity O(logN) or O(N) O(1)

Table 3: Comparison with Flow-Timestamps.

high-speed networks," IEEE/ACM Trans. Net-
working, vol. 6, pp. 274 {285, June 1998.

[6] L. Zhang, \Virtualclock: A new tra�c control
algorithm for packet switching networks," ACM
trans. Comput. Syst., vol. 9, pp. 101{124, May
1991.

[7] D. Stiliadis and V. A., \E�cient fair queu-
ing algorithms for packet-switched networks,"
IEEE/ACM Trans. Networking, vol. 6, pp. 175{
185, April 1998.

[8] D. Stiliadis and V. A., \Rate-proportional Servers:
A design methodology for fair queuing algo-
rithms," IEEE/ACM Trans. Networking, vol. 6,
April 1998.

[9] G. S. J., \A framing strategy for connection man-
agement," in Proc. SIGCOMM'90, 1990.

[10] M. Shreedhar and G. Vaghese, \E�cient fair queu-
ing using de�cit round robin," IEEE/ACM Trans.
Networking, vol. 4, pp. 375{385, June 1996.

[11] D. Saha, S. Mukherjee, and S. Tripathi, \Carry-
over round robin: A simple cell scheduling mecha-
nism for ATM networks," IEEE/ACM Trans. Net-
working, vol. 6, pp. 779{796, December 1998.

[12] D. Saha, Supporting distributed multimedia ap-
plications on ATM networks. PhD thesis, Univ.
Maryland, 1995.

[13] S. Raghavan and S. Tripathi, Networked multime-
dia systems. Prentice Hall, 1998.

