

逢甲大學學生報告 ePaper

Kilman Filter 與統計推論模式應用於公共工程決標 價價格預測之研究

作者:林正紋1 徐培哲2 蔡岫霓3 王澤穎4

系級:

1逢甲大學土木工程學系助理教授

2逢甲大學土木工程學系研究所研究生

³逢甲大學土木工程學系研究所研究生

4逢甲大學土木工程學系研究所研究生

學號: $^{2}M9406528$ $^{3}M9417817$ $^{4}M9435455$

開課老師:林正紋 老師

課程名稱:系統識別

開課系所:土木工程學系研究所

開課學年:九十四學年度 第二學期

摘要

公共工程計畫之規模龐大,投資金額甚鉅,為妥善運用國家有限 資源,確實控制工程預算,有賴於整體規劃設計作業運作之完善及合 理估列工程成本,將可避免工程與建經費之鉅額增加,且可提高其工 程品質。

國內的公共工程於招標時雖然預算會予以公佈,但實際上用來評選廠商的底價則為業主所制訂,且由於市場競爭激烈,因此廠商在參與競標時多會以估算的價格予以折扣,以增加得標機率。而我國現行公共工程投標的程序,幾乎多數是採用最低價決標的方法來選定執行工程專案的廠商,然而此種評選方式勢必也可能造成某種不當的競標策略的產生。過度的競標會使得競標者陷入惡性削價搶標的情況,而惡性的低價搶標常常隱含著毫無利潤,且無法承擔風險,甚至有削減了應有的開支等有關的訊息。在這樣的情況下,除非營造廠不僅實力堅強且運籌帷幄,否則一旦遇到現地狀況與資金稍有變異,工程就有可能中輟,有時縱使工程得以完工,品質也會受到很大的影響,因此,如何能以相關數理統計基礎,建構一較精準之決標價格預測模式,以協助廠商提高得標機率與資源之最適化分配與運用,實為本研究之主要目的。

關鍵字: Kalman Filter、統計推論模式、Model Refinement 程序、 公共工程、決標價

目錄

Part I. Project Design	1
Part II. Data Collection and Organization	5
Part III. Data Analysis and Inference	8
Part IV. References	21

Part I. Project Design

一、研究動機

公共工程計畫之規模龐大,投資金額甚鉅,為妥善運用國家有限資源,確實 控制工程預算,有賴於整體規劃設計作業運作之完善及合理估列工程成本,將可 避免工程興建經費之鉅額增加,且可提高其工程品質。

國內的公共工程於招標時雖然預算會予以公佈,但實際上用來評選廠商的底價則為業主所制訂,且由於市場競爭激烈,因此廠商在參與競標時多會以估算的價格予以折扣,以增加得標機率。而我國現行公共工程投標的程序,幾乎多數是採用最低價決標的方法來選定執行工程專案的廠商,然而此種評選方式勢必也可能造成某種不當的競標策略的產生。過度的競標會使得競標者陷入惡性削價搶標的情況,而惡性的低價搶標常常隱含著毫無利潤,且無法承擔風險,甚至有削減了應有的開支等有關的訊息。在這樣的情況下,除非營造廠不僅實力堅強且運等帷幄,否則一旦遇到現地狀況與資金稍有變異,工程就有可能中輟,有時縱使工程得以完工,品質也會受到很大的影響,因此,如何能以相關數理統計基礎,建構一較精準之決標價格預測模式,以協助廠商提高得標機率與資源之最適化分配與運用,實為本研究之主要目的。

二、研究方法與項目

本研究蒐集內政部營建署近三年之工程標案作為研究對象,彙整該機關最低標決標之82個道路工程案例為研究案例,另以30個決標道路工程案例為驗證本研究之模型。欲就工程標案的相關資料,包含底價、決標價、預算價、履約期限(日曆天)、押標金及等標期因子。

利用統計迴歸及冪級數模式之方法,並以 Matlab、Stata 及 Excel 套裝軟體

Kilman Filter 與統計推論模式應用於公共工程底價價格預測之研究 為分析工具進行分析。了解其相關變化在預測後的平均相對誤差為最小值,藉此 提供營造廠商在投標前可應用此模型考慮制訂投標價之參考及工程主辦機關訂 定底價之參考。

【方法一】

Base on Recursive Least-Square Approach (or on the Kalman Filter). [2]

Estimation Model:

$$y_k = \Phi_k \theta_k$$
$$\theta_{k+1} = \Gamma_k \theta_k$$

 y_k : the measurement vector at time $k\Delta t$ Φ_k : the observation matrix at time $k\Delta t$

 θ_k : the system's parameter vector to be estimate Γ_k : the system's transfer matrix

$$\begin{split} \hat{\theta}_{k+1} &= \Gamma(k+1,k) \hat{\theta}_k + W_{k+1} [\overline{y}_{k+1} - \Phi_{k+1} \Gamma(k+1,k) \hat{\theta}_k] \\ W_{k+1} &= \overline{G}_{k+1}^{-1} \Phi_{k+1}^T (\Phi_{k+1} \overline{G}_{k+1}^{-1} \Phi_{k+1}^T + H_{k+1}^{-1})^{-1} \\ \overline{G}_{k+1}^{-1} &= \Gamma(k+1,k) [I - W_k \Phi_k] \overline{G}_k^{-1} \Gamma^T(k+1,k) \end{split}$$

 W_{k+1} : the weighting matrix

 \overline{G}_{k+1}^{-1} : the adaptation gain matrix

$$\Gamma = I_{n \times n}$$
 $H = I_{m \times m}$ $\overline{G}_1^{-1} = 10^9 I_{n \times n}$ $\hat{\theta}_0 = 10^{-4} \{I\}_{n \times 1}$

利用最後得到的參數帶入驗證模型以預測決標價並計算平均相對誤差,採用 Matlab 7 及 Microsoft Excel 2003 兩套軟體做為分析工具。。

【方法二】

利用 Multiple Regression 和 Power Series 以及 Model Refindment 程序 來預測工程之決標價,採用 Stata 9 及 Microsoft Excel 2003 兩套軟體做為分析工具。

以決標金額(新台幣)為 response variable y,履約期限(日曆天)、押標金額(新台幣)以及預算金額(新台幣)分別為 explanatory variable $x1 \ x2 \ x3$ 。

Power Series: $\sum (x1 + x2 + x3)^i$

二次項: $x4=x1^2$ 、 $x5=x2^2$ 、 $x6=x3^2$ 、x7=x1*x2、x8=x1*x3、x9=x2*x3 三次項: $x10=x1^3$ 、 $x11=x2^3$ 、 $x12=x3^3$ 、 $x13=x1^2*x2$ 、 $x14=x1^2*x3$ 、 $x15=x1*x2^2$ 、 $x16=x2^2*x3$ 、 $x17=x1*x3^2$ 、 $x18=x2*x3^2$ 、x19=x1*x2*x3 Model Refindment 删除項標準:依序由最高次至低次項,且由整個次方項至個別項。

- $1^{\circ} R^{2}$ 之變化不減低 1% (即不小於或等於 0.0100)
- 2° 所有之 P 值變化總和降低 (即變化總和小於 0)

< 0 ⇒ 刪除

≥0 ⇒ 保留

【研究流程】

方法一:

- 1、利用 Matlab 分析出來的結果預測驗證模型之底價並計算平均相對誤差。 方法二:
- 1、考慮是否刪除線性項、觀察 P 值(依序由最高項刪至最低項)。
- 2、power series 展開至三次項。
- 3、刪除三次項、(刪除個別項)。
- 4、刪除二次項、(刪除個別項)。
- 5、結論 (regression line)。
- 6、預測驗證模型之底價並計算平均相對誤差。

Kilman Filter 與統計推論模式應用於公共工程底價價格預測之研究 7、比較方法一與方法二之結果。

三、樣本數目:

1、迴歸分析案例:82個(案例開標日期自2000/12/01 至2002/03/31 止)

2、模型驗證案例:30個(案例開標日期自2002/04/01 至2002/05/31 止)

四、資料來源:

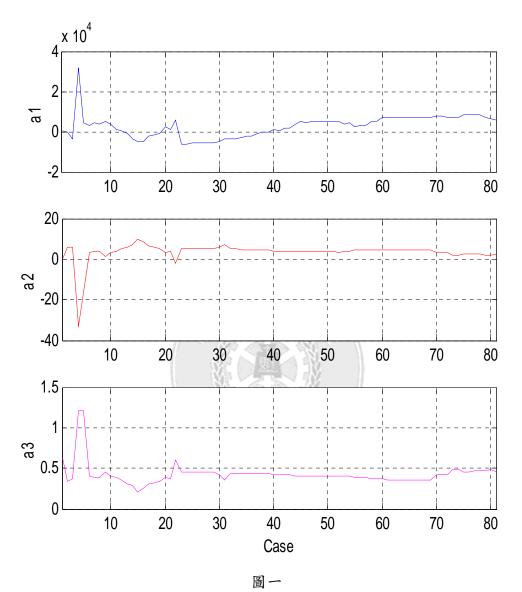
行政院公共工程委員會,政府採購資訊公告系統,http:/web.pcc.gov.tw/, 內政部營建署(2000~2002)

Part II. Data Collection and Organization

(表一) 迴歸分析案例(案例開標日期自 2000/12/01 至 2002/03/31 止)

編	招標機關	履約期	押標金額	預算金額	底價金額(新	總決標金額(新	投標廠商
1	內政部營建署中工處	20	600000	15060000	13000000	6358000	8
2	內政部營建署中工處	30	400000	8200000	6800000	5190000	8
3	內政部營建署中工處	60	250000	9150000	7800000	4630000	10
4	內政部營建署中工處	60	100000	2140000	1800000	1150000	6
5	內政部營建署中工處	60	100000	2610000	2300000	1717000	3
6	內政部營建署中工處	60	400000	9900000	8200000	5430000	6
7	內政部營建署中工處	60	400000	13630000	11000000	6890000	10
8	內政部營建署中工處	80	200000	4270000	2826800	2826800	10
9	內政部營建署中工處	90	150000	3520000	3000000	2170000	5
10	內政部營建署中工處	120	500000	10560000	8600000	5750000	9
11	內政部營建署中工處	120	500000	10610000	9000000	6610000	11
12	內政部營建署中工處	120	300000	6920000	5800000	3520000	16
13	內政部營建署中工處	150	650000	14190000	12000000	8800000	11
14	內政部營建署中工處	150	600000	14780000	12000000	6880000	18
15	內政部營建署中工處	160	400000	9140000	7600000	4410000	8
16	內政部營建署中工處	180	700000	15500000	13000000	10700000	6
17	內政部營建署中工處	150	500000	10200000	8400000	5350000	18
18	內政部營建署北工處	30	258000	5138000	4000000	2380000	8
19	內政部營建署北工處	30	180000	3592000	2800000	1535000	6
20	內政部營建署北工處	30	168000	3338000	2670000	1392000	6
21	內政部營建署北工處	30	400000	7984000	6350000	3870000	4
22	內政部營建署北工處	70	400000	8638000	7100000	5680000	5
23	內政部營建署北工處	120	240000	9559000	7800000	7380000	6
24	內政部營建署北工處	180	1400000	28170000	23900000	21000000	7
25	內政部營建署北工處	30	40000	1668000	1500000	768900	4
26	內政部營建署北工處	30	280000	5633000	4600000	2685500	4
27	內政部營建署東工處	30	120000	3714450	3262000	1560000	8
28	內政部營建署東工處	30	120000	2778000	2514000	1780000	7
29	內政部營建署東工處	30	250000	5552000	5016000	3735000	7
30	內政部營建署東工處	30	250000	5555000	5016000	3660000	8
31	內政部營建署東工處	30	170000	5903000	5280000	2450000	5
32	內政部營建署東工處	60	400000	12073000	10286000	5760000	6
33	內政部營建署東工處	200	600000	21207000	18740000	12300000	7
34	內政部營建署南工處	15	90000	1876000	1700000	928000	5
35	內政部營建署南工處	15	220000	4494000	4200000	1850000	4
36	內政部營建署南工處	15	110000	2333000	2100000	1320000	3
37	內政部營建署南工處	15	90000	1802000	1600000	630000	5

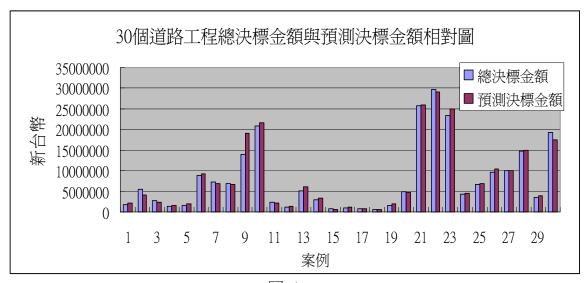
38	內政部營建署南工處	15	300000	6155000	5700000	2330000	3
39	內政部營建署南工處	15	240000	4809000	4500000	2100000	4
40	內政部營建署南工處	15	150000	3052000	2850000	1560000	4
41	內政部營建署南工處	15	380000	7870000	7150000	3940000	5
42	內政部營建署南工處	20	35000	750000	710000	325600	5
43	內政部營建署南工處	20	450000	9348000	8600000	4789000	5
44	內政部營建署南工處	30	260000	5328000	5000000	2726000	4
45	內政部營建署南工處	30	500000	11667000	10500000	5253000	9
46	內政部營建署南工處	30	500000	10225000	9300000	5160000	3
47	內政部營建署南工處	45	190000	3890000	3700000	2426000	4
48	內政部營建署南工處	60	270000	5430000	5100000	3889000	3
49	內政部營建署南工處	60	390000	7900000	7500000	4860000	3
50	內政部營建署南工處	60	120000	2510000	2400000	1626000	4
51	內政部營建署南工處	70	370000	7590000	7000000	4930000	9
52	內政部營建署南工處	120	690000	13820000	13100000	8460000	8
53	內政部營建署南工處	150	1000000	21030000	19500000	11880000	11
54	內政部營建署南工處	150	1100000	23610000	21800000	16000000	11
55	內政部營建署南工處	160	1300000	26440000	24500000	15820000	6
56	內政部營建署南工處	200	1800000	36290000	34000000	24350000	11
57	內政部營建署南工處	225	2000000	41020000	38000000	24920000	9
58	內政部營建署南工處	15	230000	4789000	4400000	2300000	4
59	內政部營建署南工處	30	860000	17460000	15800000	8690000	5
60	內政部營建署南工處	60	300000	6144000	5500000	3718000	6
61	台糖新營廠	120	500000	11138259	10700000	9980000	3
62	公路總局二區養工處	210	1500000	34243059	29895000	19920000	4
63	公路總局四區養工處	180	1500000	31499077	27800000	17960000	1
64	農委會水保局第一工程所	50	110000	4000000	2207000	2020000	3
65	南投縣政府	80	60000	1954000	1858200	1438000	7
66	南投縣政府	100	300000	11355000	11000000	5910000	18
67	南投縣魚池鄉公所	50	60000	1300000	1230000	748000	4
68	南投縣魚池鄉公所	60	50000	1200000	1130000	710000	8
69	南投縣魚池鄉公所	120	300000	7500000	7120000	5280000	10
70	屏東縣內埔鄉公所	75	800000	15820000	12500000	10950000	8
71	屏東縣枋寮鄉公所	120	80000	7461800	7399000	7050000	5
72	屏東縣政府發包中心	45	60000	1326400	1154300	687000	14
73	屏東縣政府發包中心	100	70000	1531000	1345600	790000	5
74	苗栗縣政府	250	1400000	33595400	26880000	24220000	3
75	高雄縣仁武鄉公所	240	850000	16887180	16700000	11500000	13
76	雲林縣麥寮鄉公所	180	330000	6760300	6660000	6660000	3
77		45	100000	3400000	2890800	2150000	6

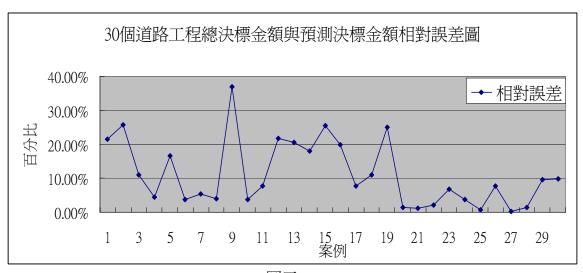

78	嘉義縣政府發包中心	70	40000	1600000	1120000	1120000	3
79	嘉義縣政府發包中心	75	30000	1200000	1069700	713000	9
80	彰化縣田中鎭公所	180	260000	6636000	6120000	3833000	1
81	彰化縣田中鎮公所	210	400000	10048500	9240000	5768000	1
82	臺南縣柳營鄉公所	240	2000000	41249000	36000000	29410000	10

表二、模型驗證案例 (案例開標日期自 2002/04/01 至 2002/05/31 止)

編	招標機關	履約期	押標金額	預算金額	底價金額	總決標金額	投標廠
1	內政部營建署中工處	30	100,000	3,620,000	3,000,000	1,745,000	7
2	內政部營建署中工處	30	300,000	6,640,000	5,500,000	5,500,000	6
3	內政部營建署中工處	40	150,000	3790000	3000000	2,690,000	6
4	內政部營建署中工處	60	80,000	2,030,000	1,800,000	1,430,000	3
5	內政部營建署中工處	90	100,000	2480000	2100000	1,650,000	5
6	內政部營建署中工處	100	500,000	15690000	13600000	8,880,000	5
7	內政部營建署中工處	150	400,000	10,720,000	9,100,000	7,310,000	4
8	內政部營建署中工處	150	450,000	9740000	8300000	6,880,000	7
9	內政部營建署北工處	65	1,550,000	31,102,460	22,000,000	13,954,000	6
10	內政部營建署北工處	270	1,666,000	33339000	26700000	20,820,000	6
11	內政部營建署東工處	30	120,000	3,681,000	3,260,000	2,388,000	4
12	內政部營建署東工處	60	80,000	1,694,000	1,512,000	1,100,000	5
13	內政部營建署東工處	60	450,000	9843510	9150000	5,100,000	6
14	內政部營建署東工處	120	200,000	4653000	4200000	2,860,000	7
15	內政部營建署南工處	10	45,000	943000	850000	830,000	1
16	內政部營建署南工處	15	90,000	1882000	1700000	1,006,000	3
17	內政部營建署南工處	15	65,000	1312000	1200000	810,000	4
18	內政部營建署南工處	40	27,000	560000	530000	500,000	1
19	內政部營建署南工處	60	130,000	2742000	2500000	1,570,000	6
20	內政部營建署南工處	75	360,000	7260000	6500000	4,860,000	3
21	內政部營建署南工處	220	2,000,000	41440000	37200000	25,700,000	12
22	內政部營建署南工處	240	2,200,000	46,694,000	42,100,000	29,780,000	17
23	內政部營建署南工處	240	1,900,000	39550000	35500000	23,400,000	10
24	彰化縣田中鎭公所	90	280,000	7142000	6000000	4,420,000	1
25	臺南縣永康市公所	150	490,000	9,990,000	9,010,000	6,780,000	10
26	臺南縣永康市公所	180	770,000	15,590,000	14,100,000	9,620,000	11
27	臺南縣永康市公所	180	745,500	14910000	13000000	9,964,800	7
28	臺南縣永康市公所	210	1,100,000	23,262,000	20,500,000	14,800,000	8
29	臺南縣新營市公所	75	285,000	5700000	4600000	3,516,000	11
30	臺南縣新營市公所	180	1,300,000	27,681,000	27,000,000	19,360,000	7

Part III. Data Analysis and Inference


方法一 1、Matlab分析之結果


利用MATLAB所得出的參數值: $a1=5492 \times a2=2.844 \times a3=0.4615$,帶入所得到之方程式為Y=a1*5492+a2*2.844+a3*0.4615,將預測出決標金額,進一步算出與總決標金額之平均相對誤差(如表三)。

表三、預測驗證模型之決標價並計算平均相對誤差

案例	總決標金額	預測決標金額	相對誤差
1	1745000	2119790	21.48%
2	5500000	4082320	25.78%
3	2690000	2395365	10.95%
4	1430000	1493885	4.47%
5	1650000	1923200	16.56%
6	8880000	9212135	3.74%
7	7310000	6908680	5.49%
8	6880000	6598610	4.09%
9	13954000	19118965	37.01%
10	20820000	21606893	3.78%
11	2388000	2204822	7.67%
12	1100000	1338821	21.71%
13	5100000	6152100	20.63%
14	2860000	3375200	18.01%
15	830000	618095	25.53%
16	1006000	1206883	19.97%
17	810000	872728	7.74%
18	500000	554908	10.98%
19	1570000	1964673	25.14%
20	4860000	4786230	1.52%
21	25700000	26020800	1.25%
22	29780000	29124161	2.20%
23	23400000	24974005	6.73%
24	4420000	4586633	3.77%
25	6780000	6827745	0.70%
26	9620000	10373225	7.83%
27	9964800	9989727	0.25%
28	14800000	15017133	1.47%
29	3516000	3852990	9.58%
30	19360000	17460542	9.81%
	平均相對語	吳差	11.19%

圖二

圖三

方法二

1、考慮是否刪除線性項:

(1)未删除之前

. regress y x1 x2 x3

-	Source Model Residual Total	3.1350e+15 9.6127e+13 3.2311e+15	3 78 81	1.23	MS 50e+15 24e+12 90e+13		Number of obs F(3, 78) Prob > F R-squared Adj R-squared Root MSE	= = =	82 847.94 0.0000 0.9702 0.9691 1.1e+06
Ī	У	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	×1 ×2 ×3 _cons	11407.2 2.825557 .4601748 -790839.3	2788. 1.530 .0769 20406	525 199	4.09 1.85 5.98 -3.88	0.000 0.069 0.000 0.000	5855.812 221484 .307039 -1197108	5	6958.58 .872598 6133107 84570.4

 $R^2 = 0.9702$

(2) 觀察圖 1 線性項(x1~x3)的 P值,其中 x2 之 P值最高,因此試著刪除 x2,

並觀察 R^2 及P值的變化:

. regress y x1 x3

Model Residual	3.1308e+15 1.0033e+14 3.2311e+15	79 1.27	MS 54e+15 00e+12 90e+13		Number of obs F(2, 79) Prob > F R-squared Adj R-squared Root MSE	= 1232.63 = 0.0000 = 0.9689
У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
×1 ×3 _cons	10528.63 .5976439 -839696.3	2789.107 .019577 205406.1	3.77 30.53 -4.09	0.000 0.000 0.000	4977.052 .5586768 -1248547	16080.21 .636611 -430845.7

圖五

 $R^2 = 0.9689$ (降低 0.13%)

P 值

删除之前 删除之後 X 項

0.000 0.000 x10.000

х3 0.000 0.0000.000

> 0.000 P值變化

P值不變,因此決定不刪除 x2。

- (3) 觀察圖 1 線性項(xl~x3)的 P值,其中xl及x3之 P值為第二高(均為
- 0.000),但 x1 之 t 值較 x3 之 t 值小,所以實際上 x1 之 P 值較大,因此試著刪

除 X1, 並觀察 R^2 及 P 值的變化:

. regress y x2 x3

Source	SS	df	MS		Number of obs	= 82 = 1053.67
Model Residual	3.1144e+15 1.1675e+14				Prob > F R-squared Adj R-squared	= 0.0000 = 0.9639
Total	3.2311e+15	81 3.98	90 e+ 13		Root MSE	= 1.2 e+0 6
У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
×2 ×3 _cons	1.756988 .5696581 -434532	1.651444 .0789699 202092.6	1.06 7.21 -2.15	0.291 0.000 0.035	-1.530129 .4124724 -836787.4	5.044105 .7268438 -32276.7

圖六

 $R^2 = 0.9639$ (降低 0.63%)

P 值

x項 删除之前 删除之後

 x2
 0.069
 0.291
 0.222

 x3
 0.000
 0.000
 0.000

 P值變化
 0.222

P值共提高 0.222, 因此決定不刪除 x1。

(4) 承上,試著刪除 x3,並觀察 R²及 P 值的變化:

. regress y x1 x2

×1 ×2 _cons	Coef. 17211.37 11.68949 -608061.7	3137.498 .4605397 242154.5	5.49 25.38 -2.51	0.000 0.000 0.014	[95% Conf. 10966.34 10.77281 -1090058	23456.4 12.60617 -126065.2
Total	3.2311e+15	81 3.9	9890e+13		Adj R-squared Root MSE	= 0.9555 = 1.3e+06
Model Residual	3.0909e+15 1.4024e+14	2 1.5454e+15 79 1.7751e+12		Prob > F R-squared	= 0.0000 = 0.9566	
Source	SS	df	MS		Number of obs	

圖十

R² = 0.9566 (降低 1.36%)

因此決定不刪除 23。

加回 x3:

. regress y x1 x2 x3

Source	SS	df		MS		Number of obs	=	82 847.94
Model Residual	3.1350e+15 9.6127e+13	3 78		50e+15 24e+12	15 Prob > F		=	0.0000 0.9702 0.9691
Total	3.2311e+15	81	3.98	90e+13		Root MSE	=	1.1e+06
У	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
×1 ×2 ×3 _cons	11407.2 2.825557 .4601748 -790839.3	2788. 1.530 .0769 2040 <i>6</i>)525 9199	4.09 1.85 5.98 -3.88	0.000 0.069 0.000 0.000	5855.812 221484 .307039 -1197108	5	6958.58 .872598 6133107 84570.4

圖八

 $R^2 = 0.9702$

2、展開至三次方: $\sum (x1+x2+x3)^3$

. regress y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

x18 x19

Source			1 (127) 6	- HOUSE -40	SEE.	11	
Model Residual 4.9996e+13 62 8.0639e+11 R-squared = 0.9845 Adj R-squared = 0.9798 Root MSE = 0.0000 Root MSE = 0.00000 Root MSE = 0.00000 Root MSE = 0.000000 Root MSE = 0.000000 Root MSE = 0.0000000 Root MSE = 0.000000000000000000000000000000000	Source	SS	df	MS			
Total 3.2311e+15 81 3.9890e+13 Root MSE = 9.0e+05 y Coef. Std. Err. t P> t [95% Conf. Interval] ×1 28914.42 18363.58 1.57 0.120 -7793.847 65622.68 ×2 2.518717 10.67443 0.24 0.814 -18.81917 23.8566 ×3 .5304016 .5432045 0.98 0.3335554488 1.616252 ×4 -67.96719 228.1144 -0.30 0.767 -523.9614 388.027 ×5 .0000824 .0000523 1.58 0.1200000222 .0001869 ×6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 ×7 .0006652 .1866329 0.00 0.9973724087 .3737391 ×80033053 .0087488 -0.38 0.7070207939 .0141832 ×9 -6.73e-06 5.70e-06 -1.18 0.2420000181 4.66e-06 ×10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 ×11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 ×12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 ×130002605 .0007569 -0.34 0.7320017737 .0012526 ×14 1.46e-06 .00004 0.04 0.9710000784 .0000814 ×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09	Mode1	3.1811e+15	19 1.674	43 e+ 14		• , ,	
Total 3.2311e+15 81 3.9890e+13 Root MSE = 9.0e+05 y Coef. Std. Err. t P> t [95% Conf. Interval] ×1 28914.42 18363.58 1.57 0.120 -7793.847 65622.68 ×2 2.518717 10.67443 0.24 0.814 -18.81917 23.8566 ×3 .5304016 .5432045 0.98 0.3335554488 1.616252 ×4 -67.96719 228.1144 -0.30 0.767 -523.9614 388.027 ×5 .0000824 .0000523 1.58 0.1200000222 .0001869 ×6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 ×7 .0006652 .1866329 0.00 0.9973724087 .3737391 ×80033053 .0087488 -0.38 0.7070207939 .0141832 ×9 -6.73e-06 5.70e-06 -1.18 0.2420000181 4.66e-06 ×10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 ×11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 ×12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 ×130002605 .0007569 -0.34 0.7320017737 .0012526 ×14 1.46e-06 .00004 0.04 0.9710000784 .0000814 ×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09	Residual	4.9996e+13	62 8.06	39 e+ 11		R-squared	= 0.9845
y Coef. Std. Err. t P> t [95% Conf. Interval] ×1 28914.42 18363.58 1.57 0.120 -7793.847 65622.68 ×2 2.518717 10.67443 0.24 0.814 -18.81917 23.8566 ×3 .5304016 .5432045 0.98 0.3335554488 1.616252 ×4 -67.96719 228.1144 -0.30 0.767 -523.9614 388.027 ×5 .0000824 .0000523 1.58 0.1200000222 .0001869 ×6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 ×7 .0006652 .1866329 0.00 0.9973724087 .3737391 ×80033053 .0087488 -0.38 0.7070207939 .0141832 ×9 -6.73e-06 5.70e-06 -1.18 0.2420000181 4.66e-06 ×10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 ×11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 ×12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 ×130002605 .0007569 -0.34 0.7320017737 .0012526 ×14 1.46e-06 .00004 0.04 0.9710000784 .0000814 ×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
x1 28914.42 18363.58 1.57 0.120 -7793.847 65622.68 x2 2.518717 10.67443 0.24 0.814 -18.81917 23.8566 x3 .5304016 .5432045 0.98 0.333 5554488 1.616252 x4 -67.96719 228.1144 -0.30 0.767 -523.9614 388.027 x5 .0000824 .0000523 1.58 0.120 0000222 .0001869 x6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 x7 .0006652 .1866329 0.00 0.997 3724087 .3737391 x8 0033053 .0087488 -0.38 0.707 0207939 .0141832 x9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 x10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 x11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 x12 -1.86e-14 2.03e-14 -0.91	Total	3.2311e+15	81 3.98	90e+13		Root MSE	= 9.0e+05
x1 28914.42 18363.58 1.57 0.120 -7793.847 65622.68 x2 2.518717 10.67443 0.24 0.814 -18.81917 23.8566 x3 .5304016 .5432045 0.98 0.333 5554488 1.616252 x4 -67.96719 228.1144 -0.30 0.767 -523.9614 388.027 x5 .0000824 .0000523 1.58 0.120 0000222 .0001869 x6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 x7 .0006652 .1866329 0.00 0.997 3724087 .3737391 x8 0033053 .0087488 -0.38 0.707 0207939 .0141832 x9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 x10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 x11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 x12 -1.86e-14 2.03e-14 -0.91							
x2 2.518717 10.67443 0.24 0.814 -18.81917 23.8566 x3 .5304016 .5432045 0.98 0.333 5554488 1.616252 x4 -67.96719 228.1144 -0.30 0.767 -523.9614 388.027 x5 .0000824 .0000523 1.58 0.120 0000222 .0001869 x6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 x7 .0006652 .1866329 0.00 0.997 3724087 .3737391 x8 0033053 .0087488 -0.38 0.707 0207939 .0141832 x9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 x10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 x11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 x12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 x13 0002605 .0007569 -0.34	У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x2 2.518717 10.67443 0.24 0.814 -18.81917 23.8566 x3 .5304016 .5432045 0.98 0.333 5554488 1.616252 x4 -67.96719 228.1144 -0.30 0.767 -523.9614 388.027 x5 .0000824 .0000523 1.58 0.120 0000222 .0001869 x6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 x7 .0006652 .1866329 0.00 0.997 3724087 .3737391 x8 0033053 .0087488 -0.38 0.707 0207939 .0141832 x9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 x10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 x11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 x12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 x13 0002605 .0007569 -0.34	×1	28914.42	18363.58	1.57	0.120	-7793.847	65622.68
×4 -67.96719 228.1144 -0.30 0.767 -523.9614 388.027 ×5 .0000824 .0000523 1.58 0.120 0000222 .0001869 ×6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 ×7 .0006652 .1866329 0.00 0.997 3724087 .3737391 ×8 0033053 .0087488 -0.38 0.707 0207939 .0141832 ×9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 ×10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 ×11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 ×12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 ×13 0002605 .0007569 -0.34 0.732 0017737 .0012526 ×14 1.46e-06 .00004 0.04 0.971 00	I						
x5 .0000824 .0000523 1.58 0.120 0000222 .0001869 x6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 x7 .0006652 .1866329 0.00 0.997 3724087 .3737391 x8 0033053 .0087488 -0.38 0.707 0207939 .0141832 x9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 x10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 x11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 x12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 x13 0002605 .0007569 -0.34 0.732 0017737 .0012526 x14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 x15 2.21e-07 4.46e-07 0.50 0.622 -6.7	×3	.5304016	.5432045	0.98	0.333	5554488	1.616252
×6 1.41e-07 1.59e-07 0.89 0.378 -1.77e-07 4.60e-07 ×7 .0006652 .1866329 0.00 0.997 3724087 .3737391 ×8 0033053 .0087488 -0.38 0.707 0207939 .0141832 ×9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 ×10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 ×11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 ×12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 ×13 0002605 .0007569 -0.34 0.732 0017737 .0012526 ×14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 ×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 <th>I</th> <th>-67.96719</th> <th>228.1144</th> <th>-0.30</th> <th>0.767</th> <th>-523.9614</th> <th>388.027</th>	I	-67.96719	228.1144	-0.30	0.767	-523.9614	388.027
x7 .0006652 .1866329 0.00 0.997 3724087 .3737391 x8 0033053 .0087488 -0.38 0.707 0207939 .0141832 x9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 x10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 x11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 x12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 x13 0002605 .0007569 -0.34 0.732 0017737 .0012526 x14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 x15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 x16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 x17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
×8 0033053 .0087488 -0.38 0.707 0207939 .0141832 ×9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 ×10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 ×11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 ×12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 ×13 0002605 .0007569 -0.34 0.732 0017737 .0012526 ×14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 ×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
×9 -6.73e-06 5.70e-06 -1.18 0.242 0000181 4.66e-06 ×10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 ×11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 ×12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 ×13 0002605 .0007569 -0.34 0.732 0017737 .0012526 ×14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 ×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
×10 .3515257 .8730479 0.40 0.689 -1.393672 2.096724 ×11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 ×12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 ×13 0002605 .0007569 -0.34 0.732 0017737 .0012526 ×14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 ×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
x11 1.36e-10 1.62e-10 0.84 0.403 -1.87e-10 4.60e-10 x12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 x13 0002605 .0007569 -0.34 0.732 0017737 .0012526 x14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 x15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 x16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 x17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
x12 -1.86e-14 2.03e-14 -0.91 0.365 -5.92e-14 2.21e-14 x13 0002605 .0007569 -0.34 0.732 0017737 .0012526 x14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 x15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 x16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 x17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
×13 0002605 .0007569 -0.34 0.732 0017737 .0012526 ×14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 ×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
×14 1.46e-06 .00004 0.04 0.971 0000784 .0000814 ×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
×15 2.21e-07 4.46e-07 0.50 0.622 -6.70e-07 1.11e-06 ×16 -2.11e-11 2.35e-11 -0.90 0.373 -6.80e-11 2.59e-11 ×17 6.46e-10 1.14e-09 0.57 0.573 -1.64e-09 2.93e-09							
×16							
			2.35e-11	-0.90	0.373	-6.80e-11	2.59e-11
V10 1 1 060 13 1 170 13 0 00 0 270 1 300 13 3 400 13	×17	6.46e-10	1.14e-09	0.57	0.573	-1.64e-09	2.93e-09
	×18	1.06e-12	1.17e-12	0.90	0.370	-1.28e-12	3.40e-12
×19 -1.76e-08 4.33e-08 -0.41 0.685 -1.04e-07 6.89e-08	×19						
_cons -1155567 520772.4 -2.22 0.030 -2196576 -114557.8	_cons	-1155567	520772.4	-2.22	0.030	-2196576	-114557.8

圖九

 $R^2 = 0.9845$

開始刪除項:依序由最高次至低次項,且由 moment 至個別項。

- 1° R²之變化不減低 1%(即不小於或等於 0.0100)
- 2° 所有之 P 值變化總和降低(即變化總和小於 0)

< 0 ⇒ 刪除

≥0 ⇒ 保留

3、三次項

- (1) 試著刪除三次項 $(x10 \sim x19)$, 並觀察 R^2 及 P 值的變化:
- . regress y x1 x2 x3 x4 x5 x6 x7 x8 x9

Source Model Residual	3.1561e+15 7.5014e+13 3.2311e+15	72 1.04	MS 68e+14 19e+12 90e+13		Number of obs F(9, 72) Prob > F R-squared Adj R-squared Root MSE	= 336.59 = 0.0000 = 0.9768
У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x1 x2 x3 x4 x5 x6 x7 x8 x9 _cons	4864.952 11336 .5181945 -73.0838 6.39e-06 -2.03e-08 03822 .0038191 -8.83e-09 -73279.21	8020.535 4.11565 .206325 43.83536 .0000131 3.80e-08 .0394815 .0019646 1.39e-06 334059.2	0.61 -0.03 2.51 -1.67 0.49 -0.53 -0.97 1.94 -0.01 -0.22	0.546 0.978 0.014 0.100 0.627 0.595 0.336 0.056 0.995 0.827	-11123.69 -8.317758 .1068931 -160.4680000197 -9.60e-0811692490000974 -2.77e-06 -739214	20853.6 8.091038 .9294959 14.30039 .0000325 5.54e-08 .0404849 .0077355 2.75e-06 592655.6

圖十

R² = 0.9768 (降低 0.77%)

Ρ值

X項	删除之前	删除之後		
x1	0.120	0.546	0.426	
x2	0.814	0.978	0.164	
x3	0. 333	0.014	-0.319	
x4	0.767	0.100	-0.667	
x5	0.120	0.627	0.507	
x6	0. 378	0. 595	0. 217	# (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
x7	0.997	0. 336	-0.661	
x8	0.707	0.056	-0. 651	
x9	0. 242	0. 995	0. 753	

P 值變化 -0.231

P值共降低 0.231,因此決定刪除三次項。

4、二次項

- (1) 試著刪除二次項 $(X4 \sim X9)$, 並觀察 R^2 及P值的變化:
- . regress y x1 x2 x3

x1 x2 x3 _cons	Coef. 11407.2 2.825557 .4601748 -790839.3	2788. 1.530 .0769 20406	.453)525)199	4.09 1.85 5.98 -3.88	0.000 0.069 0.000 0.000	[95% Conf. 5855.812 221484 .307039 -1197108	1 5	.6958.58 .872598 6133107
Total	3.2311e+15	81	3.98	90e+13	Root MSE		= 1.1e+(
Model Residual	3.1350e+15 9.6127e+13	3 78		50e+15 24e+12		Prob > F = R-squared = Adj R-squared =	0.0000 0.9702 0.9691	
Source	SS	df		MS		Number of obs		82 847.94

圖十一

 $R^2 = 0.9702$ (降低 0.66%)

P 值

P值共降低1.469,因此決定刪除二次項。

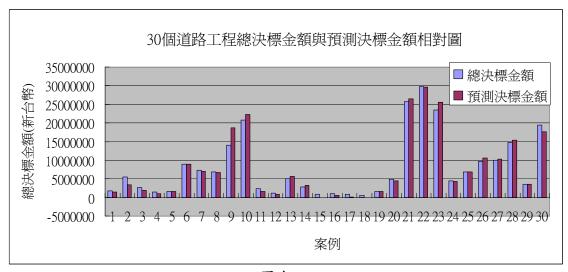
5、結論:

共刪除二次項(x4 ~ x9)及三次項(x10 ~ x19)

16 項

. regress y x1 x2 x3

Source	SS	df	M	1 S		Number of obs		82 847.94
Model Residual	3.1350e+15 9.6127e+13				Prob > F = 0.000 R-squared = 0.970 Adj R-squared = 0.969			
Total	3.2311e+15	81	3.9890	De+13		Root MSE	=	1.1e+06
У	Coef.	Std. E	Err.	t	P> t	[95% Conf.	In	terval]
x1 x2 x3 _cons	11407.2 2.825557 .4601748 -790839.3	2788.4 1.530! .0769: 20406	525 199	4.09 1.85 5.98 -3.88	0.000 0.069 0.000 0.000	5855.812 221484 .307039 -1197108	5	6958.58 .872598 6133107 84570.4


圖十二

 $R^2 = 0.9702$

Regression Line [6]: y = -790839.3 + 11407.2 * x1 + 2.825557 * x2 + 0.460839.3 * x3

6、預測 表四、預測驗證模型之決標價並計算平均相對誤差

案例	總決標金額	預測決標金額	相對誤差
1	1745000	1499778	14.05%
2	5500000	3454628	37.19%
3	2690000	1833358	31.85%
4	1430000	1053799	26.31%
5	1650000	1659607	0.58%
6	8880000	8982858	1.16%
7	7310000	6983576	4.47%
8	6880000	6673879	3.00%
9	13954000	18642922	33.60%
10	20820000	22338370	7.29%
11	2388000	1584360	33.65%
12	1100000	899179	18.26%
13	5100000	5694864	11.66%
14	2860000	3284346	14.84%
15	830000	-115669	113.94%
16	1006000	500625	50.24%
17	810000	167684	79.30%
18	500000	-561	100.11%
19	1570000	1522724	3.01%
20	4860000	4422796	9.00%
21	25700000	26439652	2.88%
22	29780000	29650684	0.43%
23	23400000	25515503	9.04%
24	4420000	4313559	2.41%
25	6780000	6901946	1.80%
26	9620000	10612317	10.32%
27	9964800	10230169	2.66%
28	14800000	15417455	4.17%
29	3516000	3493001	0.65%
30	19360000	17673879	8.71%
	平均相對語	吳差	21.22%

圖十三

圖十四

7、比較方法一及方法二

	平均相對誤差	a_0	a_1	a_2	a_3
方法一	11.19%		5492	2.844	0. 4615
方法二	21. 22%	-790839.3	11407. 2	2. 826	0.4602

Part IV. References

- 虞順逸,「以回歸分析預測最低標之研究—以美國A+B競標法及我國道路工程 為例」—國立雲林科技大學營建工程系研究所碩士論文,雲林縣,(2002)。
- 2. Jeng-Wen Lin, Raimondo Betti, Andrew W. Smyth and Richard W. Longman "On-line Identification of Non-linear Hysteretic Structural Systems Using a Variable Trace Approach," *Earthquake Engineering and Structural Dynamics*, Vol. 30, pp. 1279-1303 (2001).
- 3. Moore DS, McCabe GP, Introduction to the Practice of Statistics, W.H. Freeman and Company, New York (2005).
- 4. Lin JW, Betti R, "On-line Identification and Damage Detection in Non-linear Structural Systems Using a Variable Forgetting Factor Approach," *Earthquake*

Engineering and Structural Dynamics, Vol. 33(4), pp. 419-444 (2004).

- 5. 我國政府採購資訊公告系統(http://web.pcc.gov.tw/)。
- 6. Masri SF, "A Hybrid Parametric/Nonparametric Approach for the Identification of Nonlinear Systems," *Probabilistic Engineering Mechanics*, Vol. 9, pp. 47-57(1994).