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Abstract

The strati�ed self-calibration approach based on the ab-
solute conic or its dual, the absolute dual quadric, has
the merit of allowing the intrinsic camera parameters
to vary while being retrieved from an image sequence.
In this paper, we show that for a camera with small
rotation and general translation, a new linear equation
resulted from the in�nity homogrpahy can be added to a
system of linear equations to compute the absolute dual
quadric. Experiments with both synthetic and real im-
ages show that satisfactory results can be obtained with
the proposed linear approach. It is possible to further
improve the calibration result by adopting some nonlin-
ear optimization schemes, e.g., a suitable LM -like algo-
rithm, to enforce the absolute dual quadric constraints
using the linear solutions as an initial guess. Index
Terms: Self-Calibration, Absolute Conic, In�nity Ho-
mography.

1 Introduction

Self-calibration of a camera from images has been an
important research topic on computer vision over the
last few years since it may reduce the need of o�-line
calibration and increases on-line exibility. It is shown
in [1,2] that general projective reconstructions, i.e., the
simplest type of self-calibration, can be obtained eas-
ily using two or more uncalibrated projective images.
Recently more and more researchers pay their atten-
tion to possible ways of upgrading these reconstructions
from projective to metric. Faugeras et al. [3] proposed
a robust self-calibration method using the Kruppa e-
quations to impose constraints on the �xed internal
parameters obtained from the fundamental matrix. A

number of approaches based on similar concepts to self-
calibration have been developed [4{7].

Instead of using the Kruppa equations, some wide-
ly accepted approaches [8{10] are based on the abso-
lute quadric, a concise parameterization of the absolute
conic �rst introduced by Heyden [8] and called Kruppa
constraint, and later proposed by Triggs formally [11].
By means of this parametric representation, it is shown
that the self-calibration can be done even if the camera
intrinsic parameters are allowed to vary while generat-
ing a sequence of images. On the other hand, based
on the in�nity homography, approaches of strati�ed re-
construction for projective, aÆne, and �nally Euclidi-
an space have also been widely adopted in the last few
years [12{14]. In fact, some other researchers have dealt
with the calibration problem using both the absolute
quadric and the in�nity homography for more special
motions [15].

It is shown in [9] that, under the condition that the
intrinsic camera parameters, except for the focal length,
are known, a linear solution of the varying focal length
together with the location of a particular aÆne struc-
ture can be obtained. The linear solution can be then
used to initialize the corresponding nonlinear optimiza-
tion procedure. However, it is shown in [14] that even if
all intrinsic parameters are constant, in the special case
of having only two images obtained with the strati�ed
self-calibration approach, only one modulus constrain-
t for the in�nity homography exists that the plane at
in�nity can not be determined. Subsequently, a scene
constraint obtained from vanishing points is added to
solve the self-calibration problem for such a constant
camera.

In this paper, we show that, not only for a constan-
t camera but also for that allowing its focal length to
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vary, without additional scene constraint as required
in [14], a linear equation resulted from the in�nity ho-
mography can be added to the system of undetermined
linear equations in [9] to provide a closed-form solution
to the self-calibration problem, given only two images
obtained from camera motions with small rotation and
general translation. The approach is based on the in-
�nity homography and the absolute quadric and does
not require an additional vanishing point constraint as
in [14]. Such camera motions can often be seen in stere-
o vision applications in which a small rotation between
two cameras can be found.

The paper is organized as follows. In Section 2, some
background geometry and notation are introduced. Sec-
tion 3 describes the general self-calibration problem
based on the absolute quadric and the in�nity homog-
raphy. Then in Section 4, the linear solution for the
special case of two images, obtained from a camera with
small rotation and general translation, based on the in-
�nity homography constraints is introduced. Following
that, Section 5 is devoted to a brief summary of the as-
sociated 3D metric reconstruction. Some experimental
results are given in Section 6. Finally, we draw conclu-
sions in Section 7.

2 Background Geometry and

Notation

In this section, a brief review is given for the classi-
cal projective geometry notions of in�nity homography,
plane at in�nity, absolute conic, and their relationships
to camera calibration.

2.1 Projection Matrix and In�nity Ho-

mography

A basic projection procedure of scene points onto an
image by a perspective camera can be described as:

m / PM; (1)

where / denotes the equality up to a scaling factor, P
is the 3 � 4 projection matrix, M = [X Y Z 1]T and
m = [x y 1]T represent the homogeneous coordinates of
a 3D world point and a image point, respectively. Due
to the stratums of space, the projection process should
be represented by means of its corresponding projection
matrix in the space under consideration.

For Euclidean space, the projection matrix can be
represented as

Peuc = KPoT

=

"
fx s u0
0 fy v0
0 0 1

# "
1 0 0 0
0 1 0 0
0 0 1 0

# h
R t

0T
3

1

i
;

(2)

where T represents the transformation of coordinate
systems from world to the camera-centered system, P0
denotes the perspective projection and K is the camera
matrix consisting of the intrinsic parameters of camera.
In the camera matrix, fx and fy are the focal lengths
measured in width and in height of the pixels in the
image, respectively, s is a factor measuring the skew
of the two image axes, and u0 and v0 are the image
coordinates of the principal point.

Consider the projective space. The projection matrix
can be represented as

Pproj = [H jer] ; (3)

where er is the epipole, and H , the Homography, de-
scribes the projection from a particular reference plane
to the image plane, as discussed next.

Given a reference plane � = [�T 1]T
4
= [�1 �2 �3 1]

T

in the 3D space, a point M� = [mT
�
1]T is said to lie

on this plane if and only if �TM� = �Tm� + 1 = 0.
Speci�cally, since �Tm� = �1, the relationship can be
represented as

M� =

�
m�

1

�
=

�
m�

��Tm�

�
=

�
I3�3
��T

�
m�: (4)

Hence, the projection process which maps the 3D point
M� to its image point ~m� by the projective projection
matrix can be described as

~m� / PprojM� = [H jer]

�
I3�3
��T

�
m�; (5)

or
~m� / [H � er�

T ]m�: (6)

Thus, [H � er�
T ] in fact represents the homography

between M� and ~m�. Or, more precisely it can be
written as

H
0

= H � er�
T : (7)

If the plane � is chosen to be [0 0 0 1]T , the correspond-
ing homography is simply given by H . This is the ho-
mography denoted in the projective projection matrix
(3). On the other hand, the in�nity homography is de-
noted as another special homography which describes
the transformation from the plane at in�nity to the im-
age plane:

H1 = H � er�
T
1; (8)

where �1 is the vector consisting of the �rst three ele-
ments of [�11

�12
�13

1] which represents the location
of the plane at in�nty, �1. The details about the plane
at in�nity are given in the next subsection.

2



2.2 Plane at In�nity and Absolute Con-

ic

The plane at in�nity, or the in�nity plane, �1, is the
plane expressed as X4 = 0 in an aÆne frame and is
setwise invariant under Euclidean motions i.e., any rigid
motion of a camera will not change the camera's relative
position and orientation with respect to �1.

The absolute conic, 
, is a point conic on �1 repre-
sented as X2

1
+X2

2
+X2

3
= 0 and X4 = 0, containing on-

ly imaginary points [16]. As its dual, the absolute dual
quadric is denoted as 
�. A special property associated
with the absolute conic is that if camera parameters do
not change, then the image of the absolute conic, !,
and its dual, !�, will also stay the same for all views.
In particular, for Euclidean representation of the world,
such a property expressed with !� can be realized as

!� / Peuc

�

eucP
T
euc

= K[RT jt]

�
I3�3 03
0T
3
0

��
R
t

�
KT = KKT :(9)

In cases which allow variable intrinsic camera param-
eters, there is a particularly useful property of the dual
image of the absolute conic such that

!�i = KiK
T
i / Pi


�P T
i (10)

is satis�ed for all views (i0s). According to (10), con-
straints on the intrinsic camera parameters associated
with Ki can therefore be transformed to constraints to
those on elements of !�i . This actually provides a basis
for the self-calibration.

3 Self-Calibration

The absolute dual quadric and the in�nity homography
are the basis of the self-calibration since images of the
former encode the camera matrix for all views while the
latter encodes the camera rotation. By these parame-
terizations, location of the plane at in�nity as well as
the intrinsic camera parameters can be obtained. Thus,
the projection matrix for 3D reconstructions in metric
space can be obtained.

In this section, a general approach to the self-
calibration problem based on the absolute dual quadric
is briey reviewed. Then, in order to overcome the d-
iÆculty induced by the special case of using only two
images wherein the solution in general can not be deter-
mined uniquely, the in�nity homography constraints for
camera motions with small rotation and general trans-
lation are presented in the next section.

Consider the absolute dual quadric given in (10).
Starting from its Euclidean representation, such a

quadric can eventually be expressed in projective space
as

!� / Peuci

�

eucP
T
euci

=
�
PprojiT

�1

PM

�

�euc

�
T�TPMP T

proji

�
= Pproji

�
T�1PM
�eucT

�T
PM

�
P T
proji

= Pproji

�

projP
T
proji

; (11)

where Pproji denotes the projection matrix in projective
space for the ith image,

TPM =

�
K�1 0
�1 1

�
(12)

is the transformation matrix to upgrade the geometry
from projective to metric, and


�proj =

�
KKT �KKT�1

��T1KKT �T1KKT�1

�
(13)

is the absolute dual quadric in projective space.
In particular, if the world frame is aligned with the

�rst camera, Pproj1 = [I j0], then we have

!�i = KiK
T
i / Pproji


�
0

projP
T
proji

(14)

with


�
0

proj =

�
K1K

T
1

�K1K
T
1
�1

��T1K1K
T
1 �T1K1K

T
1 �1

�
: (15)

For an ideal camera as suggested with an approximation
provided in [9], we have u0 = v0 = 0, s = 0 and fx =

fy
4
= fi, which lead to the following camera matrix

Ki =

2
4 fi 0 0

0 fi 0
0 0 1

3
5 : (16)

Thus, (15) can be simpli�ed as 1


�
0

proj =2
4 f2

1
0 0 �f2

1
�11

0 f2
1

0 �f2
1
�12

0 0 1 ��13

�f2
1
�11

�f2
1
�12

��13
f2
1
�2
11

+ f2
1
�2
12

+ �2
13

3
5 :
(17)

Let a = f21 , b = �f21�11
, c = �f21�12

, d = ��13
, and

e = f2
1
�211

+ f2
1
�212

+ �213
, (14) becomes

"
f2i 0 0
0 f2i 0
0 0 1

#
/ Pproji

2
4 a 0 0 b

0 a 0 c

0 0 1 d

b c d e

3
5P T

proji
; (18)

1This matrix is essentially the same of that shown in [9], except
for some minor changes in notation.
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and we can obtain the following system of linear equa-
tions (Details are shown in the Appendix.)

k11a+ k12b+ k13c+ k14d+ k15e+ k16 = 0

k21a+ k22b+ k23c+ k24d+ k25e+ k26 = 0

k31a+ k32b+ k33c+ k34d+ k35e+ k36 = 0

k41a+ k42b+ k43c+ k44d+ k45e+ k46 = 0

(19)

When only two images are available, instead of a
unique solution, only a family of solutions can be de-
termined for (19). Even if the rank 3 constraint for the
absolute dual quadric (17) is imposed, one still ends up
with four possible solutions [9]. To overcome this diÆ-
culty, Marc et al. [14] added a scene constraint obtained
from vanishing points and thus resulted in enough linear
equations. In the next section, without any additional
scene constraints, we show that under special camera
motions of a small rotation and a general translation it
is possible to obtain a close-form solution through the
properties of the in�nity homography.

4 A New Linear Method

Consider the case of two images. Equation (8) becomes

H1

12
= H12 � er�

T
1
/ K2R12K

�1

1
; (20)

where er is the epipole in the second image, H12 denotes
the homography, obtained here by [er]�F with F being
the fundamental matrix relating these two images, H1

12

represents the corresponding in�nity homography, and
R12 is the rotation from the �rst camera to the second
one. Note that the last term of (20) is indeed the in�nity
homography represented in Euclidean space (see [17] for
details.).

For a small rotation, we have

K2R12K
�1

1
=

2
64

f2
f1
r11

f2
f1
r12 f2r13

f2
f1
r21

f2
f1
r22 f2r23

f2
f1
r31

f2
f1
r31 r33

3
75

�

2
64

f2
f1

f2
f1
!z �f2!y

� f2
f1
!z

f2
f1

f2!x
!y
f1

�!x
f1

1

3
75 ;(21)

where !x, !y and !z are the rotation angles with
respect to the x-axis, the y-axis and the z-axis, respec-
tively. Thus, (20) can be simpli�ed as2
4 h11 � er1�11

h12 � er1�12
h13 � er1�13

h21 � er2�11
h22 � er2�12

h23 � er2�13

h31 � er3�11
h32 � er3�12

h33 � er3�13

3
5 /

2
4 f2

f1

f2
f1
!z �f2!y

�

f2
f1
!z

f2
f1

f2!x
!y
f1

�

!x
f1

1

3
5 : (22)

Consider the three diagonal elements of the both sides
of (22), we have

�11
=

h11 � h22 + er2�12

er1
(23)

f2 =
h11 � er1�11

h33 � er3�13

f1 (24)

=
h22 � er2�12

h33 � er3�13

f1 (25)

From (23), b can be expressed as a function of a and c
as

b = �f2
1
�11

=
�h11 + h22

er1
� f2

1
�
er2
er1

� f2
1
�12

4
= kb1 � a+ kb2 � c (26)

With (19) and (26), the �ve variables de�ned in (18)
and thus the four parameters f1, �11

, �12
and �13

,
can be solved. Moreover, once f1 is obtained, the value
of f2 can be calculated using either (24) or (25) 2.

5 3D metric reconstruction

A strati�ed approach to self-calibration, as outlined
in [12, 14, 18], includes a step-by-step procedure
of projective reconstruction, aÆne reconstruction,
and �nally the desired metric reconstruction from
multiple images. A similar strati�ed approach but
using only two images, according to the linear algorith-
m proposed in this paper can be summarized as follows.

The 3D metric reconstruction procedure:

Stage 1. Find the two projective projection matrices:

Pproj1 = [I3�3j03]

Pproj2 = [H12jer] : (27)

Stage 2. Obtain TPM ; i.e., �nd the four parameters
f1, �11

, �12
and �13

by solving (19) and
(26).

Stage 3. Derive the projection matrix for Euclidean
space:

Peuci = PprojiT
�1

PM ; i = 1; 2: (28)

Stage 4. Obtain the metric structure through the
SVD-based 3D reconstruction method given
in [19].

2In the implementation, values of f2 obtained from (24) and
(25), respectively, are found to be quite similar. The average
of the two values are used as a robust estimation of f2 in the
simulation.
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Figure 1: The 3D structure for the simulation.

6 Experiment results

In this section, calibration results obtained with the
proposed linear method are presented. For a strati�ed
self-calibration approach, the accuracy of the perspec-
tive reconstruction a�ects the results remarkably. The
modi�ed eight-point algorithm is adopted in the imple-
mentation, which usually gives a satisfactory fundamen-
tal matrix, F , even under noisy conditions [20]. Using
the derived fundamental matrix, the metric reconstruc-
tion is then conducted.

The performance of the proposed approach is ex-
amined using both synthetic and real images. In the
former, statistical results such as means and standard
deviations are provided for f1, f2, �1 and 3D recon-
struction error, respectively, under di�erent noise con-
ditions. In the latter, on the other hand, we measure
the parallism and orthogonality, as well as the 2D re-
projection errors, of 3D structures obtained from the
metric reconstruction.

6.1 Experiments using synthetic data

The simulations are carried out on pairs of images
obtained from a synthetic scene consisting of 50 3D
points. As shown in Fig. 1, these points are gener-
ated randomly in a 100 � 100 � 100 cube centered at
(100,100,100). Then, two images of this synthetic scene
with size of 1400 � 1400 pixels are generated using t-
wo Euclidean projection matrices, Peuc1 = K1[R1jt1]
and Peuc2 = K2[R2jt2], with K1 = diag[550,550,1],
R1(! = 0Æ; � = 0Æ; � = 0Æ), t1 = [0; 0; 0], K2 = di-
ag[600,600,1], R2(! = 2Æ; � = 4:5Æ; � = 7:6Æ) and
t2 = [1;�20;�3]. The three parameters !, �, and �
denote the rotation angles around the x-axis, the y-axis
and the z-axis, i.e., the tilt, pan, and swing angles, re-
spectively.

Fig. 2 shows the mean and standard deviation of the
estimation of the �rst focal length (f1) for zero mean
Gaussian noise, with standard deviation ranging from
0 to 1 pixel, added to locations of image points. For
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Figure 2: The estimated �rst focal length (f1) for various
noise levels.
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Figure 3: The estimated second focal length (f2) for various
noise levels.

each noise level, the statistics are obtained from a total
of 100 trials. While their standard deviations have the
general trend to increase with the noise level, the means
of these estimations approximately give the correct val-
ue f1 = 550. Similar results can also be observed for
the estimations of the second focal length, f2 = 600, as
shown in Fig. 3.

To evaluate the accuracy of the estimation of �1,
the real �1 is �rst obtained with equation (20) using
the real rotation R2 and the fundamental matrix F ob-
tained from the image pair before adding noises. The
angular error is then de�ned as the angle between the
estimated �1 and the real �1. Fig. 4 shows the mean
and standard deviation of the angular error for various
noise levels.

As for the 3D reconstruction errors, since real lo-
cations of all 3D points are given for the simulation,
we can directly measure the average distance between
the true 3D structure and the corresponding structure
recovered in metric space. The distance measurement
procedure can be described as follows. First, the two
structures are moved to have their centroids located
at the origin of the world coordinate system. Second-
ly, a size normalization operation for both structures is
carried out. Thirdly, pointwise Euclidean distances be-
tween the two structures are calculated for correspond-
ing 3D feature points. And �nally, we average these
distances to obtain an estimation of the 3D reconstruc-
tion error. Fig. 5 shows the mean value and the corre-
sponding standard deviation of the 3D reconstruction
error.

From these simulation results, one can observe that
the proposed linear method is capable of solving the
self-calibration problem, in terms of accuracy and ro-
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Figure 4: Angular error for the estimates of �1 for various
noise levels.

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

3D
 r

ec
on

st
ru

ct
io

n 
er

ro
r

standard deviation (pixel)

std

Figure 5: The 3D metric reconstruction error for various
noise levels.

bustness, under conditions of small rotation and general
translation of the camera.

6.2 Experiments based on real images

In this subsection, results obtained with the proposed
linear method for pairs of real images are presented.
The images are obtained from the CMU image se-

quence [21]. Fig. 6 shows a typical image in the im-
age sequence with 36 reference points. A subset of
these point features is connected with 10 line segments
(marked with 0 to 9 in Fig. 7) to facilitate the paral-
lelism and orthogonality measurement of the recovered
3D metric structure.

In the experiment, the principal points given in [21]
are utilized as known intrinsic parameters in addition
to fx=fy = 1 and s = 0. The proposed linear method is
applied to 10 image pairs (1-2, 1-3,...,1-11) for the cor-
responding 3D metric reconstruction. For the recovered
3D structure, Table 1 shows the true and estimated an-
gles between 11 selected pairs of line segments. Each of
the estimated angles is obtained by averaging the cor-
responding angles calculated from the 10 image pairs.
It is readily observable from Table 1 that the proposed
approach preserve the parallelism and orthogonality of
the recovered 3D structure satisfactorily.

Besides the parallelism and orthogonality measure-
ment, the reprojection error, which measures the dif-
ferences between the original image points and those
obtained by reprojecting the recovered 3D structure
back to the image plane, provides another useful mea-
surement of the metric reconstruction. A low value of
such an error implies that coplanarity and collinearity
are well preserved. In this study, because we assume

Figure 6: A typical 576 � 384 image with 36 reference
points in the CMU image sequence.
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Figure 7: Ten line segments connecting a subset of point
features.

Pproj1 = [I j0], i.e., the �rst image is perfect, the com-
putation errors are propagated to the second image in
the reconstruction process. It is shown in Table 2 that
the reprojection error of the recovered 3D structure for
the �rst image is much lower than that for the second;
both are reasonably small for typical applications.

7 Conclusion

In this paper, we present a linear method that can solve
the self-calibration problem with only two images if the
images are obtained by a camera with small rotation
and general translation, possibly having a varying focal
length. Experiment results for synthetic simulations as
well as real images shows that the proposed approach
performs satisfactorily. Moreover, besides image pairs,
our method can also handle the case of multiple im-
ages since such a method is based on the absolute du-
al quadric and is designed to solve the self-calibration
problem associated with image sequence. On the oth-
er hand, as part of an optimal self-calibration method,
the linear solution may be good enough for an addi-
tional nonlinear optimization procedure, which can be
adopted to improve the calibration result further.
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Table 1: True and estimated angles between 11 selected pairs of line segments.
Line segment pair True angle (degree) Estimated angle (degree) Standard deviation (degree)

1-2 1.2071 0.8955 0.1281
3-4 0.9094 0.8177 0.0669
5-6 2.5379 1.1341 0.0667
6-7 1.8160 2.9217 1.1020
8-9 1.5674 0.6351 0.1471
1-5 88.8999 89.3040 0.1398
3-7 89.3059 89.1086 0.0383
4-6 90.1267 90.1520 0.0222
5-9 89.4330 89.3644 0.2756
7-8 90.5845 90.1790 0.0373
0-1 90.2291 90.5843 0.0380

Table 2: The reprojection errors for the 3D metric re-
construction

Image mean error (pixel) standard deviation (pixel)

�rst 5.1806E-7 2.3773E-7
second 1.8433E-2 6.6671E-3

8 Appendix

The coeÆcients of the system of linear equations given
in (19) are listed in detail as follows 3:

k11 = p2
11

+ p2
12
� (p2

21
+ p2

22
) k12 = 2(p11p14 � p21p24)

k13 = 2(p12p14 � p22p24) k14 = 2(p13p14 � p23p24)
k15 = p2

14
� p2

24
k16 = p2

13
� p2

23

k21 = p11p21 + p12p22 k22 = p14p21 + p11p22
k23 = p14p22 + p12p24 k24 = p14p23 + p13p24

k25 = p14p24 k26 = p13p23
k31 = p11p31 + p12p32 k32 = p14p31 + p11p32
k33 = p14p32 + p12p34 k34 = p14p33 + p13p34

k35 = p14p34 k36 = p13p33
k41 = p21p31 + p22p32 k42 = p24p31 + p21p32
k43 = p24p32 + p22p34 k44 = p24p33 + p23p34

k45 = p24p34 k46 = p23p33
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