
An Intelligent 3D Navigation Interface for Large Virtual Environments

Tsai-Yen Li and Chih-Ching Chang
Computer Science Department, National Chengchi University

64, Sec.2, Chih-Nan Road, Taipei, Taiwan 11623, ROC
e-mail: {li, s8522}@cs.nccu.edu.tw

Abstract

Recent developments on graphics hardware and soft-
ware have opened up new 3D interactive applications on
personal computers. Most of these advances aim to provide
better and faster graphics rendering. Recent researches
suggest that motion-planning techniques can be success-
fully incorporated into the navigation control loop to im-
prove the efficiency of 3D navigation in an architectural
environment. However, a main limitation of this approach
is on the scalability of the motion planner for large virtual
environments. In this paper, we propose a novel approach
to overcome this scalability problem. We limit the region of
interest for path-finding to a window around the current
viewpoint and incrementally update the roadmap in this
window as the user viewpoint moves along. In order to
facilitate the incremental update of the roadmap, we adopt
a new data structure, called Rapidly-Exploring Random
Tree (RRT), to reduce the run-time cost of building the
connectivity roadmap. The incremental path planner has
been implemented and incorporated into a Java3D-based
VRML browser. We report experimental results of this im-
proved user interface on a large-scale virtual environment.
Computational bottlenecks of maintaining such an inter-
face at run time are also analyzed. By extending the plan-
ning techniques to large-scale virtual scenes, we believe
that this type of intelligent navigation will inspire better
interactive 3D user-interface design in the future.

1. Introduction

Due to the rapid evolution of computer hardware and
software, two trends can be observed for virtual reality
(VR) applications: the hardware platform is moving toward
low-cost desktop PC’s and the software architecture is
moving toward distributed computing models on the Inter-
net. The price for the next generation of display cards with
interactive 3D acceleration is becoming more affordable
than ever. The efforts of standardizing 3D graphics format,
such as the Virtual Reality Modeling Language (VRML)
language[22], also contribute to populate 3D applications.

One can envision exciting opportunities for new applica-
tions with interactive 3D graphics on PC’s. However, we
believe that there still exist problems that need to be solved
before VR applications can really take off. For example,
for novice users equipped with 2D mouse, it remains a
great challenge to precisely control walkthrough navigation
in a complex virtual environment.

Most VRML browsers support architectural walk-
through type of navigation control with some optional col-
lision detection functions. These functions increase the
degree of realism by detecting collisions between the
viewpoint and the environment in order to prevent the
viewpoint from penetrating the obstacles. However, under
such a navigation mode, a user (even an expert user) often
runs into a situation where the controlled viewpoint gets
stuck at certain locations of the scene. Several maneuvers
are often required to get them out of this kind of situation.
Users often feel frustrated with this level of navigation
control, especially when the given frame rates are low for
large virtual worlds.

This type of navigation control uses the di-
rect-manipulation metaphor. This metaphor has been
shown to be effective one for user interface design since
the system behavior is more predictable than the one with
intelligent user interfaces based on agent technologies. [20]
However, we think the premise for this claim is that the
user interface is responsive and the control is not too tedi-
ous. This premise may not hold for 3D interactive graphics.
In [16], we proposed an intelligent user interface for navi-
gation control aiming to taking advantages of both meta-
phors. This approach incorporates motion-planning tech-
niques to assist users in avoiding obstacles by voluntarily
generating collision-free paths to avoid collisions with ob-
stacles. Experiments showed that it is an effective interface
that can reduce the average execution time for accom-
plishing a given navigation task by 76 percents.

However, this planner may not scale up well. A main
limitation of this implementation is on the size of the vir-
tual environment and the number of obstacles in it. In the
randomized roadmap approach used in the planner, one
needs to sample enough configurations in the preprocess-
ing step in order to build a good roadmap that captures the
connectivity of the freespace. However, building and stor-



ing the roadmap become infeasible when the size of the
virtual environment becomes very large. In this paper, we
extend this intelligent navigation interface to consider the
case of large virtual worlds. We propose to dynamically
update the roadmap by maintaining only the nodes in a
moving window around the viewpoint during navigation.
Maintaining the roadmap in such a window is a challeng-
ing task because the computation time needs to be short
enough for incorporating the computation into interactive
navigation. We will describe that data structure and algo-
rithms that allow us to efficiently update the dynamic
roadmap at run time.

We organize the rest of the paper as follows. We will
review some related researches in motion planning and
intelligent user interface design in the next section. We will
then review how path planning is incorporated into the user
control loop to assist a user in performing navigation and
address the issues of bringing the problem on-line for large
virtual worlds in Section 3. We will then show how we
approach this on-line planning problem with the Rap-
idly-Exploring Random Tree (RRT) structure and how the
roadmap is updated as the viewpoint moves in Section 4.
We will then show the details of our implementation in
Section 5, and the experimental settings, results, and analy-
sis in Section 6. Finally, we will conclude our work and
discuss future extensions in the last section.

2. Related Work

The researches related to our work fall into two catego-
ries: 3D user interface designin the field of computer
graphics andpath planningin the field of robotics. More
precisely, our work is on applying the path planning tech-
niques learned in robotics to the design of 3D navigation
interface. Therefore, we review pertaining work in these
two areas in this section as follows.

2.1. 3D user interface design

Many researches in user interface are undertaken to in-
vent new efficient ways to communicate with a computer
and on evaluating the effectiveness of these interfaces. As
the computer hardware for 3D acceleration becomes faster
and affordable, VR-types of user interfaces for 3D virtual
environments has become popular. For example,
high-resolution Head Mounted Display (HMD), 3D track-
ing devices, data gloves, force feedback joysticks, and
other haptic devices are all good examples of devices
under active studies and development. New metaphors
such as eyeball in hand, and flying vehicle in hand have
shown to be effective metaphor in the context of virtual
space exploration.[4] However, it remains a great challenge
to design an effective interface to manipulate a 3D virtual
scene only with a regular 2D mouse on a desktop com-
puter.

Most of the aforementioned developments use the direct
manipulation metaphor that is shown to be more compre-

hensible, predictable, and controllable than the delegation
types of intelligent user interfaces in several application
domains. However, it is still under debates which metaphor
is more effective in general.[20] Now people tend to agree
that effectiveness would greatly depend on the types of
applications, users, and tasks at hand. For example, some
people may prefer to sit back and take a guided tour when
visiting a new environment while other adventurous people
may prefer to have a full navigation control.

Although many intelligent user interfaces have been
proposed in the literature, most of them are not for 3D ma-
nipulation. [17][18] Exceptions include using mo-
tion-planning techniques to provide task-level controls. For
example, Drucker and Zeltzer [5] argue that a task-level
viewpoint control is crucial for exploring virtual scenes
such as virtual museums since the users should be allowed
to concentrate on scene viewing instead of be distracted by
low-level navigation controls. Li, et al. [15] also proposed
an auto-navigation system capable of generating custom-
ized guided tour based on high-level user inputs. Kuffner
[11] also utilizes fast path-planning techniques to assist
real-time animations. These researches use geometric rea-
soning techniques as a tool for control delegation from a
third-person view, which is different from our first-person
view in scene navigation. Other works also suggest using
vector fields such as force fields to constrain 3D navigation
with a first-person view [7][8][21]. However, it is a
scene-specific design tool and does not incorporate any
planning techniques in it.

2.2. Path planning

In this paper, we define the navigation problem as an
example of the path-planning problem (or the so-called
Piano Mover’s Problem) that has been well studied in the
past three decades[13]. Under the curse of dimensionality,
the computational complexity of the problem is exponen-
tial in the degrees of freedom (DOF) that the moving ob-
ject possesses.[19] Most efficient complete path planners
exist only for three or four dimensional configuration space
(C-space). The methods bases on artificial potential fields
are good examples that are reported to be able to solve 2D
path-planning problems in fractions of a second.[2] For
problems with high dimensional C-space, an effective
planning scheme calledrandom sampling scheme for path
planninghas been reported to be effective in solving prac-
tical problems in various applications[1]. A special version
of planner with this random sampling scheme, called the
probabilistic roadmapmethod[10], has been adopted in our
previous work to assist user navigation task. Many forms
of roadmaps that try to capture the connectivity of
freespace effectively have also been proposed. [12]

3. Intelligent Navigation Interface

3.1. New user interface for path planning

In our previous work[16], we proposed a new interface



scheme that incorporates an efficient path-planner into the
control loop of navigation interface. The new user interface
is effective in two ways. First, the average planning time in
each control loop is rather short (tens of ms). Consequently,
the frame rate is still high enough for smooth and respon-
sive manipulation. Second, the overall execution time for
accomplishing a given task (e.g. visiting a sequence of
locations in the scene) is greatly reduced because many
unnecessary maneuvers have been eliminated.

In order to generate a useful path in a short amount of
time, we adopt the path-planning algorithm with the prob-
abilistic roadmap approach proposed in [10]. In its pre-
processing step of this approach, the algorithm builds a
roadmap that captures the connectivity of the free-space
such as the one shown in Figure 1. At run time user mouse
inputs are transformed into desired goal configurations. We
then evoke the path planner to compute a collision-free
path from the current configuration to the goal configura-
tion whenever the two configurations cannot be directly
connected with a straight-line path. This step involves
searching the connectivity graph of the roadmap to connect
these two configurations. An optional post-processing step
smoothes the found path into a shorter one for execution.
In summary, the system uses motion-planning techniques
to voluntarily assist a user in navigation through difficult
areas of a virtual scene.

3.2. Extensions to large-scale environments

The roadmap planner may not scale up well to deal with
large-scale environments. The roadmap planner in our pre-
vious experiments is efficient for several reasons. First, we
assume that the virtual world is a static bounded world
with known obstacle configurations. Second, collision de-
tection, the most time-consuming routine in the planner, is
made easy by looking up a pre-computed C-space. Third,
the size of the roadmap that captures freespace connec-
tivity is limited, and the time for searching the roadmap (an
undirected graph) is insignificant.

The first factor is not directly affected by the scale of

the world while the second and third factors may make the
planner impractical for interactive uses as the world be-
comes very large. For example, although the C-space ob-
stacles are computed off-line in a preprocessing step, the
space for storing the C-space obstacles may increase to an
unacceptable extent as the size of the world increases. The
size of the roadmap and the time for searching the roadmap
also increases significantly as the size of world becomes
large.

4. Incremental update of roadmap

The key for extending the new interface to large virtual
environments lie on the facts that the path-planning prob-
lem for our navigation control usually can be confined in a
local region around the current viewpoint. No matter how
large the whole world is we can expect that two consecu-
tive configurations be close to each other under regular
navigation operations. Thus, we can define a window
called focus windowin the workspace around the view-
point as shown in Figure 2. The size of the window should
be large enough to enclose the current and next configura-
tions as well as the path connecting them. We define an-
other window, calledvalid window, which also moves with
the viewpoint from time to time. Whenever the viewpoint
exits the valid window we update the focus window and
the valid window according to the current configuration.
The size of the focus window determines the size of the
roadmap while the size of the valid window determines the
update frequency of the dynamic roadmap.

The challenge now becomes how to maintain the road-
map in the focus window as the viewpoint moves. Tradi-
tional roadmap planners build the roadmap for the entire
C-space in a one-time preprocessing step. The typical time
for building such a roadmap is several seconds for a mod-
erate world, which is too long to be used in a control loop.
Therefore, we need to have a more efficient method to
represent and update the roadmap in an on-line manner. In
this section, we first describe a special type of roadmap
called RRT that we have adopted in our on-line planner.
We will then show how we extend this data structure to
consider on-line deletions and additions of nodes in RRT.
Finally, we will describe how we use a 2D range search
tree to speed up collision detection routines for on-line
collision queries

Figure2. RRT in the focus window

Figure 1. A sample probabilistic roadmap

focus
window

valid
window

Workspace Magnified Workspace

roadmap obstacles

qiÿ

qi

qgÿ

qg



4.1. The RRT data structure

Recently a new data structure called Randomized Rap-
idly-Exploring Random Tree (RRT) has been proposed as
one form of roadmap for path planning.[12] It has been
shown to be an effective method for evenly exploring the
freespace. The algorithm for this method is sketched in
Figure 3. The goal of the algorithm is to build a treeT of
configurations that represent the freespace. The tree con-
sists of the initial configuration (xinit) only initially and new
configurations are added incrementally intoT. For each of
theK configurations to be added intoT, we first generate a
random configuration (xrand) as a target for growing the tree
(line 3). Then we try to find the nearest configuration (xnear)
in the tree from the target (line 4). From this nearest con-
figuration we grow the tree toward the target as far as pos-
sible until the target is reached or an obstacle is encoun-
tered (line 5). The farthest configuration (xnew) that can be
reached is then added into the tree (line 6).

Two properties make the RRT algorithm attractive for
our problem. First, the number of links amongst nodes is
small since it uses a tree structure instead of a general in-
terconnected graph in the traditional roadmap approach. As
a result, the storage requirement and computation time for
update a tree is also smaller. Second, the algorithm pro-
duces a tree that is typically a good representation of the
freespace. It has been shown that the RRT approach tends
to explore area that hasn’t been explored yet [12]. The first
property is crucial for our application since the size of the
roadmap is limited by the physical memory we have as
well as the time allowed to update the roadmap (which is
typically much less than fractions of a second).

4.2. Updating RRT in the focus window

When the viewpoint is at the initial configuration, the
path planner builds an RRT ofK nodes in the focus win-
dow such as the one shown in Figure 4(a). When the
viewpoint exits the valid window, we update the RRT ac-
cording to the new configuration (Figure 4(b)). The update
considers the differences between the old and the new re-
gions. These differences consist of two parts: deletion and
addition of nodes. For the example in Figure 4(b), as the
viewpoint move northeast, we need to delete the nodes in
the L-shape regionD at the lower left corner and add new

nodes into the flipped L-shape regionA at the upper right
corner.

In order to support dynamic update of the RRT, we
modify the original RRT structure to support forest data
structure and its associated operations. The original RRT is
a tree structure rooted at the initial configuration. With our
incremental update, this is no longer true since deleting
nodes may cause a tree to split into several subtrees and
adding nodes may merge two trees into a single tree. For
example, in the RRT in Figure 4(c), the original tree is split
into three subtrees. As the viewpoint moves to another
configuration that causes the update in Figure 4(d), the
RRT merges two subtrees into one. A given number of
random configurations are generated and added into the
new region one by one. When a new node is added, we use
the Generate_RRT algorithm in Figure 3 to connect the
new node to each tree in the current forest. If two trees can
be connected to the new node, these two trees are merged
into one. In the merge operation, we also need to reverse
the parent-children relation for the nodes along the path
from the merging node to the root of the tree.

4.3. Querying obstacles in the focus window

Collision detection is the most fundamental and
time-consuming routine in path planning. In our current
implementation, we assume that the viewpoint can be rep-
resented as an enclosing circle of certain radius so that we
can simplify each collision check to a table lookup in a 2D
bitmap representing the configuration space (1:obstacle,
0:freespace). Given a geometric description of obstacles in
a workspace, we can build the bitmap by a common
scan-line algorithm in 2D computer graphics. However,
when the workspace is large, it becomes impractical to

Generate_RRT(xinit, K)
1. T.init(xinit)
2. for k=1 to K do
3. xrandt � Random_Configuration();
4. xnear � Nearest_Neighbor(xrandt, T);
5. xnew � New_Configuration(xnear, xrandt);
6. T.add (xnear, xnew);
7. return T

Figure 3. algorithm for generating RRT (a) (b)

(c) (d)
Figure 4. incrementally updating the RRT as the

focus window moves

D

A



maintain such a bitmap for the whole configuration space.
Consequently, we must also update the bitmap in the focus
window on the fly as the focus window moves. In order to
update the bitmap for the new focus window, we have to
know which obstacles overlap with the new region in the
focus window. This is a standard 2D range-query problem
in computational geometry.[3] We use a standard 2D range
tree to organize the bounding boxes of the obstacles so that
we can answer the question of which obstacles intersect
with the L-shaped region as quickly as possible even for a
large virtual world.

5. Implementation

The path planner with static and dynamic roadmap up-
dates has been fully implemented in Java. We incorporate
the planner into a 3D navigation interface by modifying the
open source VRML browser implemented based on the
Java3D SDK library. This SDK and the VRML browser are
all available for FTP on the public domain.[22] At the time
of our implementation, this VRML browser does not sup-
port collision detection yet. Therefore, we have to enhance
the browser with our implementation of collision detection
routines. These collision checks are evoked in the view-
point update routine to prevent potential collisions even
when the path planner is not used.

The workspace for the virtual environment is modeled
as a discrete 2D space of certain resolution (e.g. 128x128).
To support dynamic roadmap update, we use a window
size of 16x16 and 32x32 for the valid window and focus
window, respectively. The total number of nodes generated
for the RRT in the focus window is about 250. The number
of nodes successfully added into the RRT depends on the
number of nodes deleted during an update so that the total
number of nodes in the focus window remains the same.
Although the nodes in RRT must be inside the focus win-
dow, the goal configuration for the viewpoint may fall out-
side the focus window. In order to facilitate collision
checks for this case, we build the C-space bitmap for a
larger window of 48x48 around the viewpoint.

6. Experiments

The goal of our experiments is to compare the perform-
ance of the new planner with dynamic roadmap update to
that of the original planner with static roadmap. Since the
benefits of incorporating planning into the navigation in-
terface have demonstrated in our previous work, our ex-
periments only focus on observing the impact of maintain-
ing a dynamic roadmap on-line.

6.1. Experimental settings

The experiments were carried out on a regular PC with
a Pentium III 550 processor. We first use a small world (a
maze-like environment as shown in Figure 1) of size
128x128 cluttered with 50 obstacles to compare the static
roadmap planner and the dynamic roadmap planner. Statis-
tic data are collected for a task of navigating through a
similar path of about the same size. The number of plan-
ning requests is about the same for the entire navigation
experiment. We then test the dynamic roadmap planner in a
large world of size 256x256, consisting of 300 obstacles
(as shown in Figure 5 and Figure 6) to see how world size
affects planning time.

6.2. Experimental results

The experimental results are summarized in Table 1.
The second column lists the data for the static roadmap
planner (P1) with the small (128x128) world while the
third column is for the dynamic roadmap planner (P2) with
the same world. The fourth column shows the data for P2
with a large (256x256) world.

From the data in Table 1, we have the following obser-
vations. The preprocessing time for P1 is significantly lar-
ger than P2 since it builds a complete roadmap for the en-
tire C-space. In the navigation experiments with the same
small world, the planning time (searching the roadmap for
a path and smoothing the found path) for P1 is larger than
that for P2 mainly because the size of the static roadmap is
larger than the dynamic roadmap. However, P2 needs to
spend extra time to maintain the dynamic roadmap as the
focus window moves. For example, in the second case of
P2 with the small world, the roadmap is updated 74 times

Figure 6. Top view of the large maze environment

Figure 5. A snapshot of the VRML browser during
the navigation experiments



during the experiment. The average time for each update is
41ms, which is insignificant compared to the time for
planning and graphics rendering. Examples of dynamic
roadmap (RRT) at different locations are shown in Figure 7.
Experiments conducted in the third case (the large world)
show that the average time for an update remains at the
same degree as in the case of small world. If we examine
the time for each update in more details, we can find that it
consists of several portions: updating C-space bitmap, de-
leting nodes and adding nodes into the dynamic roadmap.
Our experiments show that the most significant computa-
tion (about 90%) in each update is for node additions.
About one fourth of nodes (60) are deleted and about the
same number of nodes are added in each update.

6.3. Discussion

The main challenge of extending path planning to a lar-
ge world is on the efficiency of maintaining a dynamic
roadmap around the viewpoint. Ideally, we hope that by
incrementally updating the roadmap, the complexity of the
planner can be independent of the world size (and the
number of obstacles in it). Unfortunately, such an ideal
situation cannot be achieved. The time spent in the planner
consists of two parts: roadmap update and path query. First,
the number of nodes in the dynamic roadmap does not
change as the focus window moves. Therefore, the time
complexity for path queries is constant and independent of
the world size. Second, the number of nodes been deleted
and added into the dynamic roadmap is also independent of
the world size. The only module that depends on world
size is the collision detection routine. Assume that we do
not have explicit representation of the entire C-space (since
the world could be very large), and then we have to per-
form collision checks with all obstacles at run time, the
operation will depend on the number of obstacles in the
world. In our current implementation, we use a 2D range
tree to organize the bounding boxes of the obstacles. This
data structure is used for faster overlap queries when we
need to update the bitmap for collision checks as the win-
dow moves. However, the time complexity for the standard

2D range query algorithm is log2n, which is no longer con-
stant. [3]Fortunately, our experimental data show that the
computation time for this operation is less than 5% of the
overall update time (1.27ms and 1.56ms for the small and
large worlds, respectively). Therefore, this factor actually
does not affect the performance until the world size be-
comes really large.

Although path planning is typically considered a
time-consuming activity, the planning time for our problem
is usually only small fractions of a second. This efficiency
is mainly due to the fact that we always confine the plan-
ning problem in a small window independent of the world
size. On the other hand, the planner may fail to find a fea-
sible path simply because the path cannot be entirely lie
inside the window. Therefore, there exists a tradeoff be-
tween completeness and efficiency. The choice of the sizes
for the valid window and the focus window in our experi-
ments are determined empirically for now. It would be a
subjective matter to determine their sizes, and they should
actually vary for machines with different processing
speeds.

The current computation bottleneck for our navigation
application is actually on graphics rendering. The frame
rate can easily become unacceptable for large worlds. This
is why we did not do experiments on a world much larger
than the current size. Therefore, in order to support visu-
alization of large virtual worlds with architectural settings,
we also need to consider the problem how to make good
use of occlusion to speed up rendering. This is also an ac-
tive research topic in computer graphics that is not ad-
dressed in this paper.

7. Conclusions and Future Work

Figure 7. Examples of RRT’s in the focus window
at different times in a large virtual world

Table 1. Experimental data for planner perform-
ance for different environments

P1 with
small
world

P2 with
small
world

P2 with
large
world

preprocessing time (ms) 4062 94 125
no. of total steps 1215 1202 3165
no. of planning requests 16 25 42
ave. time for each path
search request (ms)

275 50 83

ave. time for each path
smoothing (ms)

186 49 81

no. of window updates N/A 74 89
ave. time for each window
update (ms)

N/A 41 22



In this paper, we have proposed improvements to our
previous work on designing an intelligent navigation inter-
face for architectural walkthrough applications. We extend
the planner to consider the case of large virtual worlds by
proposing a planner that maintains a special form of dy-
namic roadmap (RRT) at run time. This roadmap construc-
tion is confined in the focus window that is updated on
demand as the viewpoint moves. Our experiments show
that the planner has the same degree of computation effi-
ciency as the previous planner with a static roadmap. This
efficiency is also retained for large virtual worlds in our
experiments. The benefits of using this type of intelligent
user interface (mainly on overall execution time) can there-
fore be successfully extended to large virtual worlds. We
also have analyzed the time complexity and report ex-
perimental data on various routines in path searches and
roadmap updates. We believe that the proposed planning
scheme is not only interesting for our navigation problem,
but also intriguing for on-line planning problems with a
large or unbounded world in robotics.

A main problem preventing us from doing experiments
with even larger environments is on the speed of graphics
rendering. In order to make our results be more applicable
to large worlds, graphics rendering acceleration techniques
accounting for large occlusions needs to be incorporated
into the experimental 3D browser. In addition, we believe
that the size of the valid window and focus window should
be made adaptive to CPU processing speed as well as user
navigation behavior.

Acknowledgments
This work was partially supported by grants from Na-

tional Science Council under contact NSC
89-2218-E-004-001.

References

[1] J. Barraquand, L. Kavraki, J.C. Latombe, T.Y. Li, and P.
Raghavan, “A Random Sampling Scheme for Path Plan-
ning,” in International Journal of Robotics Research, 16(6),
P759-774, December,1997.

[2] J. Barraquand and J. Latombe, “Robot Motion Planning: A
Distributed Representation Approach,”International Jour-
nal of Robotics Research, 10:628-649, 1991.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf, Computational Geometry: Algorithms and
Applications, Springer-Verlag, 1997.

[4] Chen, Mountford, and Sellen, “A Study in Interactive 3D
Rotation Using 2D Control Devices,” inProceedings of
Computer Graphics(SIGGRAPH88), 22(4):121-128 ,1988.

[5] S. M. Drucker and D. Zeltzer, “Intelligent Camera Control
in a Virtual Environment,” Graphics Interface’94, pp.
190-199, 1994.

[6] P. K. Egbert, and S. H. Winkler, “Collision-Free Object
Movement Using Vector Fields,” inIEEE Computer
Graphics and Applications, 16(4):18-24, July, 1996.

[7] A. Hanson; E. Wernert, “Constrained 3D navigation with
2D controllers,” inProceedings of the 8th IEEE Visualiza-
tion '97 Conference,1997.

[8] L. Hong, S. Muraki, A. Kaufman, D. Bartz and T. He, “Vir-
tual voyage: interactive navigation in the human colon,” in
Proceedings of Computer Graphics (SIGGRAPH 97), pp.
27-34, 1997.

[9] M.R. Jung, D. Paik, D. Kim, “A Camera Control Interface
Based on the Visualization of Subspaces of the 6D Motion
Space of the Camera,” inProceedings of IEEE Pacific
Graphics’98, 1998.

[10] L. Kavraki, P.Svestka, J. Latombe, and M. Overmars,
“Probabilistic Roadmaps for Fast Path Planning in
High-Dimensional Configuration Spaces,”IEEE Transac-
tion on Robotics and Automation, 12:566-580, 1996.

[11] J.J. Kuffner and J.C. Latombe. "Fast Synthetic Vision,
Memory, and Learning Models for Virtual Humans". In
Proceedings of CA '99: IEEE International Conference on
Computer Animation, Geneva, Switzerland, May 26-29,
1999.

[12] J. Kuffner, and S. LaValle, “RRT-Connect: An Efficient
Approach to Single-Query Path Planning,” inProceedings
of 2000 IEEE International Conference on Robotics and
Automation, May 2000.

[13] J. Latombe,Robot Motion Planning, Kluwer, Boston, MA,
1991.

[14] T.-Y. Li, L.K. Gan, and C.F. Su, “Generating Customizable
Guided Tours for Networked Virtual Environment,” inPro-
ceedings of 1997 National Computer Symposium (NCS’97),
Taichung. Dec.1997.

[15] T.-Y. Li, J.M. Lien, S.Y. Chiu, and T.H. Yu, “Automatically
Generating Virtual Guided Tours,” inProceedings of the
Computer Animation '99 Conference, Geneva, Switzerland,
pp99-106, May 1999.

[16] T.-Y. Li, and H.-K Ting ., “An Intelligent User Interface
with Motion Planning for 3D Navigation,” inProceedings
of the IEEE Virtual Reality 2000 Conference, March 2000.

[17] H. Lieberman, “Integrating User Interface Agents with
Conventional Applications,” inProceedings of ACM Con-
ference on Intelligent User Interfaces, San Francisco, Janu-
ary 1998.

[18] M. Maybury and W. Wahster (eds), Readings in Intelligent
User Interfaces, Morgan Kaufmann: Menlo Park, CA.

[19] J.H. Reif, “Complexity of the Mover's Problem and Gener-
alizations,” inProceedings of the 20th IEEE Symposium on
Foundations of Computer Science, pp. 421-427, 1979.

[20] B. Shneiderman and P. Maes, “Direct Manipulation vs. In-
terface Agents,”Interactions, 4(6): 42-61, Nov./Dec. 1997.

[21] D. Xiao, R. Hubbold, “Navigation Guided by Artificial
Force Fields, “ inProceedings of the ACM CHI’98 Confer-
ence, pp179-186, 1998.

[22] VRML97 International Standard, URL:
http://www.web3d.org/technicalinfo/specifications/vrml97/i
ndex.htm

[23] The Java3D and VRML working group,
http://www.vrml.org/WorkingGroups/vrml-java


