

A RECURSIVE CHAIN CODE

TO QUADTREE CONVERTING METHOD
WITH A LOOKUP TABLE

Zen Chen and I-Pin Chen

Department of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan, R.O.C

E-mail address: zchen@csie.nctu.edu.tw

ABSTRACT

We present a simple recursive method for
converting a chain code into a quadtree
representation. We generate the quadtree black
nodes recursively from the finest resolution level
to the coarsest resolution level. Meanwhile, at
each resolution level a new object border is
unveiled after the removal of the black nodes.
The chain code elements for this new object
border can then be easily generated. Thus, the
generation of the quadtree black nodes at one
level and the generation of the chain code
elements of the new object border both
constitute a basic cycle of the conversion process.
We also show the generations can be done with
the aid of a table lookup. Finally, our method is
shown to be better than the well-known Samet’s
method in terms of the total numbers of major
operations including node allocations, node
color filling, and node pointer linking.

1. INTRODUCTION

To present the chain code to quadtree conversion,
let us assume that the region (i. e., the grid cells)
on the right-hand side of a code element is inside
the object. Also, assume that the chain code is
not self-intersecting. The conversion is basically
a color-filling operation, that is, coloring black
on those nodes inside the object. There are four
popular existing methods : Samet [1], Mark and
Abel [2], Webber [3], and Lattanzi and Shaffer

[4]. These methods are all a two-phase method.
The major drawback in these two-phase method
is the need of merging of smaller nodes into
larger nodes. This is due to the lack of some
mechanisms for judging whether the border grid
cells are legal quadtree black nodes? It is not
difficult to figure out in Fig.1(a) that the parent
node containing the border grid cells 0231, 0232,
0233 is passed through by the chain code during
the chain code tracing, so the three cells can be
outputted as quadtree black nodes. However, it is
not so obvious to assess that the border grid cell
other than those shown in Fig. 1(a) are contained
in a larger quadtree black node, so neither of
them is qualified as a quadtree black nodes.

We shall present a simple method to determine
on the fly which border grid cells should be
outputted as legal quadtree black nodes, when
we tracing the chain. The removal of these black
nodes yields a new object border. This new
object border is represented by a new chain code
with the length-two code elements. Generation
of quadtree black nodes at one level and
generation of the chain code elements of the new
object border constitute a basic cycle of a
conversion process. The cycle of process is
repeated until that the quadtree black nodes at all
levels are generated. Figs. 1(a)-1(c) illustrate the
result of this recursive generation process.

2. RECURSIVE GENERATIONS OF
QUADTREE BLACK NODES AND NEW

CHAIN CODE ELEMENTS

 2

` (a)

 (b)

 (c)

Figure 1. (a) An object and its chain code CC4.
The shaded area is the pixel level black nodes of
QN4. The center points in the parent nodes are
marked as solid dots. The dash-line arrows
indicate the new code elements generated. (b)

The chain code CC3 and the quadtree nodes QN3.
(c) The chain code CC2 and the quadtree nodes
QN2.

Let QNi, i = N, N-1,...,0, be the set of quadtree
“black” nodes at the i-th level. Let CCi denote
the chain code of the object at the i-th level.
Here, we will classify the grid points at the
current resolution level into three types,
depending on whether it is a grid point at the
next coarser level, or the center point of the
parent node, or a midpoint of the grid line of the
parent node. We generate all levels of black
nodes, QNi, i=N, N-1,...,0 in a bottom up fashion.
In our method after the black nodes are
generated at each level, the other nodes at the
same level are automatically classified as white
nodes.

We generate the quadtree black nodes and the
new chain code element side by side. We have
observed that if parent node is cut through by the
chain code, then the black son nodes are legal
quadtree black nodes. Also the new code
elements associated with the new object border
after removal of black nodes can be determined
right away. Furthermore, we find that only the
four nodes belonging to a common parent are
needed in deciding whether they are the legal
quadtree black nodes or not? Therefore, it will
be shown that each time only four consecutive
code elements are required in a basic cycle of the
conversion process.

On the other hand, the starting point of the chain
code better be a grid point at the parent level,
after the removal of all black nodes found at the
current level because the chain code at the next
coarser level is defined over such grid points.
There are two lemmas concerning the validation
of quadtree black nodes during the chain code
scanning (refer to Fig. 2).

Lemma 1: If and only if any code element of CCi
enters the center point of a parent node, then
there will be one to three black nodes of QNi at

21 30

23

S

030

122033 032

310

312

201

203

S

1232

0310
0312

0122

0231

0232 0233

 3

the i-th level. The exact number of black nodes
depends on the actual pattern of the succeeding
code elements.

Lemma 2: If two consecutive code elements of
CCi are in the same direction and lie on the
border of a common parent node, then there will
be two to four black grid cells of QNi at the i-th
level. The exact number of quadtree black nodes
depends on the actual pattern of the succeeding
code elements.

So the two code elements are replaced with a
code element of a double length in the same
direction to be used at the next coarser level.

 (a) (b)

Figure 2. Illustrations for Lemma 1 (a) and
Lemma 2 (b).

When the above black nodes of QNi are
outputted, then a new object border is exposed
which can be represented by some (or none
when finished) new code element(s) at the next
coarser level, each with a double length. It
should be noticed that the new chain code may
contain pairs of code elements in opposite
directions and these pairs of elements cancel out
by themselves (see examples in Figs. 1(b) and
(c)). So we need a post-processing stage to
remove such code element to make sure that the
processed chain code will satisfy our assumption
of no self-intersection.

At the initial stage of the conversion, if the
starting point of the chain code of CCi at the
current level is not a grid point of its parent node,
then it is adjusted a new starting point in the way
as shown in Fig.3. Once we choose a grid point
as the starting point for scanning the chain code,

we can fetch four succeeding code elements to
analyze.

Now consider a typical code element pattern. Fig.
4 shows all the 19 possible combinations of at
most four code elements, assuming a starting
code element (marked by s) is in direction 1. Fig.
5 shows the generated black nodes (shown by
shaded areas), the generated code elements at the
next coarser level (shown by long arrows), and
the possible adjusted code elements at the
current level (shown by short arrows). They are
collected in a lookup table in Table 1. Therefore,
we can design a table lookup to generate the
black quadtree nodes and the new chain code
elements.

Figure 3. The different adjustments for the
starting point.

Figure 4. The 19 possible patterns of four
consecutive code elements whose starting code
element (labeled by S) is in the upward direction.

0

0
2

0
2 3

B W
? ?

B
? ?
B B B

W B

B B
W W

B B
B W

⇒

⇒

⇒

SSSS

 4

Figure 5. Four of the 19 possible code patterns
beginning with 0, together with the
corresponding quadtree black nodes (the shaded
region(s) at left), and the new code elements at
the next coarser level (the long arrow(s) at right).

3. PERFORMANCE COMPARISON

Basically, both the Samet’s method and our
method use the color filling operations to
generate the quadtree from the chain code.
However, these two methods are different in the
way of producing the true black nodes in the
quadtree. The following lemmas regarding the
performance can be obtained.

Table 1. The lookup table. The symbol “X”
denotes any value in the set (0,1,2,3) and the
symbol “-” denotes no output.

Input
code
pattern
of CCi

Output
Code
Pattern
of CCI-1

Remaining
code
elements
of CCi

Black
quadtree
nodes
of QNi

00XX 0 XX -
0100 0 10 3
0101 01 - 3
0102
0103 0 - 3
…. …. …. ….
33XX 3 XX -

Lemma 3: The total number of nodes expanded
(or generated) by the Samet’s method is larger
than that of the regular quadtree by a number
that is equal to the total number of nodes that are
deleted due to any node merges taking place.
The total number of nodes expanded by our
method is equal to that of the regular quadtree;
in fact, only the black nodes are generated and
the white nodes are added by default.

Lemma 4: The total number of color filling
operations in the Samet’s method is larger than
that of our method by a number that is equal to
the total number of nodes that are merged
multiplied by 1.25. (i.e., the total number of
black nodes deleted plus their re-colored parent
nodes)

Lemma 5: The total number of pointer links
constructed in the Samet’s method is larger than
that of our method by a number that is equal to
the total number of nodes that are merged
multiplied by 3. (i.e., the total number of pointer
links constructed between the parent nodes and
their child nodes before and after the node
merges)

Fig. 6 shows three representative object images
in which our method is overall better than the
Samet’s method in terms of the total numbers of
major operations including node allocations,
node color filling, and node pointer linking (refer
to Table 2). The overhead of our method is the
need of generating the chain code for each level.
We generated the new chain code using the look-
up table, so the processing is fast.

Figure 6. Three object images used for
performance comparison.

00

0100

0101

0103

 5

4. CONCLUSION

In this paper we have presented a simple
recursive method for converting a chain code
representation into a quadtree one. Lemmas for
the determination of the quadtree black nodes
are stated. The generation of the quadtree black
nodes and the generation of the chain code for
the new object border constitute a basic cycle of
the conversion process. We show the generation
can be done with a table lookup. Generally
speaking, our conversion method is better than
the Samet’s method in terms of the total
numbers of major operations including node
allocations, node color filling, and node pointer
linking.

5. REFERENCES:

[1] H. Samet, “Region representation: quadtree
from chain codes,” Communications of ACM 23,
pp. 163-170, 1980.

[2] D. M. Mark and D. J. Abel, “Linear
quadtrees from vector representations of
polygons,” IEEE Transactions on Pattern
Analysis and Machine Intelligence 7, pp. 344-
349, 1985.

[3] R.E. Webber, “Analysis of Quadtree Algorithms,”
Ph. D. dissertation, TR-1376, Computer Science
Department, University of Maryland, College Park, MD,
1984.

[4] M. R. Lattanzi and C. A. Shaffer, “An
optimal boundary to quadtree conversion
algorithm,” CVGIP: Image Understanding 53, pp.
303-312, 1991.

 (a) The tentative quadtree obtained after phase one of the Samet’s method.

(b) The final quadtree obtained by Phase 2 of the Samet’s method. Those nodes at the
bottom two levels are deleted after node merging.

2 4 6 7 9 10

1

13 1516 18 2021 24252628 29 31 32 34

11

12

8

23

22193 5 27 30 33 35

36

14 17

 6

 (Empty tree)

(c) The generation results obtained after passes 1 and 2 of our method; the
intermediate quadtree is empty, containing no black nodes.

(d) The generation results obtained after pass 3 of our method

(e) The final quadtree obtained after the inclusion of the default white node.

Fig. 7 The quadtree generation for Object 2 by the two methods. (a)-(b) The
generation results obtained by Phase 1 and Phase 2 of the Samet’s method. (c)-(e) The
generation results obtained by our method.

Table2 The comparison of the numbers of operations used by the Samet’s method and
our method.

Object
Number of operations

Method

Object 1 Object 2 Object 3

Node allocation 85 65 69
Node coloring 85 80 86
Pointer writing 168 188 204

Samet’s method

Node deallocation 0 60 68
Node allocation 85 5 1
Node coloring 85 5 1
Pointer writing 168 8 0

Our method*

Node deallocation - - -

*Refer to Lemmas 3 to 5.

