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ABSTRACT 
 

We present a simple recursive method for 
converting a chain code into a quadtree 
representation. We generate the quadtree black 
nodes recursively from the finest resolution level 
to the coarsest resolution level. Meanwhile, at 
each resolution level a new object border is 
unveiled after the removal of the black nodes. 
The chain code elements for this new object 
border can then be easily generated. Thus, the 
generation of the quadtree black nodes at one 
level and the generation of the chain code 
elements of the new object border both 
constitute a basic cycle of the conversion process. 
We also show the generations can be done with 
the aid of a table lookup. Finally, our method is 
shown to be better than the well-known Samet’s 
method in terms of the total numbers of major 
operations including node allocations, node 
color filling, and node pointer linking. 

 

1. INTRODUCTION 
 

To present the chain code to quadtree conversion, 
let us assume that the region (i. e., the grid cells) 
on the right-hand side of a code element is inside 
the object. Also, assume that the chain code is 
not self-intersecting. The conversion is basically 
a color-filling operation, that is, coloring black 
on those nodes inside the object. There are four 
popular existing methods : Samet [1], Mark and 
Abel [2], Webber [3], and Lattanzi and Shaffer 

[4]. These methods are all a two-phase method. 
The major drawback in these two-phase method 
is the need of merging of smaller nodes into 
larger nodes. This is due to the lack of some 
mechanisms for judging whether the border grid 
cells are legal quadtree black nodes? It is not 
difficult to figure out in Fig.1(a) that the parent 
node containing the border grid cells 0231, 0232, 
0233 is passed through by the chain code during 
the chain code tracing, so the three cells can be 
outputted as quadtree black nodes. However, it is 
not so obvious to assess that the border grid cell 
other than those shown in Fig. 1(a) are contained 
in a larger quadtree black node, so neither of 
them is qualified as a quadtree black nodes.  

We shall present a simple method to determine 
on the fly which border grid cells should be 
outputted as legal quadtree black nodes, when 
we tracing the chain. The removal of these black 
nodes yields a new object border. This new 
object border is represented by a new chain code 
with the length-two code elements. Generation 
of quadtree black nodes at one level and 
generation of the chain code elements of the new 
object border constitute a basic cycle of a 
conversion process. The cycle of process is 
repeated until that the quadtree black nodes at all 
levels are generated. Figs. 1(a)-1(c) illustrate the 
result of this recursive generation process.  

 

2. RECURSIVE GENERATIONS OF 
QUADTREE BLACK NODES AND NEW 

CHAIN CODE ELEMENTS 
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Figure 1. (a) An object and its chain code CC4. 
The shaded area is the pixel level black nodes of 
QN4. The center points in the parent nodes are 
marked as solid dots. The dash-line arrows 
indicate the new code elements generated. (b) 

The chain code CC3 and the quadtree nodes QN3. 
(c) The chain code CC2 and the quadtree nodes 
QN2.  

Let QNi, i = N, N-1,...,0, be the set of quadtree 
“black” nodes at the i-th level. Let CCi denote 
the chain code of the object at the i-th level. 
Here, we will classify the grid points at the 
current resolution level into three types, 
depending on whether it is a grid point at the 
next coarser level, or the center point of the 
parent node, or a midpoint of the grid line of the 
parent node. We generate all levels of black 
nodes, QNi, i=N, N-1,...,0 in a bottom up fashion. 
In our method after the black nodes are 
generated at each level, the other nodes at the 
same level are automatically classified as white 
nodes.  

We generate the quadtree black nodes and the 
new chain code element side by side. We have 
observed that if parent node is cut through by the 
chain code, then the black son nodes are legal 
quadtree black nodes. Also the new code 
elements associated with the new object border 
after removal of black nodes can be determined 
right away. Furthermore, we find that only the 
four nodes belonging to a common parent are 
needed in deciding whether they are the legal 
quadtree black nodes or not? Therefore, it will 
be shown that each time only four consecutive 
code elements are required in a basic cycle of the 
conversion process.  

On the other hand, the starting point of the chain 
code better be a grid point at the parent level, 
after the removal of all black nodes found at the 
current level because the chain code at the next 
coarser level is defined over such grid points. 
There are two lemmas concerning the validation 
of quadtree black nodes during the chain code 
scanning (refer to Fig. 2). 

Lemma 1: If and only if any code element of CCi 
enters the center point of a parent node, then 
there will be one to three black nodes of QNi at 
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the i-th level. The exact number of black nodes 
depends on the actual pattern of the succeeding 
code elements.   

Lemma 2: If two consecutive code elements of 
CCi are in the same direction and lie on the 
border of a common parent node, then there will 
be two to four black grid cells of QNi at the i-th 
level. The exact number of quadtree black nodes 
depends on the actual pattern of the succeeding 
code elements.  

So the two code elements are replaced with a 
code element of a double length in the same 
direction to be used at the next coarser level.   

 

 

 

  (a)   (b) 

Figure 2. Illustrations for Lemma 1 (a) and 
Lemma 2 (b). 

When the above black nodes of QNi are 
outputted, then a new object border is exposed 
which can be represented by some (or none 
when finished) new code element(s) at the next 
coarser level, each with a double length. It 
should be noticed that the new chain code may 
contain pairs of code elements in opposite 
directions and these pairs of elements cancel out 
by themselves (see examples in Figs. 1(b) and 
(c)). So we need a post-processing stage to 
remove such code element to make sure that the 
processed chain code will satisfy our assumption 
of no self-intersection.  

At the initial stage of the conversion, if the 
starting point of the chain code of CCi at the 
current level is not a grid point of its parent node, 
then it is adjusted a new starting point in the way 
as shown in Fig.3. Once we choose a grid point 
as the starting point for scanning the chain code, 

we can fetch four succeeding code elements to 
analyze.  

Now consider a typical code element pattern. Fig. 
4 shows all the 19 possible combinations of at 
most four code elements, assuming a starting 
code element (marked by s) is in direction 1. Fig. 
5 shows the generated black nodes (shown by 
shaded areas), the generated code elements at the 
next coarser level (shown by long arrows), and 
the possible adjusted code elements at the 
current level (shown by short arrows). They are 
collected in a lookup table in Table 1. Therefore, 
we can design a table lookup to generate the 
black quadtree nodes and the new chain code 
elements.  

 

 

 

 

 

Figure 3. The different adjustments for the 
starting point.  

 

 

 

 

 

 

Figure 4. The 19 possible patterns of four 
consecutive code elements whose starting code 
element (labeled by S) is in the upward direction.  
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Figure 5. Four of the 19 possible code patterns 
beginning with 0, together with the 
corresponding quadtree black nodes (the shaded 
region(s) at left), and the new code elements at 
the next coarser level (the long arrow(s) at right).  

 

3. PERFORMANCE COMPARISON 
 

Basically, both the Samet’s method and our 
method use the color filling operations to 
generate the quadtree from the chain code. 
However, these two methods are different in the 
way of producing the true black nodes in the 
quadtree. The following lemmas regarding the 
performance can be obtained. 

Table 1. The lookup table. The symbol “X” 
denotes any value in the set (0,1,2,3) and the 
symbol “-” denotes no output. 

Input  
code  
pattern 
of CCi 

Output  
Code  
Pattern 
of CCI-1 

Remaining 
code  
elements 
of CCi 

Black  
quadtree 
nodes 
of QNi 

00XX 0 XX - 
0100 0 10 3 
0101 01 - 3 
0102    
0103 0 - 3 
…. …. …. …. 
33XX 3 XX - 

 

Lemma 3: The total number of nodes expanded 
(or generated) by the Samet’s method is larger 
than that of the regular quadtree by a number 
that is equal to the total number of nodes that are 
deleted due to any node merges taking place. 
The total number of nodes expanded by our 
method is equal to that of the regular quadtree; 
in fact, only the black nodes are generated and 
the white nodes are added by default. 

Lemma 4: The total number of color filling 
operations in the Samet’s method is larger than 
that of our method by a number that is equal to 
the total number of nodes that are merged 
multiplied by 1.25. (i.e., the total number of 
black nodes deleted plus their re-colored parent 
nodes)  

Lemma 5: The total number of pointer links 
constructed in the Samet’s method is larger than 
that of our method by a number that is equal to 
the total number of nodes that are merged 
multiplied by 3. (i.e., the total number of pointer 
links constructed between the parent nodes and 
their child nodes before and after the node 
merges)  

Fig. 6 shows three representative object images 
in which our method is overall better than the 
Samet’s method in terms of the total numbers of 
major operations including node allocations, 
node color filling, and node pointer linking (refer 
to Table 2). The overhead of our method is the 
need of generating the chain code for each level. 
We generated the new chain code using the look-
up table, so the processing is fast.  

 

 

 

Figure 6. Three object images used for 
performance comparison.  
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4. CONCLUSION 
 

In this paper we have presented a simple 
recursive method for converting a chain code 
representation into a quadtree one. Lemmas for 
the determination of the quadtree black nodes 
are stated. The generation of the quadtree black 
nodes and the generation of the chain code for 
the new object border constitute a basic cycle of 
the conversion process. We show the generation 
can be done with a table lookup. Generally 
speaking, our conversion method is better than 
the Samet’s method in terms of the total 
numbers of major operations including node 
allocations, node color filling, and node pointer 
linking.  
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 (a) The tentative quadtree obtained after phase one of the Samet’s method. 

 

 

 

 

(b) The final quadtree obtained by Phase 2 of the Samet’s method. Those nodes at the 
bottom two levels are deleted after node merging.  
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      (Empty tree) 

(c) The generation results obtained after passes 1 and 2 of our method; the 
intermediate quadtree is empty, containing no black nodes. 

 

 

(d) The generation results obtained after pass 3 of our method 

 

 

(e) The final quadtree obtained after the inclusion of the default white node. 

Fig. 7 The quadtree generation for Object 2 by the two methods. (a)-(b) The 
generation results obtained by Phase 1 and Phase 2 of the Samet’s method. (c)-(e) The 
generation results obtained by our method.  

 

Table2 The comparison of the numbers of operations used by the Samet’s method and 
our method. 

 

Object
Number of operations

Method 

Object 1 Object 2 Object 3 

Node allocation 85 65 69 
Node coloring 85 80 86 
Pointer writing 168 188 204 

Samet’s method 

Node deallocation 0 60 68 
Node allocation 85 5 1 
Node coloring 85 5 1 
Pointer writing 168 8 0 

Our method* 

Node deallocation - - - 

 

*Refer to Lemmas 3 to 5. 


