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ABSTRACT 

Orthogonal subspace projection (OSP) approach has shown 
success in Magnetic Resonance image classification. The 
proposed approach of OSP can be divided into two main 
steps, removal of the unwanted signature an undesired 
signature annihilator followed by the use of matched filter. 
An undesired signature annihilator is used to separate the 
desired signature from the unwanted signatures so that the 
unwanted signatures can be eliminated via orthogonal 
subspace projection. Therefore, it requires a complete 
knowledge of the desired signature and the unwanted 
signatures  present in images. In this paper, an unsupervised 
orthogonal subspace projection (UOSP) approach is 
proposed where the only knowledge of the desired 
signature to be classified is required. UOSP comprises two 
processes. Target Generation Process (TGP) and Target 
Classification Process (TCP). The objective of TGP is to 
generate a set of potential target signatures from an 
unknown background, which will be subsequently 
classified by TCP. As a result, UOSP can be used to search 
for a specific target in unknown scenes. Finally, the 
effectiveness of UOSP in target detection and classification 
is evaluated by several MRI experiments. All experiments 
were under supervision of the expert radiologist. Results 
show that the cerebral tissue was segmented accurately into 
four images, tumor, gray matter, white matter and cerebral 
spinal fluid indicating the possible usefulness of this 
method. 

Index Terms  - Classification, Detection, Magnetic 
Resonance Imaging (MRI), Classification. Brain images, 
Tumor, Orthogonal subspace projection (OSP), 
Unsupervised OSP (UOSP), Target Generation Process 
(TGP), Target Classification Process (TCP). 

1. INTRODUCTION 

Magnetic Resonance Imaging (MRI) has become a useful 
modality since it provides unparallel capability of revealing 

soft tissue contrast as well as 3-D vis ualization. It produces 
a sequence of multiple spectral images of issues with a 
variety of contrasts using three magnetic resonance 
parameters, spin-lattice (T1), spin-spin (T2) and dual 
echo-echo proton density (PD). One potential application 
of MRI in clinical practice is the brain parenchyma 
classification and segmentation of normal and pathological 
tissue. It is the first step to address a wide range of clinical 
problems. By means of the volume, shapes and region 
distribution of the brain tissue, one can find the 
abnormalities that are commonly related to the conditions 
of heterotopias, lissencephaly, brain atrophy, and cerebral 
infarction. Over the past years many computer-assisted 
methods have been reported [1]-[11] such as neural 
networks [5]-[9], hybrid methods [10], knowledge-based 
techniques [11], etc. For example, neural networks have 
demonstrated their superior performance in segmentation 
of brain tissue to classical maximum likelihood methods; 
hybrid methods have shown a promise by combining 
imaging processing and model-based techniques in 
segmentation [10]; knowledge-based techniques allows one 
to make more intelligent classification and segmentation 
decisions. [11]. 

In image classification it generally requires a priori 
knowledge about the objects to be classified. Although it 
can be done in an unsupervised fashion, the results are 
generally not so good as supervised methods. It will be 
even worse if the objects are relatively small or the image 
background varies with pixel-by-pixel. Obtaining such 
prior information is not realistic in many practical 
applications. In this paper, we present an unsupervised 
orthogonal subspace projection (UOSP) approach that is 
based on spectral feature correlation of MR images. UOSP 
is derived from the concept of Orthogonal Subspace 
Projection (OSP), which has shown success in Magnetic 
Resonance image classification. [12-13] OSP can be 
divided into two main steps, removal of the unwanted 
signature an undesired signature annihilator followed by 
the use of matched filter. An undesired signature 



 
 

 

annihilator is used to separate the desired signature from 
the unwanted signatures so that the unwanted signatures 
can be eliminated via orthogonal subspace projection. 
Therefore, it requires a complete knowledge of the desired 
signature and the unwanted signatures  present in images. 
UOSP does not require knowing the number of signatures 
nor the undesired signatures where the only knowledge of 
the desired signature to be classified is required. UOSP 
makes use of two processes, Target Generation Process 
(TGP) and Target Classification Process (TCP) to 
accomplish the task. TGP is first used to automatically 
generate a set of potential targets from an unknown 
background. Then these generated targets are subsequently 
classified by TCP. The objective of TGP is to produce 
potential targets to be used for TCP. These targets may 
include interferers as well as unwanted objects. If we 
assume that the initial target is 0T , TGP then projects all 

image pixel vectors into the space orthogonal to 0T . A 
pixel vector with the maximum projection in the 
orthogonal projection space will be selected as a first target 
signature, denoted by 1T  other than 0T . Since 1T , 
produces the largest magnitude of projection in the 
orthogonal complement of 0T , these two signatures 0T  

and 1T , must have most distinct spectral features in the 
sense of orthogonal projection. The same procedure is then 
repeated again to generate one target at a time. The 
procedure converges when a stopping criterion is satisfied. 
At this point, the set of the generated targets will be used 
for target classification carried out by TCP. The 
classification implemented in TCP is a little bit different 
from the class labeling used in remote sensing [14] and 
pattern classification [15]. It is based on the abundance 
estimated for a particular target signature resident in each 
pixel vector. As a result, the classification results are 
presented by gray-scaled images where the gray scale of 
each pixel is represented by estimated target abundance 
contained in that pixel. The criterion to terminate TGP is 
based on the orthogonal projection correlation between a 
target and a set of targets, called orthogonal projection 
correlation index (OPCI). OPCI is gradually reduced as the 
number of generated targets grows. So, OPCI is 
monotonically decreasing and converges to zero. Using 
OPCI as a stopping rule, TGP will terminate its process 
when OPCI is sufficiently small. 

In order to demonstrate the performance of OSP and UOSP 
in MR image classification, a series of experiments using 
brain MR images are conducted. The experimental results 
show that the cerebral tissue was classified accurately and 
show that UOSP significantly improves the classification 
performance of OSP. 

The remainder of this paper is organized as follows. 
Section II formulates the MR image pixel classification as 
a linear mixing problem. Section III describes the OSP 
approach. Section IV describes the UOSP approach. 
Section V conducts a set of experiments to evaluate the 
performance of OSP and UOSP in MR classification. 
Section VI concludes some comments.  

 

2. LINEAR SPECTRAL MIXTURE MODEL 

Linear spectral unmixing is a widely used method in 
remote sensing community to classify and quantify 
multicomponent constituents. It views a 
multi/hyperspectral image as an image cube where each 
pixel is considered to be a column vector and modeled as a 
linear spectral mixture of substances resident in the pixel. 
More precisely, assume that there are p spectrally distinct 
substances { }pmmm L,, 21  in the image and r is an 

image pixel represented by an l × 1 column vector where l 
is the number of spectral bands. Let M be an l × p signature 
matrix, denoted by [ ]psss L21  where s j is an l × 1 column 

vector represented by the spectral signature of the j-th 
substance jm  in the pixel vector r. It further assumes that 

α is a p × 1 abundance column vector associated with M 
given by α = (α1 α2 … αp )T where αj denotes the fraction 
of the j-th signature s j in the pixel vector r. Then a linear 
spectral mixture model for r is given by 

 

 nMar += .  (1) 

The n in Eq. (1) is an l × 1 column vector and can be 
interpreted as either additive noise or measurement error. 
The linear spectral unmixing is to develop a method that 
finds or unmixes the abundance vector α  from the pixel 
vector r through Eq. (1).  

Eq. (1) can be used to model MR images. In this case, r is 
an MR image pixel, [ ]psssM L21=  is a signature 

matrix made up of the spectral signatures of tissue 
substances { }pmmm L21  in MR images such as white 

matter, gray matter, cerebral spinal fluid, tumor etc. and the 
associated abundance vector α  represents the abundance 
fractions of these p spectral signatures { }psss L21  

present in the pixel vector r. 

3. ORTHOGONAL SUBSPACE 

PROJECTION-BASED APPROACHES 

Many unmixing methods to solve Eq. (1) have been 
proposed in the past [20-22]. Of particular interest is the 
OSP approach that has been successfully applied to 
hyperspectral images. The idea of OSP is to divide the p 
substances { }pmmm L21  into two classes, desired 

substance class and undesired substance class. Without loss 
of generality we assume that the desired substance class 
contains only one single substance pm  and undesired 

substance class consists of the remaining substances, 
denoted by { }121 −pmmm L . Then we can rewrite Eq. (1) 

as 

 

 nU?dar ++= p .  (2) 

where psd = , ( )121 −= psssU L , αp is the abundance 

fraction of the desired spectral signature d and 



 
 

 

)( 121 −= p...aaa?  is the abundance vector representing 

fractions of the undesired spectral signatures { }121 −psss L . 

Since the desired signature d is separated from the 
undesired signatures { }121 −psss L  in Eq. (2), we can 

design a subspace projection operator to eliminate 
{ }121 −psss L  before extracting d. One such a projector is 

the least squares operator denoted by ⊥
UP  given by 

 

 #
U UUI −=⊥P .  (3) 

where TT UU)(UU # 1−=  is the pseudo-inverse of U and 

the notation TU  in ⊥
UP  indicates that the projector ⊥

UP  

maps the observed pixel r into the space ⊥>< U , the 

orthogonal complement of >< U . Premultiplying Eq. (2) 
by ⊥

UP  yields 

 

 ndanU?dar UUUUU
⊥⊥⊥⊥⊥ +=++= PPPPP pp .  (4) 

where the undesired substances { }121 −pmmm L  have 

been eliminated via ⊥
UP  and the original noise is also 

suppressed to nU
⊥P  by ⊥

UP . As a result, Eq. (4) 
represents a standard signal detection problem. If the 
optimal criterion for the signal detection specified by (4) is 
chosen to maximize the signal-to-noise ratio (SNR)  
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the maximum SNR  of Eq. (5) can be obtained by a matched 
filter, denoted by MFd with d being the desired matched 
signal. 

Based on Eqs. (4)-(5), a mixed pixel classification can be 
carried out by a two-stage process, i.e., an undesired 

signature annihilator ⊥
UP  followed by matched filter, MFd. 

More precisely, if we want to classify a desired signature d 

in a mixed pixel described by Eq. (1), we first apply ⊥
UP  

to Eq. (2) to eliminate U, then use the matched filter MFd 

to extract d from Eq. (4). The operator coupling ⊥
UP  with 

MFd is called an orthogonal subspace classifier, POSP the 
one derived in [18] and denoted by 

 

 ⊥⊥ == UUd d PPP T
OSP MF .  (6) 

4. UNSUPERVISED SUPERVISED ORTHOGONAL 

SUBSPACE PROJECTION (UOSP) 

As shown in Eq.(6), OSPP  requires a complete knowledge 

of the undesired signatures in U. In many practical 
applications, it is difficult to determine U. In this section, 

we present an unsupervised OSP (UOSP) approach to 
target detection and classification which requires no prior 
knowledge about the number of signatures in U. It 
automatically and successively generates unwanted 
signatures , which also include interferers and background 
clutter.  

In the target generation process, we suppose that there is  a 
desired target of interest to be classified, 0T . This target 
can be either directly extracted from the image scene or 
obtained from spectral library. Other than 0T  there is no 
prior knowledge required for information about how many 
signatures within an image. UOSP begins with using the 
desired target signature 0T  as an initial target. Then an 

orthogonal subspace projector ⊥
0TP  is employed to project 

all image pixel vectors into the orthogonal complement 
space of >< 0T , denoted by ⊥>< 0T . The maximum 

length of the pixel vector in ⊥>< 0T  corresponds to the 

maximum orthogonal projection with respect to 0T . This 

pixel vector will be selected as a first target denoted by 1T . 

The reason for this selection is that 1T  will have the most 

distinct features from 0T  because 1T  in ⊥>< 0T  has 

the largest magnitude of the projection produced by ⊥
0TP . 

Then an OSP classifier OSPP = ⊥
UT PT

0  via Eq. (6) with 

1TU =  is applied to the image. If the resulting images 

show the target 0T  clearly, the 0T  is declared to be 
detected and classified. Otherwise, another orthogonal 
subspace projector ⊥

)( 10 TTP  is applied again to the original 

image by projecting all  image pixel vectors to the space 
orthogonal to 0T  and 1T . Once again, the pixel vector 

with maximum length in the space ⊥>< 10 ,TT  will be 
selected for a second target denoted by 2T . This is then 

followed by an OSP classifier ⊥= )(0 21TTT PP T
OSP  

with )( 21 TTU =  applied to image. If the resulting 
image does not clearly show the target 0T , the above 

procedure will be repeated again to find a third target 3T , 

fourth target 4T , etc. until the target 0T  is detected. 
Since we do not know how many targets should be 
generated, OSP classifier must be applied every time as an 
new target is generated. Fortunately, this laborious TGP 
can be avoided provided that there is a reliable stopping 
rule to determine how many targets needed to be generated 
target is sufficient for target detection and classification. In 
the following, we will propose such a criterion on the basis 
of the correlation between the target 0T  and the 

projection ⊥
UP . 

Let )( 21 ii TTTU K=  be the thi  target signature set 
used for OSP classifier in the i-th stage. We then define the 
orthogonal projection correlation index (OPCI) by 
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Since ii UU ⊂−1 , 00100 1
TTTT UU

⊥
−

⊥
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T
i ηη  for all 

i's. This implies that the sequence }{ 00 TT U
⊥

i
PT  is 

monotonically decreasing at i. In other words, OPCI 
sequence }{ iη is monotonically decreasing at i. Using this 
property as a stopping criterion, the TGP can be given 
below. 

5. EXPERIMENTAL RESULTS 

A set of multispectral MR brain images was used to 
evaluate the performance of OSP and UOSP. It consists of 
MR images acquired from a patient with abnormal 
physiology (shown in Fig. 1) using four bands with 
resolution 8-bit gray level and 256 by 256 pixels. 
T1-weighted and T2-weighted images were acquired for 
band one and two. PD-weighted and Gd -DTPA images 
were acquired for band three and four.  The slice thickness 
of all MR images are 2mm and axial section were taken 
from Signa 1.5T SYS#GEMSOW. All experiments were 
under supervision of a neuroradiologist. 

The radiance spectra of four cerebral tissues, gray matter 
(GM), white matter (WM), cerebral spinal fluid (CSF) and 
tumor used for OSP and UOSP are shown in Fig. 2. All 
spectra were extracted directly from the MR images and 
verified by experienced radiologis ts. Fig.3 show the 
classification results of OSP based on the four images in 
Fig. 1 where the images labeled by (a), (b), (c) and (d) 
were generated respectively by using GM, WM, CSF and 
tumor as desired signatures d in the classifiers while the 
other three signatures were made up to form the undesired 
signature matrix U. Fig. 4 demonstrates the classification 
results of UOSP. Compared to Figs. 3, the unsupervised 
OSP-based classifiers performed better than OSP-based 
classifiers. As a final comment, in order to evaluate OSP 
and UOSP in all aspects only one representative MR image 
sequence was studied for experiments in this paper. In fact, 
more experiments were also conducted for performance 
evaluation. The results draw similar conclusions.  

6. CONCLUSION 

In this paper, we present an Unsupervised Orthogonal 
Subspace Projection (UOSP) approach to target detection 
and classification, which requires no prior knowledge 
about signatures (particularly, the number of signatures). 
UOSP implements a two-stage process, TGP and TCP. TGP 
extracts potential targets from unknown image scenes, 
which may include interferers, unwanted targets, natural 
background signatures and clutter. Then these generated 
targets are subsequently classified by TCP. UOSP is 
derived from the concept of Orthogonal Subspace 
Projection (OSP), which has shown success in Magnetic 
Resonance image classification. OSP views an MR image 
sequence as a multispectral image cube and models each 
pixel vector as a linear mixture of tissue substances 
resident in the MR pixel vector. Unlike the traditional 
image classification techniques, which are carried out on a 

pure pixel basis, OSP-based classifiers are mixed pixel 
classification techniques. They use the linear mixture 
model to generate a fractional image for each object 
required for classification. The advantages of mixed pixel 
classification have been demonstrated in the experiments. 
Brain MR images segmentation is the critical step in the 
analysis of brain pathology. Experimental results have 
shown that the UOSP technique was able to correctly 
classify the cerebral tissue into four-image gray matter, 
white matter, cerebral spinal fluid and tumor indicating the 
promising possibilities of this method. 
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 (c) (d) 

Fig. 1. The MR images of the bra in. Axial section. (a) 
T1-weighted image; (b) T2-weighted image; (c) 
Proton density image; (d) Gd -DTPA  
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Fig. 2. Four bands radiance spectrum.  

 



 
 

 

  

 (a) (b) 

  

 (c) (d) 

Fig. 3. Classification results o f OSP. (a) gray matter; 
(b) white matter; (c) cerebral spinal fluid, (d) tumor.  

 

 

  

 (a) (b) 

  

 (c) (d) 

Fig.4. Classification results of UOSP. (a) gray matter; 

(b) white matter; (c) cerebral spinal fluid, (d) tumor.  
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