
A Multi-Resolution Interactive Previewer
for Volumetric Data on Arbitrary Meshes

Oliver Kreylos Kwan-Liu Ma Bernd Hamann
Center for Image Processing and Integrated Computing (CIPIC)

Department of Computer Science
University of California, Davis

One Shields Avenue, Davis, CA 95616–8562
{kreylos,ma,hamann}@cs.ucdavis.edu

Abstract

In this paper we describe a rendering method suitable for
interactive previewing of large-scale arbitary-mesh volume
data sets. A data set to be visualized is represented by a
“point cloud,” i. e., a set of points and associated data val-
ues without known connectivity between the points. The
method uses a multi-resolution approach to achieve interac-
tive rendering rates of several frames per second for arbitrar-
ily large data sets. Lower-resolution approximations of an
original data set are created by iteratively applying a point-
decimation operation to higher-resolution levels. The goal of
this method is to provide the user with an interactive nav-
igation and exploration tool to determine good viewpoints
and transfer functions to pass on to a high-quality volume
renderer that uses a standard algorithm.

1 Introduction

Current visualization methods for arbitrary-mesh, volumet-
ric data sets do not allow interactive rendering, or even low-
quality previewing, of large-scale data sets containing several
million grid points. In most cases, a scientist creates or mea-
sures such a data set without a-priori knowledge of where to
find the features she is looking for; sometimes, even without
knowing what those features are. Volume visualization has
proven to be a very helpful tool in these situations. But
without interactive navigation and exploration tools, find-
ing features in a very large data set and highlighting them
using customized transfer functions is very difficult and time-
consuming.

If images of a data set could somehow be rendered at inter-
active rates, even at relatively poor quality, the navigation
process could be sped up considerably.

1.1 Related Work

There are several basic rendering methods for arbitrary-
mesh volumetric data sets that are geared towards gener-
ating high-quality images at the expense of rendering time.
These methods include the ray casting algorithm described
by Garrity [2], the cell projection algorithm discussed by
Lichan and Kaufman [5], the plane-sweep modification of
the ray casting algorithm invented by Silva et al. [7], the
adaptation of the splatting algorithm for non-rectilinear vol-
umes developed by Mao [3], the polygonal approximation to
ray casting presented by Shirley and Tuchman [4], and the
slicing approach described by Yagel et al. [6].

Researchers have tried optimizing these algorithms follow-
ing different approaches. Probably the easiest optimization

is subsampling in image space, by generating small images
and duplicating pixels using some reconstruction filter. A
more sophisticated approach is utilizing graphics hardware
for volume rendering. This has been a major success for rec-
tilinear data sets, where 3D texture mapping can be used
to generate images at interactive rates [8]. Yagel et al. [6]
developed a similar method that generates slices of tetra-
hedral mesh data sets and uses hardware-assisted polygon
rendering to generate images of and composite these slices.
There has also been a considerable amount of work on uti-
lizing massively parallel supercomputers to speed up volume
rendering [1, 9, 11].

1.2 Interactive Previewing of Large-Scale Volume
Data Sets

We describe a new rendering method for irregular volume
data sets that uses multiresolution approximations to trade
off image quality against rendering speed. This method does
not use the topology information contained in irregular data
sets, but attempts to reconstruct images of a data set by
looking at the data values at grid vertices only. Obviously,
this method only generates approximations, but experiments
show that the quality of the generated images, combined
with the fact that these images are generated rapidly, is
more than sufficient to allow the user to detect and high-
light features in a data set quickly, see section 5. After good
viewpoints and transfer functions have been determined in
the previewing phase, those are passed on to either a high-
accuracy rendering method [10] or a high-performance ren-
dering method [11].

1.3 Throwing Away the Topology

To allow rapid rendering of approximations of an arbitrary-
mesh data set, our algorithm does not take the topology of
a given grid into account. Instead, it treats the data set as a
cloud of points (with associated data values) without known
connectivity. Of course, doing so radically decreases the im-
age quality: without knowledge of the vertex connectivity,
any rendering can only be an approximation of the correct
image. On the other hand, rendering a point cloud has the
following benefits:

1. Since it is only an approximation to begin with, one can
select a convenient approximation method that utilizes
graphics hardware.

2. The algorithm described in section 2 can easily be par-
allelized for shared-memory, multi-processor graphics
workstations.

3. It is comparatively easy to decimate a point cloud to
generate a hierarchy of approximations at multiple lev-
els of resolution.

Using these optimizations, and selecting the appropriate hi-
erarchy level for the user’s demands, allows to create an
algorithm that renders approximations of arbitrarily large
data sets at interactive frame rates.

2 Point-Based Volume Rendering

The major problem of point-based volume rendering is to
generate a continuous image. Rendering all points in the set
independently, e.g. using a splatting method, usually does
not work. In many irregular data sets, the distances between
neighbouring points vary over several orders of magnitude;
drawing the point cloud with a fixed-size splatting kernel
would induce holes in the image in sparse regions and over-
painting in dense regions of the data set.

Using variable-shape splatting kernels could solve the
problem, but finding out the correct shape to use for a given
point is a major task in itself when the connectivity of the
points is unknown.

2.1 Rendering a Point Cloud

Our algorithm follows the following basic idea to “fill in”
pixel values between neighbouring points:

1. A given point set is transformed such that the viewing
direction is along the negative z-axis. This step, called
“transformation,” is an additional step to optimize later
stages of the algorithm.

2. The point set is subdivided into thin “slabs” that are
orthogonal to the viewing direction, i. e., each slab is
of nearly constant z value. We refer to this step as
“slicing.” Slicing is done adaptively to take the varying
point density in a data set into account.

3. The slabs are converted into a continuous representa-
tion (a triangle mesh) by creating the Delaunay trian-
gulation of all points included in the slab. We call this
step “meshing.”

4. The meshes associated with each slab are rendered
and composited in back-to-front order using hardware-
accelerated polygon rendering and alpha blending. This
step is appropriately called “rendering.”

These four steps describe a four-stage rendering pipeline,
shown in Figure 1.

Slicing Meshing Rendering
Transfor-
mation

Point
Cloud

Transformed
Point Cloud

Slabs Triangulations Image

Figure 1: The four-stage rendering pipeline defined by our
algorithm.

2.2 The Slicing Process

After the point set has been transformed according to step 1,
the set is adaptively sliced into thin slabs using the following
strategy, see Figure 2:

1. The initial slab contains all points and extends from
the minimal to the maximal z value of the point set’s
bounding box.

2. If a given slab contains less than a pre-defined number
of points, or if the slab is “thinner” than a pre-defined
thickness δz, the slab is not subdivided any further but
passed on to the meshing step. (Actually, the parame-
ter δz is implicitly defined by a maximum subdivision
depth.)

3. Otherwise, the slab is sliced into two slabs of half its
original thickness. The points inside the original slab
are distributed among the two new slabs, and both new
slabs are sliced again recursively.

In our implementation, the point set is stored in an ar-
ray of fixed size; each slab is associated with a subarray
of points. When slicing a slab, all points in that subarray
are re-arranged using a quicksort median step. This possibly
involves swapping many points during slicing, but it results
in the subdivided slab being represented by two consecutive
subarrays of points. This increases locality of reference in
later slicing steps and in the meshing and rendering stages.
Experiments have shown that the reduction in runtime due
to higher cache coherency outweighs the cost of swapping
the points.

1) 2) 3)

1/1 1/2 1/2 1/2 1/41/8 1/8

Figure 2: Adaptively slicing a point set into thin slabs.
1) The initial slab; 2) after one subdivision; 3) final state
after three subdivisions. In all three images, the viewing
direction is left-to-right. The numbers below each image
represent the relative thicknesses of the respective slabs.

2.3 The Meshing Process

After a thin-enough slab has been constructed by the slicing
step, it is passed on to the meshing step. This step creates
a continuous representation of the points contained in the
slab by calculating their Delaunay triangulation.

We decided to let the algorithm treat each slab as a sin-
gle planar triangulation, located halfway between the slab’s
minimal and maximal z values. To achieve this, all points
inside the slab are projected onto the triangulation’s plane.
In our implementation, all points are orthogonally projected
in direction of the z axis, and the values associated with the
points are not changed in the process.

The reason for keeping the point values unchanged is the
fact that a triangulation is not meant to be an approxima-
tion of a cutting plane through the volume, but it is an ap-
proximation of the finite-thickness slab itself. If the former

was our goal, the influences of points on the triangulation
should be weighed by their distances from it; for our pur-
poses, a slab is more accurately represented when using the
original point values.

One could imagine the points inside a slab being embed-
ded in clear plastic; viewing the slab from different directions
does change the points’ relative positions, but not their val-
ues.

Since the planes of all triangulations are orthogonal to
the viewing direction, the projections of the points onto the
screen are not influenced by this additional projection step
when using a parallel viewing projection, and they are only
slightly distorted when using a perspective viewing projec-
tion, see Figure 3.

Viewing direction

Slab

Figure 3: Projecting all the points inside a slab to the center
plane of the slab. Because the projection direction is parallel
to the viewing direction, image distortion is minimal.

By projecting all points in a slab, the depth ordering of
points is destroyed. To generate a high-quality image of a
slab, one would have to take this into account and somehow
evaluate and save the opacity and color contributions of the
cells being “flattened out” by the projection. Our goal, how-
ever, is to preview the volume data; experiments have shown
that ignoring the influences of projecting the points onto the
final image yields sufficient image quality for our purposes.

After the projection, our algorithm calculates a Delaunay
triangulation of all (projected) points in a slab. To render
more consistent images, we want all triangulations to extend
to the point set’s bounding box. Our algorithm achieves this
by calculating the intersection polygon between a triangula-
tion’s plane and the point set’s bounding box, and inserting
the vertices of that intersection polygon into the triangula-
tion as well, see Figure 4.

The algorithm we use to create a Delaunay triangulation is
the randomized incremental algorithm described by Guibas
et al. [12].

2.4 The Rendering Process

After the meshing process has created a Delaunay triangu-
lation of the points in a slice, this triangulation is rendered.

To render a single triangle, we convert the data values
associated with its vertices to color and opacity pairs using
a user-defined transfer function, and then draw the triangle
into the frame buffer using Goraud shading and α-blending,
as provided by standard graphics libraries like OpenGL.

1) 2)

Figure 4: Creating the Delaunay triangulation of a slab.
1) The points inside a slab and the intersection of the tri-
angulation’s plane and the point set’s bounding box (bold);
2) the resulting Delaunay triangulation.

Since the slicing process is designed to generate slabs in
back-to-front order, and all request queues are ordered by
the items’ z-coordinates, the triangulations will be created
and rendered in back-to-front order as well. Therefore, using
the OpenGL BLEND operator will create an approximation of
a ray casting rendering of the data set.

2.5 Visible Artifacts

The major cause of visible artifacts in resulting images is the
fact that each of the slabs generated by the slicing process
is triangulated and rendered independently. This can lead
to the effect that the image of one triangulation is not in-
fluenced by a point that is very close to the triangulation in
object space, but happens to be inside a different slab, see
Figure 5.

Since the two slabs depicted in Figure 5 are rendered in-
dependently, the color and opacity values are interpolated
linearly between points P1 and P2. In a correct rendering,
the values would have to be interpolated between points P1

and P3, and then between points P3 and P2. But, because
point P3 is located in a different slab, the algorithm is obliv-
ious to this fact.

Slab 1

Slab 2
P1

P2

P3

Linear Interpolation

Viewing Direction

Figure 5: Potential artifacts in resulting images. Inside
slab 2, color and opacity values are wrongly interpolated
between points P1 and P2.

These artifacts are especially visible when a slab contains
only a small number of points, or when all points are clus-
tered in a small region of the triangulation’s intersection

with the bounding box of the point set. In these cases, the
meshing process connects the points to the vertices on the
triangulation’s boundary, and the resulting long and thin
triangles will “smear out” the color values all the way to the
boundary.

The distinct appearance of these visual artifacts is, in
some sense, beneficial: it is hard to misinterpret them as
features in a data set. Since detecting and emphasizing fea-
tures present in a data set is the major goal of our algorithm,
it is usable in spite of these distortions. The images pro-
duced are not intended to be used “as is,” but they provide
help in navigating through a large data set, and in finding
interesting viewpoints and transfer functions to pass on for
subsequent high-quality renderering.

3 Parallel Rendering

The serial implementation of our algorithm, as described in
section 2, is already capable of rendering small data sets
(consisting of several thousand points) on a standard graph-
ics workstation, e. g., an SGI O2, at interactive rates of sev-
eral frames per second, see section 5.

To improve the efficiency of the algorithm, we decided
to parallelize it for use on multi-processor shared-memory
graphics workstations, like SGI Onyx2 workstations. To
distribute the workload among the processors, we exploit
both functional parallelism inside the rendering pipeline and
object-space parallelism.

3.1 Functional Parallelism

To exploit functional parallelism, we decouple the rendering
pipeline as shown in Figure 1 by creating separate threads
for each stage and connecting the stages by request queues.

The first pipeline stage is handled by a single thread, be-
cause it requires only a very short amount of time, and paral-
lelizing it would incur too much overhead. The second and
third pipeline stages are represented by a pool of worker
threads. The final pipeline stage is also done by a single
thread, because the triangulated slices have to be rendered
in order, and the OpenGL implementation available to us
does not support concurrent rendering into a single frame
buffer. The overall structure of our parallel pipeline is shown
in Figure 6.

Point
Cloud

Image

Transfor-
mation Slicing

Slicing

Slicing

Meshing

Meshing

Meshing

Rendering

Slicing
Request
Queue

Meshing
Request
Queue

Rendering
Request
Queue

Figure 6: The parallel rendering pipeline defined by our al-
gorithm.

One detail of our parellel rendering pipeline is not shown
in Figure 6: in order to parallelize the inherently recursive
slicing process, a slicer thread can also place a slicing request
to the slice request queue. If a slicer thread determines that
a slab is thin enough or contains few enough points to render,
it will put an entry into the meshing request queue. If, on
the other hand, the slab has to be subdivided further, it
splits the slab and places two new slicing requests, one for

each of the two generated slabs, to the slicing request queue.
By following this strategy, we achieve good load balancing
between the slicing threads.

3.2 Object-Space Parallelism

The threads in the slicing and meshing pipeline stages op-
erate independently of each other. Therefore, we achieve
object-space parallelism: as soon as a slab is subdivided into
a “front” and a “back” portion, those can be processed in
parallel. In the meshing process, all slices are independent
of each other and can be created in parallel.

3.3 Comparison with the Serial Algorithm

As to be expected, the parallel version of our algorithm is
considerably faster than the serial version when executed on
a shared-memory multi-processor graphics workstation. We
have compared the runtimes on a four-processor SGI Onyx2
workstation, and the parallel algorithm cuts down rendering
time by a factor of about four, yielding a parallel efficiency
of about 90%.

It is more surprising that even on a single-processor work-
station the parallel version is faster than the serial one. We
believe that the multi-threaded version overlaps the pro-
cesses of mesh creation and mesh rendering. The latter is
done completely in hardware, and in the serial version the
CPU has to wait for the graphics subsystem to finish ren-
dering, whereas the parallel version can continue to work in
the slicing or meshing pipeline stages.

4 Multiresolution Rendering

Even after having parallelized the volume renderer, it is still
not fast enough to render very large data sets containing mil-
lions of points. The reason for this is that the methods used
in parallelization do not scale well beyond small numbers of
processors in a shared-memory system.

To achieve our goal of interactive rendering of very large
data sets, we have to create smaller approximations to those
data sets first and render them instead. When creating a
multiresolution approximation hierarchy, the program (or
the user) can always specify an appropriate resolution level
to trade off image quality against rendering time.

4.1 Creating a Hierarchy of Approximations

To create a hierarchy of approximations, we start with the
point set of the original data set (and call it level 0) and
perform a point decimation algorithm. We call the result
level 1 and repeat the decimation algorithm for level i to
generate level (i + 1), and so forth. This process termi-
nates when the result of the decimation algorithm is a suffi-
ciently small data set. With current computer performance
and interactive rendering in mind, “small” means that the
coarsest-resolution level should contain only a few thousand
points.

4.2 The Decimation Algorithm

Finding a sufficiently good representation of a given point
set using only a fraction of the original points is difficult, es-
pecially when the original points are not aligned on a regular
grid. In that case, the algorithm could just sub-sample the
grid (by only choosing every other point) and would generate
a meaningful approximation (modulo aliasing).

In the case of arbitrary-mesh data sets, points are not
“aligned” and generally do not form a lattice that could be
sub-sampled easily. Even worse, point density might vary
over several orders of magnitude in a single data set.

Therefore, we need an algorithm that resembles the sub-
sampling approach for regular grids, in the sense that it
keeps the relative point densities of an approximation similar
to the relative point densities of the original data set.

The algorithm we chose to preserve point densities is
based on maximum independent sets. To create an approxi-
mation, we first calculate a Delaunay tetrahedrization of the
original data set. This results in a tetrahedral mesh where
each point is connected to all its nearest neighbours by an
edge.

As a second step we invoke a “mark-and-sweep” algorithm
that extracts the maximum set of points such that no two
points in the set are direct neighbours of each other in the
original data set, see Figure 7.

1) 2)

3) 4)

Figure 7: Creating a lower-resolution approximation of
a point set by extracting the maximum independent set.
1) The original point set; 2) the original set’s Delaunay tri-
angulation; 3) the point set’s maximum independent set (in-
cluded points are circled); 4) the decimated point set.

The mark-and-sweep algorithm works as follows: we as-
sume that all points in the original set are coloured either
black, grey, or white. Initially, all points are black. The
algorithm performs the following steps:

1. Place any point from the set into a queue Q.

2. As long as there are points in Q, perform the following
steps:

(a) Grab the first point p from Q.

(b) If p is black, add it to the result set and colour all
its direct neighbours white.

(c) If p is not grey, add all its direct neighbours to
the queue Q.

(d) Colour p grey.

4.3 Storage and Progressive Transmission of Ap-
proximation Hierarchies

The approximation hierarchies created by the iterated point
decimation algorithm form a chain of subsets Pi of an origi-
nal point set P0, i. e., Pn ⊂ · · · ⊂ P1 ⊂ P0. This fact allows
us to store hierarchies in a space-efficient way that supports
progressive transmission.

We store approximation hierarchies by storing the points
in the coarsest-resolution level Pn first, followed by storing
the points in Pn−1 \ Pn, and finally by storing the points in
P0 \P1, see Figure 8. The space requirements for storing the
points in this way are minimal, because every point is written
exactly once, and no additional information is stored.

P3 P2 \ P3 P1 \ P2 P0 \ P1

Transmission order

Figure 8: Storing a four-level approximation hierarchy in a
file. The coarsest-resolution level P3 is stored first.

Furthermore, when such a hierarchy file is transmitted
over a thin-band medium, the receiving end can start ren-
dering the coarsest-resolution approximation as soon as the
first |Pn| points defining this resolution level have arrived,
and it can increase the resolution of the rendering whenever
another hierarchy level is completely received in the trans-
mission process.

5 Examples and Results

We have applied our algorithm to several data sets of
different sizes and recorded the runtimes for each data set.
The original images generated by our algorithm can also be
found under the URL
http://graphics.cs.ucdavis.edu/~okreylos/Research/
VolumeRendering/index.html.

5.1 A Small Data Set

The smallest data set we have used is the result of the sim-
ulation of airflow around a wing. It is defined on a tetrahe-
dral grid, consisting of 2,800 vertices and 13,576 tetrahedra.
This data set, called “Mavriplis,” was provided by Dimitri
Mavriplis and is courtesy of ICASE.

5.2 A Medium-Sized Data Set

A medium-sized data set we have used is the result of an
aerodynamic flow simulation as well. It is defined on a tetra-
hedral grid consisting of 103,064 vertices and 567,862 tetra-
hedra. This data set, called “Parikh,” was provided by
Paresh Parikh and is courtesy of ViGYAN, Inc. Images of
this data set from two different viewpoints, rendered at four
different resolutions each, are shown in Figures 10 to 12 and
13 to 15.

These images demonstrate that even though our algo-
rithm is merely an approximation of volume rendering, the
resulting images often capture the most relevant information
in the data. As the progressions from Figures 10 to 12 and
from Figures 13 to 15 show, reducing the number of points in
an approximation decreases image quality considerable, and

makes the coarsest-resolution approximations shown here al-
most useless. The associated decrease in rendering time, on
the other hand, allows the user to choose a low-resolution
approximation for navigating between viewpoints, and to
choose a high-resolution approximation to “zoom in” on the
features.

5.3 A Large-Scale Data Set

The largest data set we used so far is the result of a cosmo-
logical simulation. It is defined on a hierarchy of rectilinear
grids (generated by an adaptive mesh refinement method),
consisting of 2,531,452 vertices altogether. This data set,
referred to as “Shalf,” was provided by Greg Bryan, Mike
Norman and John Shalf from the Laboratory for Computa-
tional Astrophysics at NCSA and from Lawrence Berkeley
National Laboratory. Images of this data set, rendered at
four different resolutions, are shown in Figures 16 to 19.

5.4 Measurements

Table 1 lists the rendering times for the parallel implemen-
tation of our algorithm, executed on an SGI Onyx2 worksta-
tion having four MIPS R10K processors running at 195MHz
and 512MB of main memory. The rendered data sets are the
ones described in the previous sections.

Dataset # of points time (sec.)
Mavriplis 438 0.01

2,800 0.02
Parikh 378 0.01

2,425 0.02
15,804 0.12

103,064 0.99
Shalf 6,607 0.05

46,261 0.31
346,087 2.66

2,531,452 27.35

Table 1: Rendering times for various data sets.

6 Conclusion

To evaluate our point-based rendering method for arbitrary-
mesh volumetric data sets, we have implemented an experi-
mental application that allows navigating such data sets and
creating color and opacity maps to pass on to other volume
rendering programs, Figures 9 shows the main viewing win-
dow. Our multi-resolution approximation technique allows
rendering approximations of data sets of varying sizes at in-
teractive frame rates on a four-processor SGI Onyx2 graphics
workstation.

In our experiments, we found that the rapid rendering
achieved by our approach and implementation is a valuable
help in finding and highlighting interesting features in an
unknown data set quickly. The artifacts described in sec-
tion 2.5 are visible, especially when rendering low-resolution
approximations, but do not hinder the navigation process.
As long as final images are generated by a standard high-
quality volume rendering algorithm, the image distortions
induced by our method are of little concern.

Figure 9: The previewing application: the main viewing
window. The wireframe cube visible in the background can
be used to clip uninteresting parts of the data set.

7 Acknowledgements

This work was supported by the National Science Founda-
tion under contracts ACI 9624034 and ACI 9983641 (CA-
REER Awards), through the Large Scientific and Software
Data Set Visualization (LSSDSV) program under contract
ACI 9982251.

We thank the members of the Visualization Group at
the Center for Image Processing and Integrated Comput-
ing (CIPIC) at the University of California, Davis.

We thank Dimitri Mavriplis at ICASE, Paresh Parikh at
ViGYAN, Inc. and Greg Bryan, Mike Norman and John
Shalf at the Laboratory for Computational Astrophysics at
NCSA and Lawrence Berkeley National Laboratory for pro-
viding the data sets used as examples. Gunther Weber at
CIPIC helped with the AMR file format.

References

[1] Challinger, J., Scalable Parallel Volume Ray-Casting for
Nonrectilinear Computational Grids, in Proc. 1993 Par-
allel Rendering Symposium (1993), ACM Press, pp. 81–
88

[2] Garrity, M.P., Raytracing Irregular Volume Data, in
Proc. 1990 Workshop on Volume Visualization, special
issue of Computer Graphics, vol. 24(5) (1990), pp. 35–
40

[3] Mao, X., Splatting of Non-Rectilinear Volumes Through
Stochastic Resampling, in IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 2(2) (1996),
pp. 156–170

[4] Shirley, P. and Tuchman, A., A Polygon Approximation
to Direct Scalar Volume Rendering, in Proc. 1990 Work-
shop on Volume Visualization, special issue of Com-
puter Graphics, vol. 24(5) (1990), pp. 63–70

[5] Lichan, H. and Kaufman, A. E., Fast Projection-Based
Ray-Casting Algorithm for Rendering Curvilinear Vol-
umes, in IEEE Transactions on Visualization and Com-
puter Graphics, vol. 5(4) (1999), pp. 322-332

Figure 10: Visualization of the “Parikh” data set using
103,064 points, rendered in 0.99 seconds.

[6] Yagel, R., Reed, D.M., Law, A., Shih, P. and Shareef,
N., Hardware Assisted Volume Rendering of Unstruc-
tured Grids by Incremental Slicing, Proc. 1996 Volume
Visualization Symposium, ACM SIGGRAPH (1996),
pp. 55-62

[7] Silva, C.T., Mitchell, J. S. B. and Kaufman, A. E., Fast
Rendering of Irregular Volume Data, in Proc. 1996
Volume Visualization Symposium, ACM SIGGRAPH
(1996), pp. 15–22

[8] Meissner, M., Hoffmann, U. and Strasser, W., Volume
Rendering Using OpenGL and Extensions, in Proc. Vi-
sualization ’99, pp. 207–526

[9] Williams, P. L., Parallel Volume Rendering Finite Ele-
ment Data, Proc. Computer Graphics International ’93,
Lausanne, Switzerland, June 1993

[10] Williams, P. L., Max, N. L. and Stein, C.M., A High
Accuracy Volume Renderer for Unstructured Data, in
IEEE Transactions on Visualization and Computer
Graphics, vol. 4(1) (1998), pp. 37–54

[11] Ma, K.-L. and Crockett, T.W., A Scalable Parallel
Cell-Projection Volume Rendering Algorithm for Three-
Dimensional Unstructured Data, in Proc. IEEE Sym-
posium on Parallel Rendering, IEEE Computer Society
Press (1997),pp. 95–104

[12] Guibas, L. J., Knuth, D. E., and Sharir, M. Random-
ized Incremental Construction of Delaunay and Voronöı
Diagrams, in Proc. 17th Int. Colloq.—Automata, Lan-
guages and Programming, vol. 443 of Springer Verlag
LNCS (1990), Springer Verlag, Berlin, pp. 414–431

Figure 11: Visualization of the “Parikh” data set using
15,804 points, rendered in 0.12 seconds.

Figure 12: Visualization of the “Parikh” data set using
2,425 points, rendered in 0.02 seconds.

Figure 13: Visualization of the “Parikh” data set using
103,064 points, rendered in 0.99 seconds.

Figure 14: Visualization of the “Parikh” data set using
15,804 points, rendered in 0.12 seconds.

Figure 15: Visualization of the “Parikh” data set using
2,425 points, rendered in 0.02 seconds.

Figure 16: Visualization of the “Shalf” data set using
2,531,452 points, rendered in 27.35 seconds.

Figure 17: Visualization of the “Shalf” data set using
346,087 points, rendered in 2.66 seconds.

Figure 18: Visualization of the “Shalf” data set using
46,261 points, rendered in 0.31 seconds.

Figure 19: Visualization of the “Shalf” data set using
6,607 points, rendered in 0.05 seconds.

