
AN EFFICIENT TREE-BASED PROCESSOR ALLOCATION

SCHEME FOR MESH CONNECTED SYSTEMS

Shuen-Fu Tsai, Chin-Laung Lei, and Alexander I-Chi Lai

Department of Electrical Engineering,
National Taiwan University, Taipei, Taiwan, R.O.C.

Email: {afu, alex}@fractal.ee.ntu.edu.tw,
lei@cc.ee.ntu.edu.tw.

ABSTRACT

Processor allocation is one of the key issues in the
management of mesh connected systems. In this pa-
per, we propose an efficient tree-based processor al-
location scheme, called Tree-Allocation (TA), and an
Earliest-Available-First-Reserved (EAFR) strategy for
mesh connected systems. The TA scheme uses a binary
tree to keep the processor allocation information, and
its time complexity is O(NB) where NB is the num-
ber of busy meshes. The EAFR strategy reserves an
earliest available submesh for the incoming task which
cannot be executed immediately. Our simulation re-
sults indicate that the TA scheme outperforms other
allocation schemes in the literature in terms of the av-
erage allocation time, system utilization and average
waiting time.

1 INTRODUCTION

In a mesh connected system, the job scheduler uses a
scheduling policy to select a task for execution, and the
processor allocator uses an allocation scheme to find a
free submesh for the selected task. Most of the ex-
isting allocation schemes for mesh connected systems,
including 2-dimensional buddy system (2DB) [5], frame
slide (FS) [2], first-fit (FF) and best-fit (BF) [12], adap-
tive scan (AS) [3], adjacency strategy [8], quick alloca-
tion (QA) [11], and Free-Submesh-List (FSL) [4], al-
locate physically contiguous submeshes instead of non-
contiguous ones [6], because non-contiguous submeshes
induce non-atomic (i.e. larger) communication over-
head between logically adjacent processors. However,
contiguous allocation schemes suffer from the fragmen-
tation problem of unusable or wasted chunks of free
processors. Specifically, fragmentation can be further
subdivided into two categories: internal fragmenta-
tion in which there are unused processors in a busy
submesh; and external fragmentation in which an in-
coming task size (in number of required processors) is
smaller than the total number of free processors yet
larger than any free submesh. Both kinds of fragmenta-
tion severely reduce the processor utilization and ham-
per the throughput of mesh connected systems. The

above allocation schemes record the mesh partitioning
status to alleviate the impact of fragmentation; unfor-
tunately, most of them only maintain the information
of busy submeshes and need additional computation to
derive the information of free submeshes, which is time-
consuming. The FSL scheme [4] does use a list to di-
rectly keep track of the free submeshes, yet the expense
of searching the list for a best fit is proportional to the
square of the number of active tasks, substantially de-
creasing the performance especially for heavy-loading
systems.

In this paper, we propose an efficient processor allo-
cation scheme, called Tree-Allocation (TA), for mesh
connected systems. The TA scheme uses a binary al-
location tree to keep the complete allocation status of
the whole mesh. Each leaf of the allocation tree rep-
resents a submesh partition, either free or busy; and
the internal nodes represent the adjacency relation of
the submeshes. For an incoming task, our scheme se-
lects a free submesh from the leaf nodes. If the se-
lected free submesh is larger than the task, then we
partition that submesh, both vertically and horizon-
tally, to fit exactly the height and width of the incom-
ing task to eliminate internal fragmentation totally. In
order to suppress external fragmentation, we propose
an Earliest-Available-First-Reserved (EAFR) strategy
to pre-allocate currently busy submeshes for pending
tasks. Each node in the allocation tree has a field called
ready-time (rtime) which indicates the time that this
node will become available. By examining rtime, we
can reserve the earliest available submesh for the task
and go on the next incoming task. Searching and man-
aging available submeshes in the binary allocation tree
is more efficient than other mechanisms used in previ-
ous approaches, and the application of EAFR to our
TA scheme further improves the system utilization.

The rest of the paper is organized as follows. In Section
2, we give a brief review of previous processor allocation
schemes for mesh connected systems. In section 3, we
present our TA allocation scheme and EAFR strategy.
Section 4 shows the simulation results and performance
comparison with other schemes. Finally, conclusions
are drawn in section 5.

2 PREVIOUS APPROACHES

The 2-Dimensional Buddy (2DB) scheme [5] is a gen-
eralization of the famous buddy system. It can only be
applied to allocate a square submesh with side length
2n for some integer n. For an incoming task of size
w × h, this scheme allocates a submesh of size u × u
where u = 2�log2 max(w,h)�. The disadvantage of the
scheme is that it cannot recognize rectangular sub-
meshes with arbitrary side length and may cause large
internal fragmentation.
The Frame Sliding (FS) scheme [2] is applicable to non-
square meshes with arbitrary side length. For an w×h
incoming task, the scheme uses a frame of size w×h to
find a free submesh. The scheme slides the frame from
the lower left node along the horizontal and vertical
direction where its horizontal and vertical strides are
equivalent to w and h. If the current node cannot serve
as the lower left node of the frame, it moves to the next
frame along the horizontal direction. If it cannot find
a free submesh in the current row, then it moves to the
next frame along the vertical direction. The searching
is stopped when a free submesh is found or all candi-
date frames are checked. This scheme can reduce the
internal fragmentation and yield a better performance
than 2DB. However, the searching process may result
in allocation miss.
In order to solve the allocation miss problem, the First-
Fit (FF) and Best-Fit (BF) allocation schemes are pro-
posed in [12]. These schemes use bit arrays to indicate
which nodes have enough free neighbors to serve the
lower left node of the task. The FF scheme searches
these bit arrays for the first free submesh, and the BF
scheme searches all the free regions and chooses one
with the largest number of busy neighbors. However,
these schemes still suffer from the external fragmenta-
tion.
The Adaptive Scan (AS) scheme is proposed in [3]. The
scheme uses the scanning operation instead of the slid-
ing operation used in FS. It starts from the lower left
node of the mesh. If the current node cannot serve as
the lower left node for the task, it moves to the next
column. If it still cannot find a free submesh in the
current row, it moves to the left-most node of the next
row. A strategy called address translation is used to
change the orientation of the incoming tasks. If the
searching fails to find a free submesh, then it rotates
the orientation of the task from w × h to h × w and
redo this scheme again. This scheme improves the FS
scheme by the scanning operation and the rotation of
the task.
The Quick Allocation (QA) scheme is purposed in [11].
Like AS, the address translation strategy is adopted.
It uses a one-dimensional array called last covered to
keep the x-coordinate of the right-most covered node
of each row. By using the last covered, this scheme can
find a free submesh without scanning the entire mesh,
and reduces the allocation overhead.
The Free-Submesh-List (FSL) scheme is purposed in

[4]. It is based on maintaining a list of free submeshes,
all of which dominate other free submeshes. For an al-
location request, it chooses the best-fit submesh which
causes the least amount of potential external fragmen-
tation. However, the allocation/deallocaton overhead
of this scheme is quite large.

3 THE TREE ALLOCATION
SCHEME

A two-dimensional rectangular mesh with a×b nodes is
denoted by M(a, b) where a and b represent the width
and height of the mesh, respectively. Each node in the
mesh represents a processor, and its address is identi-
fied by its coordinate < x, y > where 1 ≤ x ≤ a and
1 ≤ y ≤ b. A submesh s is identified by the quadruple
< x, y, x′, y′ > where < x, y > is the lower left corner
of the submesh and < x′, y′ > is its upper right corner.
A submesh s = < x, y, x′, y′ > is free, if all nodes in it
are not allocated to any task. A submesh is busy, if all
nodes in it are allocated to a task.
An incoming task is denoted by t(w, h, arr, sev) where
w and h are the width and height of the task, and
arr and sev denote the arrival and service time of the
task, respectively. Each task is assigned to a submesh
of the same size in M(a, b). The rotation of changing
task from t(w, h, arr, sev) to t(h, w, arr, sev) is called
address translation [3]. With this mechanism, we can
find more free submeshes for allocation [3, 4, 11].
In our allocation scheme, we use a binary alloca-
tion tree T = (V, E) to record the allocation sta-
tus. Each node q ∈ V is represented by a 7-tuple
(x, y, w, h, stat, resvd, rtime) where q is a submesh of
size w×h whose lower left corner is < x, y >. Depend-
ing on whether q is free or busy, stat is set accordingly.
If stat = internal, it indicates that q is an internal
node of T . resvd is a flag which indicates whether q
has been reserved for a task or not. If q has been re-
served, then resvd = 1; otherwise resvd = 0. rtime
is an integer value which indicates the time that q will
become available. In particular, if rtime = 0, then q is
free.

Definition 1. The reservation set of an allocation tree
T = (V, E), denoted by R, is a set of nodes in T which
have been reserved for waiting tasks. Initially, R is
empty.

Definition 2. Let VR = {v ∈ V | v /∈ R and v is a
descendent of some node in R }, contain all nodes in
any subtree of T rooted by a node in R.

Let function parent rtime(q) return q′.rtime where q′

is the nearest ascendent of q and q′ ∈ R and q ∈ VR.
R, VR, and parent rtime() can be simply maintained
by the flag resvd of each node. If rsevd = 1, it indi-
cates that we insert this node into R. When rsevd is
set from 1 to 0, it indicates that we remove this node
from R. When we traverse T , we check whether the

current node has been reserved or not. If this node has
been reserved, then we know that it’s descendent nodes
are in VR and the parent rtime() value. We also use
a waiting queue, called r queue, to keep the reserved
tasks in order.

In order to reduce the internal fragmentation, we use
two partition methods to divide a submesh into 2 or 3
submeshes where one of these submesh is used for the
requesting task. One is the horizontal partition, it is
used when the selected free node (submesh) q’s height
is larger than that of the requesting task. The other is
the vertical partition method which is used when the
selected free node q’s width is larger than that of the
requesting task. By performing the horizontal and ver-
tical partitions, a free submesh matches the size of the
requesting task is generated for allocation. The order of
applying these two partition methods is determined by
which method will result in a larger free submesh. The
details of the partition methods are shown as follows.

Procedure Partition Submesh(q, ti)
/* partition a free node q for the task ti(wi, hi, arri, sevi) */
/* output a node whose size is equal to ti */
{

if (q.w = wi and q.h = hi) {
qf = q;

} else if (q.w = wi and q.h > hi) {
qf = Horizontal Partition(q, ti);

} else if (q.w > wi and q.h = hi) {
qf = Vertical Partition(q, ti);

} else if (q.w ∗ (q.h − hi) > (q.w − wi) ∗ q.h) {
q′ = Horizontal Partition(q, ti);
qf = Vertical Partition(q′, ti);

} else {
q′′ = Vertical Partition(q, ti);
qf = Horizontal Partition(q′′, ti);

}
return qf ;

}

Procedure Horizontal Partition(q, ti)
/* partition a free node q into ql and qr for the task

ti(wi, hi, arri, sevi) along the horizontal direction */
/* output a node whose height is equal to hi */
{

generate q’s left child ql with ql.w = q.w, ql.h = hi,
ql.x = q.x, ql.y = q.y;

generate q’s right child qr with qr.w = q.w,
qr .h = q.h − hi, qr.x = q.x, qr .y = q.y + hi;

q.stat = internal, ql.stat = free, qr.stat = free;
ql.resvd = 0, qr.resvd = 0, ql.rtime = 0, qr .rtime = 0;
return ql;

}

Procedure Vertical Partition(q, ti)
/* partition a free node q into ql and qr for the task

ti(wi, hi, arri, sevi) along the vertical direction */
/* output a node whose width is equal to wi */
{

generate q’s left child ql with ql.w = wi, ql.h = q.h,
ql.x = q.x and ql.y = q.y;

generate q’s right child qr with qr.w = q.w − wi,
qr .h = q.h, qr.x = q.x + wi and qr.y = q.y;

q.stat = internal, ql.stat = free, qr.stat = free;
ql.resvd = 0, qr.resvd = 0, ql.rtime = 0, qr .rtime = 0;
return ql;

}

3.1 Tree-Allocation scheme

The search strategy used in our TA scheme is Best-
Fit. We choose a free node q that can accommodate
task ti with the smallest area for allocation. When
there are several candidates, we choose the one with
the smallest depth. If q ∈ VR, we also need to check
the finish time of ti and parent rtime(q). The depth of
q and parent rtime(q) can be simply derived by using
the Breadth-First-Search (BFS) traversal scheme.
The TA allocation scheme is shown as follows. In step
1, for an incoming task ti, we use BFS to find a free
node q in T that can accommodate ti with the smallest
area. If such a node cannot be found, then we use the
EAFR strategy to reserve a node for the task and go
on processing the next incoming task. In step 2, if a
free node q is found, then we invoke the procedure of
partition submesh on q, and return a free node qf of
the same size as ti for allocation. In step 3, after we
allocated this task, we need to update the rtime field
of nodes from qf backward to the root of T . When qf ’s
rtime is greater than its parent’s, then we update the
rtime of its parent, and continue this procedure until
the rtime of the current node is less than its parent or
the current node is the root of T .

Allocation(ti, T)
/* allocate a free node qf for the incoming task

ti(wi, hi, arri, sevi) */
/* T is the allocation tree, R is the reservation set, and VR is a

set of nodes rooted by R */
/* current time is the current time of the system */
/* parent rtime() return the reserved time of this node */
{

/* Step 1 */
find a free node q in T that can accommodate ti

with the smallest area using the BFS traversal order;
if (q is found and ((q /∈ VR) or ((q ∈ VR) and

(current time + sevi < parent rtime(q))))) {
/* check whether ti needs rotation or not */
if ti needs rotation, then swap ti(wi, hi, arri, sevi) into

ti(hi, wi, arri, sevi);
} else {

/*perform the reservation (EAFR) strategy */
EAFR(ti, T);
exit;

}
/* Step 2 */
qf = Partition Submesh(q, ti);
allocate qf for ti;
qf .stat = busy, qf .rtime = current time + sevi;
/* Step 3 */
let qp be the parent node of qf ;
while ((qf is not the root of T) and

(qf .rtime > qp.rtime)) {
qp.rtime = qf .rtime;
qf = qp;
let qp be the parent node of qf ;

}
}

The detail deallocation scheme is shown as follows. In
step 1, the busy node q will be set as a free node. If q
has not been reserved and q’s sibling node is also a free
node, then we need to delete q and q’s sibling node,
and set q’s parent node as a free node. We continue
this procedure from q backward to the root of T . In

Table 1: The tuples of arriving tasks.

ti wi hi arri sevi

t1 2 1 1 6

t2 1 3 2 6

t3 1 1 3 6

t4 2 2 4 9

t5 1 4 5 6

t6 1 2 6 6

t7 1 1 7 7

step 2, if the current node q has been reserved, then
we need to remove q from R and remove ti which has
reserved q from r queue, and allocate q for ti.

Deallocation(q,T)
/* deallocate a busy node q and allocate a reserved task */
/* T is the allocation tree */
/* current time is the current time of the system */
/* r queue is a waiting queue used by the reserved tasks */
{

/* Step 1 */
let qs be the sibling node of q;
while ((q is not the root node of T) and

(q.resvd = 0) and (qs.stat = free)) {
let qp be the parent node of q;
delete q and q’s sibling node;
q = qp;
let qs be the sibling node of q;

}
q.stat = free, q.rtime = 0;
/* Step 2 */
if (q.resvd = 1) {

/* remove the reserved node q from R */
q.resvd = 0;
remove the task ti which has reserved q from r queue;
if ti needs rotation, then swap ti(wi, hi, arri, sevi) into

ti(hi, wi, arri, sevi);
qf = Partition Submesh(q, ti);
allocate qf for ti;
qf .stat = busy, qf .rtime = current time + sevi;
let qp be the parent node of qf ;
while ((qf is not the root of T) and

(qf .rtime > qp.rtime)) {
qp.rtime = qf .rtime;
qf = qp;
let qp be the parent node of qf ;

}
}

}

3.2 The Earliest-Available-First-Reserved
strategy

In this subsection, we describe the Earliest-Available-
First-Reserved (EAFR) strategy. The EAFR strategy
is applied only when a task cannot be allocated imme-
diately. Each node in the allocation tree has a rtime
field which indicates the time that this node will be-
come available. By rtime, we can exactly reserve the
earliest available node for the task. Just like the TA
scheme, the search strategy used in EAFR strategy is
Best-Fit. When a task is coming for reservation, we try
to find a node in T and not inR and VR that can accom-

modate the task with the smallest rtime by using the
Breadth-First-Search (BFS) traversal order. If a node
for reservation is found, then we add this node to the
reservation set R and append this task into r queue,
and update the rtime fields from this node backward
to the root of T , and go on processing the next in-
coming task. If such a node cannot be found, then we
simply insert this task into the waiting queue and wait
for some executing jobs to be released. The details of
EAFR strategy are described as follows.

EAFR(ti, T)
/* reserve an earliest available node q for the task

ti(wi, hi, arri, sevi) */
/* T is the allocation tree, R is the reservation set, and VR is a

set of nodes rooted by R */
/* current time is the current time of the system */
/* r queue is a waiting queue used by the reserved tasks */
{

find a node q in T where q /∈ R and q /∈ VR that can
accommodate ti with the smallest rtime using the BFS
traversal order;

if (q is found) {
/* add the earliest available node q to R */
q.resvd = 1, q.rtime = current time + sevi;
append ti into r queue;
/* update the rtime fields from q backward to the root

of T */
let qp be the parent node of q;
while ((q is not the root of T) and

(q.rtime > qp.rtime)) {
qp.rtime = q.rtime;
q = qp;
let qp be the parent node of q;

}
} else {

insert ti into the waiting queue;
}

}

In general, all the exist processor allocation schemes
use the First-Come-First-Serve (FCFS) scheduling pol-
icy. The drawback of the FCFS scheduling policy is
“blocking” in nature. A request for a submesh if higher
dimensions may block subsequent requests that my be
serviceable [9]. However, the EAFR strategy can re-
serve submeshes for the waiting tasks and go on pro-
cessing the next tasks, i.e., we can let the next incoming
task be executing first and without occurring starva-
tion.

Theorem 1. The TA scheme with EAFR strategy is a
starvation-free processor allocation scheme.

Proof. The jobs arrive along the FCFS order. If an
incoming task cannot be executing immediately, then
we try to reserve an earliest available submesh for it. If
such a submesh is found, then we reserve this submesh
for the task and insert it into the reservation set R. The
next incoming task may go on selecting a free node in
T and not in R and VR for allocation. If there is no
submesh for reservation, then we simply insert this task
to the waiting queue and wait for the executing jobs
and reserved jobs to be released. After a certain time,
the entire mesh is empty, and the tasks in the waiting
queue will begin to allocation. This will not occur the

�D� �E� �F� �G� �H�

�I� �J� �K� �L�

W�

��

��

�

��

��

��

�� ��

W�

W�

�

W�

��

W�

W�

W�

W�

��

�� ��

� �

�

� ��

���

�� �

�

W�

W�

W�

W�

��

�� ��

� �

�

� ��

���

�� ��

W�

�

��

W�

W�

W�

��

�� ��

� �

�

� ��

����

��
��

W�

W�

�

�

�

W�

�

�

�

�

�

W�

W�

� � �

�

�

��

W�

W�

W�

�

�

�

� � �

� �

�

W�

W�

W�

W�

��

� ��

� �

�

� ��

���

�� �

�

Figure 1: The allocation trees of example 1.

starvation even when we have changed the execution
sequence of the tasks. Thus, the EAFR strategy makes
the TA scheme be a starvation-free allocation scheme.

Example 1. There are 7 tasks in Table 1 arriving in
the 4 × 4 mesh with each time unit per task arriving.
The first-come-first-serve (FCFS) schedule is used for
these tasks, and our EAFR strategy is applied here
to improve the performance. The allocation results of
each task are shown in Fig 1.
In Fig 1, the free nodes are colored in white, the busy
nodes are colored in black, the internal nodes are col-
ored in gray and the reserve nodes are drawn with di-
agonal line. The number above each node is the value
of rtime. In (b), the task t1(2, 1, 1, 6) is assigned to
the submesh < 1, 1, 2, 1 > and update the rtime from
this node backward to the root node. In (c), we assign
t2 to < 1, 2, 1, 4 >. In (d) and (e), t3 and t4 are allo-
cated. However, t5 cannot be allocated immediately (at
the system time = 5), then we use the EAFR strategy
to reserve the earliest available submesh < 1, 1, 4, 1 >
(rtime = 9) for t5, and update the rtime field of nodes
in (f). In (g), we allocate the free submesh < 4, 2, 4, 3 >
for t6. In (h), we allocate the free submesh< 2, 4, 2, 4 >
for t7. In (i), until we deallocated t3 (at system time =
9), t5 (need rotation) is assigned to the free submesh
< 1, 1, 4, 1 >. Finally, the system will become idle after
t5 is deallocated.
The number in the brackets indicates the system time.
The ‘+’ indicates the allocation, and the ‘-’ indicates
the deallocation. The ti(x, y, w, h, r, arr, sev, wait) in-
dicates the tuples of task ti where x and y denote the

lower left corner coordinate, w and h denote the width
and height, ri is flag which indicates whether address
translation is used or not. If ti has been rotated then
r = 1, otherwise r = 0. arr and sev refer as the arrival
and service time of ti, and wait indicates the time of ti
in the waiting queue.

time +/- ti(x,y,w,h,r,arr,sev,wait)

[1] + t1(1,1,2,1,0,1,6,0)
[2] + t2(1,2,1,3,0,2,6,0)
[3] + t3(3,1,1,1,0,3,6,0)
[4] + t4(2,2,2,2,0,4,9,0)
[6] + t6(4,2,1,2,0,6,6,0)
[7] - t1
[7] + t7(2,4,1,1,0,7,7,0)
[8] - t2
[9] - t3
[9] + t5(1,1,4,1,1,5,6,4)
[12] - t6
[13] - t4
[14] - t7
[15] - t5

4 SIMULATION RESULTS AND
ANALYSIS

4.1 Complexity analysis

Let NB be the number of busy submehes in an a × b
mesh where a and b are the width and height of the
mesh. The 2DB scheme applies only to the square
meshes, i.e., a = b. Table 2 [4, 8, 11] compares the com-
plexities of allocation, deallocation and searching space
of our TA scheme against other schemes. The complete

Table 2: Comparisons of various tasks allocation schemes.

Scheme Allocation Deallocation Memory
Complete
recognition

Internal frag-
mentation

2DB Θ(log2 a) O(ab) O(ab) No Yes

FS O(abNB) Θ(1) Θ(NB) No No

FF O(ab) O(ab) Θ(ab) No No

BF O(ab) O(ab) Θ(ab) No No

AS O(abNB) Θ(1) Θ(NB) Yes No

QA O(bNB) Θ(1) Θ(NB) Yes No

FSL O(N2
B) O(N3

B) Θ(NB) Yes No

TA O(NB) O(NB) Θ(NB) No No

recognition [11] means that the allocation scheme can
recognize an existing free submesh for an incoming task
when one is available. The proofs of our TA scheme are
listed in the following theorems.

Lemma 1. Total number of nodes in the allocation tree
T ranges between 2NB − 1 and 4NB + 1.

Proof. Let NB be the total number of busy nodes, NF

be the total number of free nodes, NI be the total num-
ber of internal nodes and N be the total number of
nodes in T , i.e., N = NB + NF + NI . Initially, there
is only a entire free node, so NB = 0, NF = 1, and
NI = 0.
Case 1. We both perform the horizontal and vertical
partition methods on a free node, i.e., this node will be
partitioned into 2 free nodes and 1 busy node. After
we perform the partition methods, NB = NB + 1 and
NF = NF+1. If we perform the partition methodsNB1

times, then NB = NB +NB1 and NF = NF +NB1 .
Case 2. We only perform the horizontal (vertical) parti-
tion method to partition a free node, i.e., this node will
be partitioned into 1 free nodes and 1 busy node. After
we perform the horizontal (vertical) partition method,
NB = NB + 1 and NF = NF . If we perform the par-
tition method NB2 times, then NB = NB + NB2 and
NF = NF .
Case 3. We do not need the horizontal and vertical
partition methods to partition a free node, i.e., the
width and height length of this node are equal to the
requested task. After we have allocated this node,
NB = NB + 1 and NF = NF − 1. If we repeat NB3

times, then NB = NB +NB3 and NF = NF − NB3 .
From case 1, 2, 3, we know that when NB = NB1 +
NB2 + NB3 , then NF = NB1 − NB3 + 1. We know
that 0 ≤ NB3 ≤ NB1 + 1 because of 0 ≤ NB3 and
0 ≤ NF . And T is a binary tree, so NI = NB+NF −1.
Therefore, N = NB +NF + NI = 2(NB + NF) − 1 =
2(2NB1 +NB2) + 1 = 2(NB +NB1 − NB3) + 1. If only
case 1 is used, i.e, NB = NB1 and NB2 = NB3 = 0,
then we get N = 4NB + 1. If NB3 = NB1 + 1, then we
get N = 2NB − 1. Thus, the range of N is 2NB − 1 ≤
N ≤ 4NB + 1.

Lemma 2. The depth of the allocation tree T ranges

between �log2(2NB − 1)	 and 2NB + 1.

Proof. Case 1. We both perform the horizontal and
vertical partition methods on a free node which has the
maximal depth. Initially, the depth of T is 1. Perform-
ing the partition methods, the depth of T is 1 + 2 = 3.
After performing the second time of partition methods,
the depth is 3 + 2 = 5, and so on. If the number of
busy nodes is NB, then the maximal depth is 2NB+1.
Case 2. From the lemma 1, we know that the minimal
number of nodes in T is 2NB − 1. If T is a complete
binary tree, then the minimal depth is �log2(2NB−1)	.
Thus, the depth of T is between �log2(2NB − 1)	 and
2NB + 1.

Theorem 2. The EAFR strategy has a time complex-
ity of O(NB).

Proof. In the EAFR strategy, the procedure of reser-
vation uses BFS to find an earliest available node in T .
Form the lemma 1, we know that the total number of
nodes in T is less or equal than 4NB + 1. Thus, the
time complexity of the EAFR strategy is O(NB).

Theorem 3. The TA allocation scheme has a time
complexity of O(NB).

Proof. In the TA allocation scheme, the search proce-
dure uses BFS to find a free node in T . Form the lemma
1, we know that the total number of nodes in T is less
than 4NB + 1. The procedure of updating the rtime
fields is processing from the busy node backward to the
root. From the lemma 2, we know that the maximal
depth of T is 2NB + 1. Thus, the time complexity of
TA allocation scheme is O(NB).

Theorem 4. The TA deallocation scheme has a time
complexity of O(NB)

Proof. Deallocating a busy node and checking its sib-
ling node are processing from the busy node up to the
root node. From the lemma 2, we know that the maxi-
mal depth of T is 2NB+1. If the current busy node has
been reserved for the task, then we need to reallocate
this node for the task. From the theorem 3, we know
allocating a reserved task need O(NB). Thus, the time
complexity of TA deallocation scheme is O(NB).

Theorem 5. The memory space of TA allocation
scheme has a complexity of Θ(NB).

Proof. Form the lemma 1, we know that the total num-
ber of nodes in T is between 2NB − 1 and 4NB + 1.
Thus, the memory space complexity of TA allocation
scheme is Θ(NB).

4.2 Simulation results

The performance of the TA allocation scheme is com-
pared with 2DB, FS, FF, BF, AS and QA allocation
schemes using the computer simulation. The simula-
tion is event-driven with the events being the allocation
and deallocation of jobs. A separate host processor is
used for processor allocation/deallocation and task dis-
patching. There are several measurements used in our
simulation:

• System Utilization — the percentage of processors
that are utilized over time.

• Average Waiting Time — the time from a job ar-
rives in the waiting queue until it begins executing.

• Average Allocation Time — the time required to
allocate a submesh for a task.

CASE 1:
Simulations are conducted for the meshes ranging from
8 × 8 to 128 × 128. The simulator was developed in
C language running on Linux (Pentium II 350). All
the simulation use 95% confidence level with the error
range of 3%. We employ the same simulation model
used in [1, 2, 3, 8, 11, 12]. Initially, the entire mesh is
free, and 3000 tasks are generated and queued at the
task dispatcher. The residence time of each task is as-
sumed to be uniformly distributed between 5 and 10
time units (second). The tasks are assumed to arrive
at each time unit. The side lengths (width and height)
of tasks are assumed to be either uniformly or expo-
nentially distributed. For the uniform distribution, the
side lengths of the tasks are uniformly distributed be-
tween 1 and the side length of the mesh (L). For the
exponential distribution, the mean is selected as a half
of L. And those values exceeding the range [1, L + 1)
were discarded.
The First-Come-First-Serve (FCFS) scheduling policy
is used in our simulation model. The task dispatcher
always tries to find a free submesh for the first task in
the waiting queue. If it fails to find a free submesh, the
dispatcher simply waits for a deallocation and then try
to allocate again. The TA that does not contain the
EAFR strategy is denoted as TA−, and the TA that
contains the EAFR strategy is denoted as TA∗. The
system utilization for various size meshes are showed
in Fig. 2 (a) and (b), the average waiting time are in
(c) and (d), and the average allocation time are in (e)
and (f).
Form the Fig. 2 (a)∼(d), we can see that the system
utilization and average waiting time of TA are near to

the AS and QA. In the Fig. 2 (e) and (f), we can see
the average allocation time of TA is the smallest. The
EAFR strategy does not gain a lot of performance im-
provement in the simulation of case 1, it only improves
the 3%∼5% utilization.

CASE 2:
We try to use the same simulation model as case 1 ex-
cept the residence time of each task. We assume that
the residence time is uniformly distributed between 5
and 10 time units for the larger tasks, and it is uni-
formly distributed between 2 and 5 time units for the
smaller tasks. For a task ti(wi, hi, arri, sevi), the larger
task is defined as wi ∗ hi ≥ (a ∗ b)/2 and the smaller
task is defined as wi ∗ hi < (a ∗ b)/2 where a and b are
the width and height of the entire mesh.
The system utilization for various size meshes are
showed in Fig. 2 (g) and (h), and the average allocation
time is in (i). We can see that the system utilization
of TA has a little improvement and is better than the
above schemes. And the performance gain of the ex-
ponential distribution is not manifest as the uniform
distribution. The average allocation time of TA is still
the smallest.

5 CONCLUSION

In this paper, we have proposed an efficient tree-
based allocation scheme and an earliest-available-
first-reserved strategy for mesh connected systems.
The time complexity of the allocation/deallocation is
O(NB), the space complexity is Θ(NB) and the EAFR
strategy is O(NB) where NB is the number of busy
submeshes.
From the simulation results, the system utilization and
the average waiting time of our scheme are about the
same as those of AS and QA, and our average allocation
time is the smallest. Our scheme yields better perfor-
mance when the residence times of the larger tasks are
longer than those of the smaller tasks.

REFERENCES

[1] D. Babbar and P. Krueger, “A Performance Com-
parison of Processor Allocation and Job Schedul-
ing Algorithms for Mesh-Connected Multiproces-
sors,” Proc. Symp. Parallel and Distributed Pro-
cessing, pp. 46-53, Oct. 1994.

[2] P. J. Chuang and N. F. Tzeng, “An Efficient Sub-
mesh Allocation Strategy for Mesh Computer Sys-
tems,” Proc. Int’l Conf. Distributed Computing
Systems, pp. 256-263, May 1991.

[3] J. Ding and L. N. Bhuyan, “An Adaptive Submesh
Allocation Strategy for Two-Dimensional Mesh
Connected Parallel Systems,” Proc. Int’l Conf.
Parallel Processing, pp. II-193-200, Aug. 1993.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

8x8 16x16 32x32 64x64 128x128

U
til

iz
at

io
n

Mesh Size

2BD
FF
BF
FS

AS & QA
TA-
TA*

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8x8 16x16 32x32 64x64 128x128

U
til

iz
at

io
n

Mesh Size

2BD
FF
BF
FS

AS & QA
TA-
TA*

(b)

2000

3000

4000

5000

6000

7000

8000

9000

8x8 16x16 32x32 64x64 128x128

A
vg

. W
ai

tin
g

T
im

e
(s

ec
)

Mesh Size

2BD
FF
BF
FS

AS & QA
TA-
TA*

(c)

0

1000

2000

3000

4000

5000

6000

7000

8x8 16x16 32x32 64x64 128x128

A
vg

. W
ai

tin
g

T
im

e
(s

ec
)

Mesh Size

2BD
FF
BF
FS

AS & QA
TA-
TA*

(d)

0

2

4

6

8

10

12

8x8 16x16 32x32 64x64 128x128

A
vg

. A
llo

ca
tio

n
T

im
e

(m
se

c)

Mesh Size

2BD
FF
BF
FS
AS
QA
TA-
TA*

(e)

0

2

4

6

8

10

12

14

8x8 16x16 32x32 64x64 128x128

A
vg

. A
llo

ca
tio

n
T

im
e

(m
se

c)

Mesh Size

2BD
FF
BF
FS
AS
QA
TA-
TA*

(f)

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

8x8 16x16 32x32 64x64 128x128

U
til

iz
at

io
n

Mesh Size

FF
BF
FS

AS & QA
TA-
TA*

(g)

0.4

0.45

0.5

0.55

0.6

0.65

8x8 16x16 32x32 64x64 128x128

U
til

iz
at

io
n

Mesh Size

FF
BF
FS

AS & QA
TA-
TA*

(h)

0

2

4

6

8

10

12

14

8x8 16x16 32x32 64x64 128x128

A
vg

. A
llo

ca
tio

n
T

im
e

(m
se

c)
Mesh Size

FF
BF
FS
AS
QA
TA-
TA*

(i)

Figure 2: Simulation results. (a) uniform dist./utilization, (b) exponential dist./utilization, (c) uniform dist./avg.
waiting time, (d) exponential dist./avg. waiting time, (e) uniform dist./avg. allocation time, (f) exponential
dist./avg. allocation Time, (g) uniform dist./utilization, (h) exponential dist./utilization, (i) uniform dist./avg.
allocation time.

[4] G. Kim and H. Yoon, “On Submesh Allocation for
mesh Multicomputers: A Best-Fit Allocation and
a Virtual Submesh Allocation for Faulty Meshes,”
IEEE Trans. Parallel and Distributed Systems,
vol. 9, no. 2, pp. 175-185, Feb. 1998.

[5] K. Li and K. H. Cheng, “A Two-Dimensional
Buddy System for Dynamic Resource Allocation
in a Partitionable Mesh Connected System,” J.
Parallel and Distributed Computing, vol. 12, pp.
79-83, May 1991.

[6] V. Lo and K. J. Windisch and W. Liu and B.
Nitzberg, “Noncontiguous Processor Allocation
Algorithms for Mesh-Connected Multicomputers,”
IEEE Trans. Parallel and Distributed Systems,
vol. 8, no. 7, pp. 712-725, Jul. 1997.

[7] D. Min and M. W. Mutka, “Efficient Job Schedul-
ing in a Mesh Multicomputer Without Discrimi-
nation Against Large Jobs”, Proc. Symp. Parallel
and Distributed Processing, pp. 52-59. Oct. 1995.

[8] D. D. Sharma and D. K. Pradhan, “A Fast and Ef-
ficient Strategy for Submesh Allocation in Mesh-

Connected Parallel Computers,” Proc. Symp. Par-
allel and Distributed Processing, pp. 682-689, Dec.
1993.

[9] D. D. Sharma and D. K. Pradhan, “Job Schedul-
ing in Mesh Multicomputers,” IEEE Trans. Par-
allel and Distributed Systems, vol. 9, no. 1, pp.
57-70, Jan. 1998.

[10] S. M. Yoo and H. Y. Youn, “Largest-Job-
First-Scan-All Scheduling Policy for 2D Mesh-
Connected Systems”, Proc. Symp. Frontiers of
Massively Parallel Computation, pp. 118-125, Oct.
1996.

[11] S. M. Yoo and H. Y. Youn and B. Shirazi, “An Effi-
cient Task Allocation Scheme for 2D Mesh Archi-
tectures,” IEEE Trans. Parallel and Distributed
Systems, vol. 8, no. 9, pp. 934-942, Sep. 1997.

[12] Y. Zhu, “Efficient Processor Allocation Strategies
for Mesh-Connected Parallel Computers,” J. Par-
allel and Distributed Computing, vol. 16, pp. 328-
337, Dec. 1992.

