
Data Mining User Sessions Based on Forward and
Backward Reference Patterns

Rung Ching Chen Whei Yue Shen

Department of Information Management Chen-Kuo
Institute of Technology Chang Hua, Taiwan, R.O.C.

Email:crching@cc.ckit.edu.tw

Abstract

In this paper, we propose a novel method to explore
the user sessions. After the data mining for the user
sessions, the system management can understand which
web pages or traversal paths are often referenced. An
efficient algorithm is used to convert the user sessions into
the forward and backward reference patterns. By the
algorithm of analyzing the forward and backward reference
patterns, we can find the times of the web pages and the
traversal paths were referenced. If the reference times of
the web pages or traversal paths are greater than a threshold,
also named support value, the system will output them as
often reference patterns. Even the support value is changed,
the system is unnecessary to recalculate the accessed times
of the reference patterns. The simulation results confirm
our method is efficient to analyze the traversal information
on the web site.

1. Introduction

Data mining the custom behavior has high applicability
in retail market. The custom transaction behavior can be
extracted from the settle or square accounts front desk.
Those transaction data are transferred into association rules.
Each association rule records a transaction action. By way
of data mining those association rules, we can understand
the time of man or woman stay in merchant, the commodity
relation of which customer purchase, the relation of the
commodity, the customer age and sex, the sell condition of
each article, and so on. The manager can then rearrange the
goods in the suit location from above information. Many
papers are published for the data mining of those traction
association rules[1,2,3]. The accessed times of the
association rules were recorded. Always the association
rules are so large that finding the meaningful association
rules is needed. A support value is defined as the number of
times a reference sequence has to appear in order to be
qualified as large reference sequence. Those that reference
times greater than the support values are the information
that system required. Another application of data mining is
on ordered data, such as stock market and point of sales
data [8]. For example, the stock market data mining
interesting on the change of strokes' price with the time
sequences and the similar price change sequences search.
The goal of application domain of data mining effects the
kinds of data to be mined.

In recent, the e-commerce is very flourishing. Many
companies or persons set up stores on the web sites. A web
site is an internet location that contains hyperlinked
documents. Many trades are finished on the web sites of
internet. When a web site has been set up, the provider can
analyze the customer behavior by the log file of the web
site. By way of analyzing the log files, the management
also can find the information people who always buy what
kinds of goods and the relations between the goods and
customers. By mining the information, which web page is
more suited to place what kind of goods on the web side
can be found. A web page is a hypertext or hypermedia
document residing on an internet computer that contains
text, graphics, video, or sound, where a hypertext document
contains text hyperlinks to other documents; a hypermedia
document contains text, graphics, image, sound hyperlinks
that connect to other documents. How to analyze the data
that customer on the web is an important topic. Also many
researches have been published on this topics recently
[4,5,6,7]. On this topic, one kind of approach is to analyze
the user traversal path. A traversal path is defined as a user
login the web site, by which the web pages they have
arrived and the order they went on the web site. The
traversal path will be recorded on the log file of the web
site. Also, the WWW server management hope to have the
report, about which pages and traversal paths are the more
often referenced, to decide the prices of the location the
advertisement on the WWW server. A user on the web site
who browses the pages during a period of time is defined as
a user session. A user session is organized as a series of
patterns, where a pattern is a web page. For example, the
user session {A-> B-> C-> D-> C-> E-> A-> B-> F-> G->
A-> H-> I-> J-> I->K} stands for the user arriving the web
site and the order they travel on the web site is web page 'A'
first then web pages 'B', 'C', ..… ., 'K' by order. During a
period of time, lots of user sessions will be recorded on the
log file.

The time period is used to segment the user session
from the log file[5]. In this paper, we assumed that the user
sessions have been extracted from the log file of a web site.
We transfer the user session into forward and backward
reference patterns. A forward reference pattern stands for
the traversal path that the user on the web site does not
backward to the web page that has been arrived. Reference
[5] transfer the user session into a maximum forward
reference patterns. The maximum forward reference
patterns will record some web pages accessed times

repeated to miss the real accessed times on the web site.
For example, the maximum forward reference will transfer
Figure 1 visited order {A-> B-> C-> D-> C-> E-> A-> B->
F-> G-> A-> H-> I-> J-> I->K} into the maximum forward
reference patterns {{A-> B-> C-> D}, {A-> B-> C-> E},
{A-> B-> F-> G}, {A-> H-> I-> J},{A->H->I->J}}. We
can find the web page "A" and web page "B" in the set of
maximum forward reference patterns appeared five and
three times respectively but the pure visiting on the user
session is three and two times. Based on above appearance,
we find that the maximum forward reference patterns can
not truly appear the user visiting on the web site.

Improving the weakness of maximum forward
reference patterns, which loses pure web pages accessed
information, we propose a new method to represent the user
session. When the user backward from a web page, we
record the forward browsing path. Next, a backward
browsing path is start. The backward browsing path
termination when the user start a new reference pattern.
Repeating the same steps mentioned above, we can find a
new forward browsing path is happened on that start from a
backward terminal web page through new forward pages
and terminal at backward web page. Reversing, a backward
reference patterns are extracted from a forward terminal
web page through visited pages and terminal at a new web
page. In Figure 1, the visiting order are {A-> B-> C-> D->
C-> E-> A-> B-> F-> G-> A-> H-> I-> J-> I->K}, the
same as above traversal order. The user session will be
converted into the forward reference patterns {{A-> B->
C-> D}, {C->E}, {A-> B-> F->G}, {A-> H-> I-> J}, {I->
K}} and the backward reference patterns {{D-> C}, {E->
A}, {G-> A}, {J-> I}} respectively. The forward reference
web pages "A" and "B" is visited three and two times
respectively. This truly appears the user accessed
information. After the forward and backward reference
patterns are generated, we can analyze the travel paths and
the reference web pages accessed times. The information
can provide the web site management to make policy
decision.

The remainder of the paper is organized as follows.
The section 2 described an algorithm to convert the user
session into forward and backward reference patterns. The
reference times of the reference patterns are found in
section 3. A simulation based on Java and C language is
presented in section 4. We also make conclusions and
discussion in section 5.

2. The generation of forward and backward
reference patterns.

In the session, we propose a Bi-Direction_Reference_
Patterns_Extraction algorithm, which will be called
BDRPE algorithm short, to convert the user session into the
forward and backward reference patterns. The means of the
symbols and the operation of the algorithm were described
as follows.

The US[i,j] stands for the input of user session where i
is the index of input user session and j is the index of web

page in the "i" user session. The FRP[n] stands for the
forward reference patterns and BRP[m] stands for the
backward reference patterns where "n" and "m" are the
index of forward and backward reference pattern
respectively. A user session can be converted into more
than one forward and backward reference patterns. The
FSB and BSB stand for forward and backward string
buffers are used to store the alphabets extracted from a user
session. Two flags organize four conditions includes to
detect the condition of writing a alphabet to the FSB,
writing the FSB to FRP[n], writing a alphabet to the BSB
and writing the BSB to BRP[m]. Table 1 shows the relation
of action with Flag1 and Flag2. For example, outputting a
forward reference patterns is happened on the "Flag1"
equals to zero and "Flag2" equals to one. The algorithm is
expressed as follows.

Algor ithm:
Bi-Direction_Reference_Patterns_Extraction
Input : The string of user session patterns US[i,j]; i is index

of user session; j is index of user session pattern.
i<NUS;

Output : The forward reference patterns FRP[n] and
backward reference patterns BRP[m] Step 1:
Initialization. Let m=n=i=0.

Step 2: While (i <NUM) do Step 3 to Step 8 // NUS is
number of user sessions.
Step 3: Detecting the length of the USi , then storing the

value to the variable "length"; let j=0; Flag1=0;
Step 4: While (j<length) do Step 5 to Step 7.
Step 5: Reading a alphabet from the US[i,j] and checking
 if US[i,j] ∈ {US[i, 0], US[i,1], … … , US[i,j-1]}
 Flag2=1;
 else
 Flag2=0;
Step6: do case

Case Flag1=0 and Flag2=1
{Adding the character of ser session US[i,j] to
FSB
Remainder_Flag=1;
Go to Step 7.
}

Case Flag1=1 and Flag2=1
{Writing forward string buffer FSB to FRP[n]
Writing US[i,j-1] and US[i,j] to the backward
buffer string BSB in order.
Discard the alphabets in the {US[i, 0],
US[i,1], … … , US[i,j-1]}
from alphabet US[i, j-1] to US[i,j-r]. Where
US[i,j-r] is the
alphabet the same as alphabet US[i,j] and 1 < r
≤ j.
n++;
Flag1=0;
Go to Step 7.
}

Case Flag1=1 and Flag2=0
{ Adding the character of user session US[i,j]

to BSB
Remainder_Flag=0;

Discard the alphabets in the {US[i, 0],
US[i,1], … … , US[i,j-1]}
from alphabet US[i, j-1] to US[i,j-r]. Where
US[i,j-r] is the
alphabet the same as alphabet US[i,j] and 1 <
r ≤ j
Go to Step 7;
}

Case Flag1=0 and Flag2= 0
{Writing backward buffer string BSB to
BRP[m]
Clearing the backward buffer string BSB.
Writing US[i,j-1] and US[i,j] to the forward
buffer string FSB by order.
m++;
Flag1=1;
}

Step 7 : j++;
Step 8: i++;
Step 9: The remainder reference pattern writing out:
 if(Remainder_Flag==1)
 Writing the remainder characters in FSB to

FRP[n]
 else if(Remainder_Flag==0)
 Writing the remainder characters in BSB to

BRP[m]
Step 10: End.

Figure 2 shows a example of web structure with user

session {A-> B-> C-> D-> C-> D-> C-> D-> C-> B-> E->
G-> H-> G-> W-> A-> O-> U-> O->V} to generate the
forward and backward reference patterns by the BDRPE
algorithm which is described as follows.

First, the character 'A' is read, the Flag1 and Flag2 will
be set as 0,1 respectively, then character 'A' is stored to
FSB. The work is doing the same until the fifth character
'C' is read, which will set both Flag1 and Flag2 to 1, then
write out the characters "ABCD" from FSB to the FRP[n]
and write out the characters "D" and "C" to BSB. When the
characters "D" and "C" were written to BSB, the fourth
character 'D' and the third character 'C' are cut from the
user session patterns. Next, the sixth character in the user
session pattern is read both of the Flag1 and Flag2 will be
set to 0. The characters "DC" in the BSB will be written to
the BRP[m] and the system wrote out the characters "C"
and "D" to the FSB. Others execution of the orders filed on
Table 2 are doing the same. Table 2 shows the detail actions
of the algorithm Bi-Direction_Reference_Patterns_
Extraction. The most right character of gray lattice in the
field user session stands for the character is processing.

We focus on the order 10, where Flag1 is '1' and Flag1
is '0', that stands for the character is in backward condition
which will do until both Flag1 and Flag2 are '0'. On the
order 21, the algorithm wrote the characters which were
kept in the forward buffer to FRP[n].

From the example, we can find the characters in FSB

are written to FRP[n] when both Flag1 and Flag1 are '0' and
the characters in BSB are written to BRP[m] when both
Flag1 and Flag2 are '1'. The remainder characters in FSB or
BSB will be written to FRP[n] or BRP[m] when the
program is terminal. The user session will be transferred
into the forward reference patterns {{A-> B-> C-> D},
{C-> D}, {C-> D}, {B-> E-> G-> H}, {G->W}, {A-> O->
U}, {O->V}} and the backward reference patterns {{D->
C}, {D-> C}, {D-> C-> B}, {H-> G}, {W-> A}, {U->
O}}.

3. Counting the accessed times of forward and

backward reference patterns

The user sessions had been transferred into forward
and backward reference patterns in session 3. Always the
number of forward and backward reference patterns are
large. In references[5,6], they detect the reference times
based on selective scan and full scan. Both of them have
problems that existed when the support value is changed
the system must recalculate the large database and the
database is scanned too many times. The support value is
the number of times a reference sequence has to appear in
order to be qualified as large reference sequence. In this
session, we propose an effective algorithm to find accessed
times of the forward reference patterns. The algorithm also
applies to find the accessed times of various lengths of
sequences of the backward reference patterns. Before the
algorithm is described, the method of decomposing forward
reference patterns is described previously as follows.

Assuming a forward reference pattern is (M1->M2

->M3 ->M4->… … ->MN) with length N. We then can
extract the information include number of N with one
alphabet patterns, which are { M1, M2, M3, M4,… … ,MN };
number of N-1 with two alphabet patterns, which are
{ M1->M2, M2->M3, M3->M4->… … ,MN-1->MN }; the
number of N-2 with three alphabet patterns which are
{ M1->M2->M3, M2->M3->M4,… … , MN-2->MN-1->
MN };… … , and so on. The final of pattern
(M1->M2->M3->M4->… … ->MN) has length N. Figure 3
showed the example of decomposing expression of the
patterns{A->B->C->D} into {{A, B, C, D}, {A->B, B->C,
C->D}, {A->B->C, B->C->D}, {A->B->C->D}}. We now
can add up the one alphabet, two alphabets, three
alphabets,… .., until N alphabets appearance times
respectively. All the accessed times will be sorted. The
reference times of the alphabets and the traversal paths can
be sorted respectively by decrement, then we can find the
top N more often reference pages from one alphabet
accessed times. The same as above described, we can find
the various length of traversal paths of top N reference
times. If provider defines a support value, we also can
extract the pages and traversal paths that accessed times
greater than the threshold by the sorting of accessed times,
even the support value which changed the system can
efficiently extracted the information that the provider
needed.

Link lists are used to present the data structure. Each

length of the alphabets is corresponding to a link list. The
nodes in each link-list include two fields. One is used to
store the alphabet or alphabets and the other record the
accessed times of the alphabet or alphabets. Figure 4 shows
the structure of the link lists. The operation of the
Reference_Patterns_Accessed_Times_Counted algorithm
and the Link_List_Accessed_ Times_Counted algorithm
are described as follows.

First, the
Reference_Patterns_Accessed_Times_Counted algorithm
reads a reference pattern from FRP[n] and finds the length
of this pattern, then decomposes the reference pattern with
various lengths from 1 to the length of this pattern. Each
length of pattern will call the
Link_List_Accessed_Times_Counted algorithm to decide
whether the reference times of alphabet or alphabet pattern
must be incremented or a new reference alphabet or pattern
has to be added to the link list. The next forward reference
pattern is read and done the same action as above mention
until all reference patterns have been processed. The
reference times in each various length link-lists will be
sorted by decrement. The two algorithms are described as
follows.

Algor ithm:
Reference_Patterns_Accessed_Times_Counted
Input: Forward or backward reference patterns
Output: The reference times of each alphabet and various

length alphabets.
Step 1: Initialize: Let i=0; Max_Patterns_Length=0;
Step 2: While i<Max do Step 3 to Step 5; // Max is the

number of forward reference patterns.
Step 3: Read FRP[i] and store the length of FRP[i] to

variable Len
If Len >Max_Patterns_Length

 Max_Patterns_Length=Len
Step 4: For r=1 to Len
 Call the Link_List_Accessed_Times_Counted(r,i)

Algorithm
Step 5: i=i+1
Step 6: for n=1 to Max_Patterns_Length

Sorting the link list of LINK_LIST[n] index on
accessed times.

Step 7: End.

Algor ithm: Link_List_Accessed_Times_Counted(r, i)
Input: The FRP[i,j] and the index r, where r is a global

variable get from
Reference_Patterns_Accessed_Times_Counted
Algorithm ,0<r≤Len. 0<=i<Max

Output: Increment of the accessed times of LINK_LIST[r]
or add a new element to Link List.

Step1: Initialization: let Exist_flag=0;
Step 2: For p=0 to p<Len do Step 3 to Step 5
Step 3: Extracting sub-string Pattern PSp..p+r-1 from FRP[i, p]

to FRP[i,p+r-1] of FRP[i]
Step 4: For s=0 to Link_List_length[r] do
 {If PSp..pr+1 == LINK_LISTr [s].alphabets

 { LINK_LISTr [s].times= LINK_LISTr [s].times
+1

 Exist_Flag=1;}
 }
Step 5: IF Exist_Flag equal to 0
 {Adding pattern PSp..p+r-1 to LINK_LISTr

[s].alphabets
Link_List_length[r]++;

 }
Step 6: Return

The Reference_Patterns_Accessed_Times_Counted
algorithm calls the Link_List_ Accessed_Times_Counted
algorithm in Step 4. Exist_Flag is used to check whether
the alphabet or alphabets in the link list already? The
PSp..p+r-1 stands for a sub-pattern extract from index p to
p+r-1 of the FRP[i,j], where p is start of extraction alphabet
index and r is the length of the alphabets.

The accessed times of backward reference pattern can
be found only change the input array FRP[n] as BRP[m].
From the accessed times of backward reference pattern we
can find which web pages are often backward and which
backward path of web pages are usually happened. The
information of backward reference times also can help the
web-site manager make policy decisions.

4. Simulation

The simulation of web site structure and generation the
user sessions are implemented by Java language. Three
major algorithms are implemented by C language. All the
functions are tested on K7-700 with M RAM. Since the
home page is the most frequently visited, we make a
reasonable high probability criteria that each user session
often start from the home page designated by root node. In
the following experiment, a web site structure is created
first. Next, a set of user sessions based on the web site
structure will be established to simulate the user browse
order on this web site. Those user sessions will work as
the input of the algorithm Bi-Direction_Forward_
Reference_Patterns_Extraction. The output of the algorithm
will be analyzed by Reference_Patterns_Accessed_
Times_Counted and Link_ List_ Accessed_Times_Counted
algorithms. Then we can find the top T more often and top
L less seldom reference pages and reference path patterns
for the forward and backward reference pattern.

Constructing the web structure, two parameters will be
given first. One is the depth of the web site "D", the other is
the maximum number of the child nodes for each parent
node "M". A web site structure is like a tree structure.
These two parameters will determine the total nodes of the
web tree. In the system, also two optional choices N and L.
N stand for the minimum number of the child nodes for
each parent node. L denotes for the maximum levels whose
nodes are backward hyper-linked. Each parent node will
have the number of child nodes between N and M. For
simplicity, we reduce the total nodes to 50.

In the program, we suppose that the root node could be

backward hyper-linked by each child node. In other words,
any child node can directly return to the root node. Once
the intermediate node is entered, each of the following
downstream nodes could be selected with equally
probability. For example, the intermediate node N which
belongs to level L4 can link to either all its child nodes
N[5][k],where k is the number of child nodes of node N,
those nodes belongs to level L5. The index i in N[i][k]
stands for level Li. Also the node N can connect itself.
Therefore, node N as depicted in Figure 5 will have the
same opportunity in choosing one of its downstream nodes
{ A, B, C, D, E, F, G, H, N, e, f, g } as the next candidate
node. The length of the user session is a Poisson
Distribution with λ=6. The root node A is not the first entry
in each user session. Consequently, the root node of "A"
will have high probability to work as start nodes. We
generate 100000 user sessions to detect the three algorithm
mentioned in session 2 and session 3. The processing time
of converting the one hundred thousands user sessions into
forward and backward reference patterns only takes 0.6 sec.
The analysis of the forward and backward reference
patterns using Reference_Patterns_Accessed_Times_
Counted and Link_List_Accessed_Times_Counted
algorithms which only takes 22.2 sec.

5. Conclusions

In this paper, we have proposed a novel method that
transferred the user traversal path to forward and backward
reference patterns. The forward and backward reference
patterns can response the traversal page of the visitor
browsing in the web-site. Bi-Direction_Reference_
Patterns_Extraction algorithm is used to transfer the user
traversal path into forward and backward reference patterns.
Using the Reference_Patterns_ Accessed_Times_Counted
algorithm and Link_List_Accessed_Times_Counted
algorithms, we can find the accessed times of the forward
and backward reference patterns in various lengths. The
reference times will be sorted then we can find which pages
and traversal paths are top N more often be reference of the
forward and backward reference patterns. In the future
work, we will mine the real log file of NT WWW server for
the service provider to get more information to make policy
decisions.

References

[1] R. Agrawal and R., T. Imielinski, and A.Swami,
"Mining Association Rules between Sets of Items in
Large Database," Proc. ACM SIGMOD, pp. 207-216,
May,1993.

[2] R. Agrawal and R. Srikant, "Fast Algorithms for
mining association rules in large databases," Proc.
ACM SIGMOD, pp. 478-499, Sept. 1994.

[3] J.Han and Y. Fu, "Discovery of Multiple-level
association rules from large databases, " Proc. 21th
Int'l Conf. Very Large Data Bases, pp. 420-431, Sept.
1995.

[4] D.L. Yang and S.H. Yang, " A study on mining
session path patterns," Fourth conference on artificial
intelligence and applications, pp. 37-44,1999m
Taiwan. .

[5] J.S. Park, M.S. Chen, and P.S. Yu, "Using a
hash-based method with transaction trimming for
mining association rules", IEEE Transactions on
knowledge and data engineering, Vol.9.No.5. pp.
813-825, 1997

[6] M-S Chen, J.S. Park, and P.S. Yu, "Efficient Data
Mining for path traversal patterns", IEEE Transactions
on knowledge and data engineering, Vol.10.No.2. pp.
209-221, 1998

[7] Fu-Ren Lin, Shih-ta Chang, "Mining user accessed
patterns from network flow on the Internet," the
Eleventh National Conference on the Information
Management, Taiwan, 2000.

 A
 1 11
 7

 B H
 2 12
 8

 C F I
 5 6 13 15
 3 9 10 14
 4
 D E G J K

Figure 1. An example of a user session {A-> B-> C-> D-> C-> E-> A-> B-> F-> G-> A-> H-> I-> J-> I->K}.

 A

 B O

 C E U V

 D G

 H
W

Figure 2. A web structure has session {{A-> B-> C-> D-> C-> D-> C->
 D-> C-> B-> E-> G-> H-> G-> W-> A-> O-> U-> O->V}

 {a,b,c,d} One alphabet

 {ab,bc,cd} two alphabets
 {abcd}
 {abc,bcd} three alphabets

 {abcd} four alphabets

 Figure 3. The decompose of a forward or backward reference pattern

 The length of pattern The field of alphabet or alphabets The field of accessed times

Figure 4. The structure of link list.

L1 level A

L2 level B C

L3 level D E F G H

L4 level N

L5 level e f f g g

N[5][k]={e,f,g} N[4][k]={N} N[3][k]={D,E,F,G} N[2][k]={B,C} N[1][0]={A}

 Figure 5. The possible link pages of node N

 1

‧
‧
‧
‧

‧
‧
‧
‧
‧
‧
‧

2

3

N

 Table 1. The action control of Flag1 and Flag2.

Flag1 Flag2 Action

0 0 Writing BSB to BRP[m]

0 1 Writing the character to FSB

1 0 Writing the character to BSB

1 1 Writing FSB to FRP[n]

Table 2. The process of the algorithm of Bi-direction reference patterns extraction

order User Session Flag1g1 Flag1lag

2

FRP[n] BRP[m]

1 ABCDCDCDCBEGHGWAOUOV 0 1

2 ABCDCDCDCBEGHGWAOUOV 0 1

3 ABCDCDCDCBEGHGWAOUOV 0 1

4 ABCDCDCDCBEGHGWAOUOV 0 1

5 ABCDCDCDCBEGHGWAOUOV 1 1 ABCD

6 AB**CDCDCBEGHGWAOUOV 0 0 DC

7 AB**CDCDCBEGHGWAOUOV 1 1 CD

8 AB****CDCBEGHGWAOUOV 0 0 DC

9 AB****CDCBEGHGWAOUOV 1 1 CD

10 AB******CBEGHGWAOUOV 1 0

11 A********BEGHGWAOUOV 0 0 DCB

12 A********BEGHGWAOUOV 0 1

13 A********BEGHGWAOUOV 0 1

14 A********BEGHGWAOUOV 1 1 BEGH

15 A********BE**GWAOUOV 0 0 HG

16 A********BE**GWAOUOV 1 1 GW

17 ***************AOUOV 0 0 WA

18 ***************AOUOV 0 1

19 ***************AOUOV 1 1 AOU

20 ***************A**OV 0 0 UO

21 ***************A**** 1 1 OV

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8

