

Hardware Based Routing Lookup for IPv4

ABSTRACT

 In this paper, consider the problem of organizing address
tables for Internet routers to enable fast searching. Our proposal
is to build an efficient, compact and easily searchable
implementation of an IP routing table by using hardware.

 One limitation of router performance is the route lookup
mechanism. IP routing requires that a router perform a
longest-prefix-match address lookup for each incoming datagram
in order to determine the datagram’s n ext hop.

 We present a route lookup mechanism that when
implemented in a pipelined fashion in hardware, can achieve one
or more routes lookup every memory access. With 50ns DRAM,
this corresponds to approximately 20 million packets per second;
this corresponds to a rate of more than 10 Gb/s per port. We also
present promotion mechanism that can be done in the early one
stage of the pipeline for the forwarding table in the hardware.
The advantage of the promotion mechanism is made clear from
the simulation of the five-levels hierarchy routing table
distribution.

1. INTRODUCTION

 The growth of the Internet has lead to a situation where
network capacity is becoming a scarce resource. It used to be that
network capacity was mainly limited by speed of the links, but
this situation is now changing. Thanks to the developments in
transmission technology, with the introduction of fiber optics, the
bottleneck is moving from the links to the routers. The current
trend for dealing with this problem is to relieve routers from
some of the burden of switching traffic, and instead use switches
of different kinds, such as FDDI switches, ATM switches, and
Ethernet switches. This turns out to be a more cost-effective
solution, since the price for switching capacity is lower than the
price for routing capacity.

 One of the main limiting factors for performance in a router,
compared to a switch, is often thought to be the processing of
incoming packets: when an IP packet arrives at an input port of a
router, the packet needs to be examined and classified, and based
on the classification the packet is forwarded to an output port.
The packet classification operation consists of analyzing
information in the packet header (at least the destination address
needs to be examined), and performing a lookup operation to
obtain the information required forwarding the packet to its next

hop. In principle, the same kind of classification needs to be
performed by a switch, but the operation is generally thought to
be more complicated for an IP packet than for an ATM cell or an
Ethernet frame.

 The classification operation performed by a switch can be
done through a few and simple operations. This typically
includes fetching a field from the header of the incoming data
unit, perfo rming some simple arithmetical-logical operations on
this field, and using the result as a direct index into a table with
forwarding information. Such a table can be stored in ordinary
RAM, which means that in the ideal case, a switch can classify
data units at the rate of one data unit per memory cycle in RAM.

 On backbone routers there are very few routes with prefixes
longer than 24-bits. This is verified by an examination of the
MAE-EAST backbone routing tables [6]. A plot of prefix length
distribution is shown in Figure 1; note the logarithmic scale on
the y-axis. In this example, 99% of the prefixes are 24-bits or
less.

 IPv6 is still some way off; IPv4 is here to stay for the time
being. Thus, a hardware scheme optimized for IPv4 routing
lookups is useful today. There is a single general-purpose
processor participating in routing table exchange protocols and
constructing a full routing table (including protocol-specific
information such as route lifetime, etc. for each route entry). The
next hop entries from this routing table are down loaded by the
general-purpose processor into each forwarding table, which are
used to make per-packet forwarding decisions.

 This thesis demonstrates that it is possible to classify IP
packets at the rate of one and more packets per memory cycle.
The purpose is to present two IP address lookup schemes and
promotion mechanisms, which are suitable to implement in
hardware. The address lookup mechanisms are for unicast IP
addresses, and performs a longest prefix lookup. The data
structure we use for this is a variant of a trie [5] with few
particular levels. The promotion mechanism that can be done in
the early one stage of the pipeline so that the next hop can be
determined early.

1.1 Motivation

 Our work is motivated by the need for faster route lookup;
in particular, we are interested in fast, hardware -implementable
lookup schemes. We desire a lookup mechanism that achieves
four goals: The first is that the lookup procedure should be easily
implementable in hard ware using simple logic. The second is that
each lookup takes at most one memory access time on average.
The third is that if a lookup takes more than one memory access,

Wen-Sheng Yang Jong-Jiann Shieh

Department of Computer Science and Information Engineering

Private Tatung University, Taipei, Taiwan, R.O.C.
Email: eric@amigo.ttu.edu.tw shieh@rv4.ttu.edu.tw

then (a.) the number of accesses should be small, (b.) the number
of accesses should be bounded by a small value in all cases, and
(c.) the memory accesses should occur in different physical
memories, enabling pipelined implementations. The fourth is the
cost that is an important concern.

 Both lookup scheme are based on cheap memory and
standard logic, and are designed mainly with the goal to be
scalable. The scalability is achieved in two ways: The first is that
the lookup schemes are so cheap that it allows a distributed
router design where each link interface card has its own lookup
schemes. A router can then be built with any number of interface
cards, since the lookup schemes put a limit only on the capacity
of individual interfaces, and not on the total capacity of the
router.

Switching

Fabric

Line card

Line card

Line card

Network

Processor

Figure 2: Router design with power on interfaces

Line card

Line card

Line card

 In Figure 2, a number of network interfaces [1], and
network processor are interconnected with a switching fabric.
The forwarding engines use a local version of the routing table, a
forwarding table, downloaded from the network processor to
make their routing decisions. The GRF routers from Ascend
communications, for instance, use this design. The second
scalability property comes from the fact that the lookup schemes
themselves are flexible. Using slow SRAM with a memory cycle
time of 100 nanoseconds, it is possible to process 10 million
packets per second. Assuming that an average IP packet is 1000
bits, this means that each lookup scheme can deal with 10 Gb/s.
Higher capacities can easily be achieved by using faster
memories. As for the promotion mechanism that can be done in
the early one stage of the pipeline for the different physical
memories resulting are lookup speeds increasing.

1.2 Background

 Our design for performing longest prefix match is based on

a tree representation of the forwording table, where the tree is
searched from shorter to longer prefixes. Since the advent of the
Classless InterDomain Routing (CIDR) in 1993 [16], IP routes
have been identified by a <route prefix, prefix length> pair,
where the prefix length is between 0 and 32 bits, inclusive, for
every incoming packet, a search must be performed in the
router’s forwarding table to determine which next hop the packet
is destined for.

1.2.1 Longest Prefix Matching

 With CIDR, the search may be decomposed into two steps.
First, we find the set of routes with prefixes that match the
beginning of the incoming IP destination address. Then, among
this set of routes, we select the one with the longest prefix. This
is the route that we use to identify the next hop.

1.2.2 Classless InterDomain Routing (CIDR)

 The objectives of CIDR are:

l Prolong the life of the IPv4 address space.
l Simplify the routing at the Internet’s major traffic

exchange points.
l Make more efficient use of the remaining IP address

space.

Figure 1: Prefix length distribution

2000 0209 Prefix Lengths at Mac-East NAP

16 19

24

1

10

100

1000

10000

100000

1 3 5 7 9 1113151719212325272931

Prefix Lengths

R
o
u
t

E
n
t
r
y

(
4
5
1
0
4
)

 For example, with CIDR, a n etwork could be allocated eight
Class C networks, spanning the 2048 addresses from 201.10.0.0
to 201.10.7.255, instead of a single Class B network, with 65,536
addresses. Since the network administrator is allocated eight
Class C networks, which use three bits of the Class C space, the
remaining 21 bits must be the network number. The address and
prefix describing the network is, therefore, 201.10. 0.0 and 21,
usually written as 201.10.0.0/21 shown in Figure 3.

 The concepts of CIDR are relatively simp le. Instead of
filling routing tables —particularly those for the routers at the
core of the Internet —with entries for individual network
addresses, why not refer to a whole range of contiguous network
addresses with one entry? CIDR does just that, by what is known
as supernetworking. CIDR also eliminates the distinctions of
Class A, B, and C addresses by subnetworking all IP address
space into closely fitted “chunks” of address space. For example,
let’s say that all of the networks in the range from 190.100.1.0
through 190.100.255.0 have been assigned to a single ISP. That
ISP is a customer of one of the top-level national ISPs, which
advertises the existence of those networks. To other top-level
ISPs, all those networks are reachable through the national ISP.

 So instead of having the national ISP, as well as all the
others at the Internet NAP, maintain routing table entries for 255
separate networks, why not just has one entry that represents
them all? The CIDR entry for all 255 of those networks would be
190.100.0.0/16. We will explain the /16 later, but, briefly here,
it’s a shorthand notation to indicate a block of 256 Class C
networks, not just one network.

 Using routers and routing protocols that can pass around
network updates along with that /nn notation, network
administrators can carve IP address space into appropriately
sized chunks, instead of the large, medium, and tiny Class A, B
and C network sizes. ARIN (American Registry for Internet
Numbers) can assign address space that way, too, instead of
having to dole out huge chunks of classical address space.

1.2.3 Routing and Forwarding Tables

 A router design is shown in Figure 2 [1]. A number of
network interfaces, and a network processor are interconnected
with a switching fabric. The forwarding engines use a local
version of the routing table, a forwarding table, downloaded from
the network processor to make their routing decisions.

 Inbound interfaces send packet headers to the forwarding
engines through the switching fabric. The forwarding engines in
turn determine which outgoing interface the packet should be
sent to. It uses the destination address to determine the output
port for the packet and its next -hop address (it also modifies the
header or meta-data). This information is sent back to the
outbound interface. The only task of a forwarding engine is to
process packet headers. It is not necessary to download a new
forwarding table for each routing update. Routing updates can be
frequent but since routing protocols need time in the order of
minutes to converge, This is because routing protocols, such as
RIP (Routing Information Protocol) and OSPF (Open Shortest
Path First). Forwarding tables can grow a little stale and need to
be updated only once every 30-60 s [13]. The netwo rk processor
needs a dynamic routing table designed for fast updates and fast
generation of forwarding tables. The forwarding tables, on the
other hand, can be optimized for lookup speed and need not be

dynamic.

2. RELATED WORK AND DISCUSSION

 Recently, several groups have proposed novel data
structures to reduce the complexity of longest-prefix matching
lookup [1][12], which are software schemes. And there are
hardware schemes also, such as [2], [5] and [9].

2.1 Software Schemes

 The software scheme in [1] requires the prefix tree is
complete that each node in the tree has either two or no children.
Nodes with a single child must be expanded to have two children;
the children added in this way are always leaves, and their
next -hop information is the same as the next -hop of the closest
ancestor with next -hop information, or the “undefined” next -hop
if no such ancestor exists.

This procedure, illustrated in Figure 4, increases the

number of nodes in the prefix tree, but allows building a small
forwarding table. In [12], the author proposal is to build an
efficient, compact and easily searchable implementation of an IP
routing table by using an LC-trie, a trie structure with combined
path and level compression. The depth of this structure increases
very slowly as function of the number of entries in the table.
These data structures and their accompanying algorithms are
designed primarily for implementation in software, and cannot
guarantee that a lookups will complete in one
memory -access-time. Figure 5 shows compare table of their
performance [1] & [12]. The distinct marks of the fourth column
are the memory utilization and the whole total routing entry.

Figure 5: The compare of The Small Forwarding Scheme and The
Level-Compressed Scheme

Figure 4: Expanding a prefix prefix tree to a complete tree

2.2 Hardware Schemes

 The current techniques for performing longest matching
prefix lookups in hardware, for example CAMs [2] and Tries [5];
do not seem to be able to meet the goals set forth above. CAMs
are generally small, expensive and dissipate a lot of power when
compared to DRAM. Tries, in general, have a worst case
searching time of 32 memory accesses, leading to a wasteful
32-stage pipeline if we desire one lookup per memory access
time. Furthermore, if we wish to fully pipeline the design, each
layer of the trie needs to be implemented in a different physical
memory. This leads to problems because the memory cannot be
shared among layers; it could happen that a single layer of the
trie exhausts its memory while other layers have free space.

Dstn Addr.

0

24

23

31 8

TBL24

TBLlong Next Hop

Figure 6 :DIR 24-8-BASIC architecture. The next hop result comes from either
TBL24 or TBLlong

 We have learned that the lookup technique outline here is a
paper by P. Gupta, S. Lin, and N. McKeown, described in [9].
They call the basic scheme DIR-24-8-BASIC — it makes use of
the two tables shown in Figure 6, both stored in DRAM. The first
table (called TBL24) stores all possible route prefixes that are up
to, and including, 24-bits long. This table has 16 million entries,
addressed from 0.0.0 to 255.255.255. Each entry in TBL24 has
the format shown in Figure 7. The second table (TBLlong) stores
all route prefixes in the routing table that are longer than 24-bits.

If longest route with this 24-bit prefix is < 25 bits long:

If longest route with this 24 bits prefix is > 24 bits long:

0

1

1 bit

1 bit

15 bits

15 bits

Next Hop

Index into 2nd table

Figure 7 : TBL24 entry format

 As a summary, let’s review some of the pros and cons
associated with the basic DIR-24-8-BASIC scheme.

Pros:
l Although (in general) two memory accesses are

required, these accesses are in separate memories,
allowing the scheme to be pipelined.

l Except for the limit on the number of distinct
24-bit-prefixed routes with length greater than 24 bits,
this infrastructure will support an unlimited number of
routes.

l The total cost of memory in this scheme is the cost of
33MB of DRAM. No exotic memory architectures are
required.

l The design is well suited to hardware implementation.
l When pipelined, 20 million packets per second can be

processed with currently available 50ns DRAM. The

lookup time is equal to one memory access time.

Cons:
l Memory is used inefficiently

l Only one lookup valid per cycle in the multiple stages

pipeline

3. PROPOSED SCHEME

In the paper, we present a route lookup mechanism that
when implemented in a pipelined fashion in hardware, can
achieve one or more routes lookup every memory access. We
also present promotion mechanism that can be done in the early
one stage of the pipeline for the forwarding table in the hardware.

3.1 The Data Structure for Forwarding Table

 The address space can be though of as a tree, where the
nodes represent prefixes. Each level in the tree represents a
specific prefix length, which is the same for all nodes on that
level. In our schemes we limit the tree to a few levels. Figure 8
depicts a prefix tree with 6-bit addresses using three prefix
lengths (2 and 4). Prefixes with other lengths than the ones used
in the tree have to be expanded into several longer prefixes. For
example, for the tree in Figure 8, a prefix with length 3 has to be
expanded into two prefixes with length 4, so the binary prefix
010/3 would have to be expanded into 0100/4 and 0101/4. This is
due to prefix expansion. This will generate more nodes when
there are few levels in the tree.

 The tree has three types of nodes: valid, index and invalid
nodes. A valid node represents an entry in the forwarding table.
An index node corresponds to a prefix that matches an entry in
the forwarding table, but is shorter than that entry (“prefix of a
prefix”). An invalid node represents a prefix that does not appear
in the forwarding table.

 To simplify the processing of the tree, we introduce two
restrictions: First, all possible children of an index node must be
present in the tree (this is called a prefix group). The unused
prefixes in a prefix group are marked as invalid. The second
restriction is that we do not allow a node to be both valid and
index at the same time. So if there is a prefix in the routing table
which is both a route in itself and a prefix of other routes, it will
appear as several nodes in the tree: The prefix itself is inserted as
an index node and the prefix is expanded into a prefix group
where all entries are valid.

 To find a matching route, the tree is searched from
the shortest prefix until the first valid or invalid node

that matches the route is encountered. In this way, the
longest matching entry is guaranteed to be found. For

example, the following is the procedure to find the

address 0101 in a forwarding table represented by the
tree in Figure 8. First the shortest prefix 01/2 is

looked up. The matching entry is an index, resulting in
a second lookup, 0101/4. A last lookup 0101 is then

performed, resulting in a valid entry. This entry points into a
forwarding table where the forwarding information is stored. If
only simple forwarding is needed for the entry, an output port

identifier could be stored instead of the pointer.

Figure 8: Example routes in a prefix tree

Valid route

Invalid route

Index route

00

01

11 01

10

11 10

00

10

3.2 Five-levels Hierarchy Searching Structure

 The simplest addressing structure is a flat address space,
where we simply assign each destination a unique address chosen
anywhere from the address space. This is seen, for example, in
Ethernet addresses and for local connection identifiers. This
method has the advantage of simplicity; but is limited to small
networks, where routing table size is manageable.

 It is inefficient to store a prefix length in one memory blank
that is comparatively considerable due to the pipeline system.
Therefore, every memory blank need to be independent and that
means 32 individual memories blank are required for the worst
case. How many individual memory blanks is required? On
backbone routers there are very few routes with prefixes longer
than 24-bits that shown in Figure 1. There are three prefix
lengths (16, 19 and 24) with majority of routing entry in Figure 1.
When we would like to construct a prefix tree as Figure 8, it is
important to avoid expansion that can be fulfilled by using three
individual memory blanks for the prefix lengths mentioned above
(16, 19 and 24). Adds the prefix length of 8 and the prefix length
of 32, there are five levels of memory tables. The prefix tree is
partitioned into five levels, each level mapped to a memory table,
as shown figure 10. We called this a 5-levels hierarchy searching
structure. An entry in a table either represents a valid route,
(contains an index points to a table defining the next hop), or
represents an index of a route, (to the next level).

 On a lookup, the IP address is divided into sub fields, one
for each level in the prefix tree. These sub fields are used as
indices into the tables at the corresponding levels in the trie. So
the first sub field from the IP address is used as an index into the
first level table. This gives an offset to a table at level two,
indexed by the second sub field from the IP address; the rest can
be done in the same way.

00

01

2 bit

2 bit

14 bits

14 bits

Invalid route

Index into next level

Figure 11 : 5-levels hierarchy searching structure entry format

14 bits

Next hop

2 bit

10

31 23 15 12 7
Index 0 Index 1Index 2Index 3Index 4

0

Memory
Blank 0

Memory
Blank 1

Memory
Blank 2

Memory
Blank 3

Memory
Blank 4

Next hop
Table

IP Address

Figure 10 : 5- Levels hierarchy searching structure

 Besides the pointer field, each table entry also in cludes two
bits indicating whether the node is index or valid or invalid, so
there are 16 bits in total in each entry. In contrast with other
tables, each entry of the fifth memory only has a bit indicating
the node whether is valid or invalid; therefore, there are 8 bits in
total. Figure 11 shows the entry formats of the memory table.
The memory consumption depends on the size of the table entries.
The pointer with 14 bits can yield a maximum of the 16k next
hops in the forwarding table; each entry occupie s 16 bits.

 We can classify routing lookup engines in two schemes
according to the times of valid lookup per memory cycle. One is
called single output scheme, which has one valid lookup per
memory cycle. The other is called multiple outputs scheme,
which has one or more valid lookup per memory cycle. The
performance of the two designs are mainly limited by the speed
of the memory, hence the fast lookup is correspondent to the fast
DRAM.

3.3 Promotion Mechanism

 We observe the distribution of forwarding tables that has
two features in Figure 16. One is that there is small number of
prefixes longer than 24-bits. The other is that the prefixes are not
distributed evenly. The latter feature is the motivation of
promotion mechanism comes from. The not evenly distributed
feature can be explained easily by the data structure of tree. The
father’s node has fixed number of child’s nodes in the data
structure of tree. The fixed number of child’s nodes are called
group. When there is one only child used in the group, it is
defined as the not even distributed condition in Figure 12, which
are the same as the condition of the 5-levels hierarchy searching
structure, which is not even distributed in the certain memory
level. By examination the backbone collected data, there are 19
percent of the groups, whose condition is not evenly distributed
in the 4th memory blank.

 In the paper, we record the offset and next hop fields of the
only one entry (child node) of the group into the entry of
previous memory blank (father node) as shown in Figure 13. It
will decrease one memory access cycle when lookup the only
one entry of the group in the 4 th memory blank.

1 group = 32' child

The third level

The fourth level

Only one child in

the group

Figure 12 : Not evenly distribution in the certain memory level

Valid route

Index route

Invalid route

 We implement the five memories blank by pipeline. The
lookup process can be ended in an earlier stage with the aid of
promotion mechanism.

2 bit

10

Figure 13 : 5-levels hierarchy searching structure entry format with
promotion mechanism

14 bits

Next-next hopIndex Offset

11 bits 5 bits

4. IMPLEMENTATION

 Figure 14,15 shows very simple hardware designs of two
5-levels lookup engines. One is of single output scheme, as
shown in Figure 14; the other one is the multiple outputs scheme,
as shown in Figure 15.

 The tables are stored in different memory blanks —that is to
say each level stored in one blank. This results in a pipelined
design, with one stage per level. The lookup is completed when a
stage either has the valid bit set, or has both the valid bit and the
index bit cleared. When a match is found (i.e., a stage has the
valid bit set), the resulting next hop pointer flows through the
following stages, without being changed.

 When packet comes in the 5-levels single output lookup, the
IP address will be divided into five subfieldes. The IP address of
IP version 4 has 32 bits. The IP address of the five subfieldes are
31 ~ 24 bits, 23 ~ 16 bits, 15 ~ 13 bits, 12 ~ 8 bits and 7 ~ 0 bits.

 Figure 14 illustrated five pipeline address registers in strips
on the top of the drawing, there is a stage (level 3) omitted due to
the limited figure space. The 31 ~ 24 bits of the first pipeline
address register are used as an index of the memory blank of
level 1. There are a ptr in every entry of every memory blank.
The ptr, that it’s the content of one entry of the memory blank of
level 1, which is indexed by the 31 ~ 24 bits of address. The ptr
used as segment and the 23 ~ 16 bits of the second IP address
pipeline register is an offset. This combination of the segment
and offset is used as indices into the memory blank of level 2.
The outcomes of memory are latched into the pipeline register
for the next stage to use as shown in the Figure. All other levels
use the same principle.

 The ptr address of the front memory blank with latch
connects to the ‘0’ end of the input of the multiplex and other ptr
address of the present memory blank connect to the other end of
the input of the multiplex shown as in Figure 14. Therefore, the
out of multiplex will by way of the ptr address of the front
memory blank with latch when the valid of the front memory
blank is set. Besides a ptr, there are valid and index fields in the
content of every entry of every memory blank. The two fields
mentioned above, are used as control signals in the 5-levels
single output lookup engine. The valid and index fields cannot be
set as ‘1’ in the same entry of every memory blank. In addition,

we used the longest prefix-matching scheme. Hence, if the valid
field of the entry of the front memory blank is set, the ptr will be
selected and outputted from the multiplex in the corresponding
memory level. In other words, the valid control signal outputs Hi
from OR gate, which indicates a match is found and the next hop
index is outputted.

 As soon as packet comes into the 5-levels multiple outputs
lookup engine, the packet head is stored into IP address buffer.
There is a pointer, which is used as indices into the memory
blank of level 1 by the 31 ~ 24 bits of the IP address buffer, in the
IP address buffer. There are five stages in the pipeline for the
5-levels multiple outputs lookup engine. These are indicated by
the five strips on the Figure 15, which are named as the IP
address’s pipeline registers. The content of the first IP address’s
pipeline register (the left) is passed from the IP address buffer,
when clock come in. At the same time, the content of the second
IP address’s pipeline register will be also passed from the first IP
address’s pipeline register’s content. This movement is
simultaneously from left to right.

 In general, the lookup action of the IP address data moves
from left to right through each IP address’s pipeline register of
the five stages. There is a dropped bit in every IP address
pipeline registers. The dropped bit is used to indicate whether the
IP address’s next hop index is found. If this bit is set to Hi, the
next hop index is correctly found and the IP address data is
drained from the pipeline, as shown in Figure 15’s lower pipeline
register.

 Each target IP address is divided by 5 fields, according to
bit position 31~24, 23~16, 15~13, 12~8 and 7~0. Each field is
used as an offset into the corresponding hierarchy memory level.
The base of this segment is the latched pointer (or index) of
previous level’s output, shown in Figure 11.

 In order to accomplish the promotion mechanism, the
memory’s content of level 3 is set differently as shown in Figure
13. If bit 12~8 of the IP pipeline register is matched with the 3th
level’s output’s offset field, then the promotion mechanism is
activated. The next hop is found and outputted.

 There is an OR gate in the third stage of pipeline. Which is
used in the case that the valid bit of the latcher is Lo and the
dropped bit of IP address’s pipeline register is Hi. In other words,
the input end of the D type FIFO must be set as Hi. When next
read clock come in, the latcher will be disabled in the stage of the
pipeline. This will make sure the promotion mechanism is
finished.

5. EXPERIMENTAL RESULTS

 The behavior of memory distribution for 5-levels hierarchy
searching structure has been simulated. The experimental routing
backbone is the Mac East [6]. The routing table data of the
backbone files is downloaded from the Merit Networks.

 Figure 16 shows the simulated results. The sixth column,
“16len’ level one child,” explains the group percentage of the
group with only one entry in the memory bank of 16 prefix
length. The “(88) and (89)” are the total groups of this hind.
There are the candidates for promotion. But as the data shown,
there are only 88 (or 89) group for the second level and 4163 (or
4048) group for the third level, we choice the fourth level for
promotion.

11

Figure 14: 5-levels single output lookup engine

Figure 15: 5-levels multiple outputs lookup engine

 The memory consumption of five-levels searching structure
lookup engine depends on the size of the table entries. Every
entry of the above consists of one valid bit and index bit plus a
pointer field, which are 16 bits in total. There is a cleared valid
bit indicates an invalid route, which is 8 bits in total, on the last
level entry. The usage of the memory in the case of the large
routing table such as the table from MAE-EAST (routing
backbone) is less than 900KB (0.89MB) size. However, the total
size of memory blank of the five level is approximately 14MB
and therefore, the utilization of memory can be inefficient.

6. CONCLUSIONS AND FUTURE WORK

 We have demonstrated that hardware fast IP address lookup
engines can be built from a small amount of inexpensive,
ready-made components such as slow static or dynamic RAM
(SRAM, DRAM) and programmable logic devices (PLDs). We
have presented two designs: One for one output per memory
cycle -- single output lookup engine and one for one or more
outputs per memory cycle --multiple outputs lookup engine, and
one mechanism: can be done in the early one stage of the
pipeline.

Both designs are pipelined and can perform lookups at the

rate of one or more packets per memory cycle. Depending on the
memory technology used, this corresponds to rates up to 50
million packets per second. How will the memory be utilized
efficiently? From the experiment, 14MB are required but only
900KB are used. A hash function may be used to map the 14MB
to 900KB memory. This is still another worth to be done. The
improvement can be used with hash function, which is to contract
memory table and to achieve good memory utilization. As to the
selection of the hash function and the process of the contention
with routing lookup table, which are the critical issues of future

work.

7. REFERENCES

[1] A. Brodnik, S. Carlsson, M. Degermark, S. Pink. “Small
Forward ing Tables for Fast Routing Lookups.” Proc. ACM
SIGCOMM 1997, PP. 3-14, Cannes, France.

[2] A. McAuey, P. Francis. “Fast Routing Table Lookup Using
CAMs.” Proc. IEEE INFOCOM 1993, Vol. 3, pp 1382-1391,
San Francisco, USA.

[3] B. Dutcher. Managing IP Addresses, How to Number Your
Network for Growth and Change. Wiley Computer Publishing,
John Wiley & Sons, Inc 2000.

[4] C. Labovitz, G. R. Malan, F. Jahanian. “ Internet Routing
Instability.” Proc. ACM SIGCOMM 1997, pp. 115-126,
Cannes, France.

[5] E. Fredlkin, “Trie Memory,” Communications of the ACM,
vol. 3, no. 9, pp. 490-499, Sept. 1960

[6] Merit Networks, Inc.
http://www.merit.edu

[7] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner.
Scalable high speed IP routing lookups. ACM Computer
Communication Review, 27(4): 25-36, October 1997.

[8] M. Waldvogel, G. Varghese, J. Turner, B. Plattner. “Scalable
High-speed IP Routing Lookups.” Proc. ACM SIGCOMM
1997, PP. 25-36, Cannes, France.

[9] P. Gupta, S. Lin, and N. Mckeown. Routing Lookup in
Hardware at Memory Access Speeds, INFOCOM’98, 17th
Annual Joint Conference of the IEEE Computer and
Communications Societies.

[10] P. Newman, G. Minshall, T. Lyon, and L. Huston. IP
switching and gigabit routers. IEEE Communications
Magazine, 35(1): 64-69, January 1997.

[11] R. J. Walsh and C. M. Ozveren. The gigaswitch control
processor. IEEE Network, 9(1): 36-43, January/February 1995

[12] S. Nilsson, G. Karlsson. “Fast address lookup for Internet
routers.” In Proc. IFIP 4th International Conference on
Broadband Communications, pp. 11-22, 1998

[13] Stanford University Workshop on Fast Routing and witching,
December 1996.
http://tiny-tera.stanford.edu/Workshop_Dec96

[14] W. Doeringer, G. Karjoth, M. Nassehi. “Routing on
Longest-Matching Prefixes.” IEEE/ACM Trans. Networking,
Vol. 4, No. 1. Feb. 1996.

[15] W. Doeringer, G. Karjoth, and M. Nassehi. Routing on
longest-matching prefixes. IEEE/ACM Transactions on
Networking, 4(1): 86-97, February 1996.

[16] Y. Rekhter, T. Li. “An Architecture for IP Address
Allocation with CIDR.” RFC 1518, Sept. 1993.

[17] Gosling, J and McGilton, H. The Java Language
Environment: A White Paper, JAVASOFT, 1996

