
 

  

Hardware Based Routing Lookup for IPv4

ABSTRACT 

 
    In this paper, consider the problem of organizing address 
tables for Internet routers to enable fast searching. Our proposal 
is to build an efficient, compact and easily searchable 
implementation of an IP routing table by using hardware.  
 
    One limitation of router performance is the route lookup 
mechanism. IP routing requires that a router perform a 
longest-prefix-match address lookup for each incoming datagram 
in order to determine the datagram’s n ext hop.  
 
    We present a route lookup mechanism that when 
implemented in a pipelined fashion in hardware, can achieve one 
or more routes lookup every memory access. With 50ns DRAM, 
this corresponds to approximately 20 million packets per second; 
this corresponds to a rate of more than 10 Gb/s per port. We also 
present promotion mechanism that can be done in the early one 
stage of the pipeline for the forwarding table in the hardware. 
The advantage of the promotion mechanism is made clear from 
the simulation of the five-levels hierarchy routing table 
distribution. 
 

1. INTRODUCTION 
 

    The growth of the Internet has lead to a situation where 
network capacity is becoming a scarce resource. It used to be that 
network capacity was mainly limited by speed of the links, but 
this situation is now changing. Thanks to the developments in 
transmission technology, with the introduction of fiber optics, the 
bottleneck is moving from the links to the routers. The current 
trend for dealing with this problem is to relieve routers from 
some of the burden of switching traffic, and instead use switches 
of different kinds, such as FDDI switches, ATM switches, and 
Ethernet switches. This turns out to be a more cost-effective 
solution, since the price for switching capacity is lower than the 
price for routing capacity. 
 
    One of the main limiting factors for performance in a router, 
compared to a switch, is often thought to be the processing of 
incoming packets: when an IP packet arrives at an input port of a 
router, the packet needs to be examined and classified, and based 
on the classification the packet is forwarded to an output port. 
The packet classification operation consists of analyzing 
information in the packet header (at least the destination address 
needs to be examined), and performing a lookup operation to 
obtain the information required forwarding the packet to its next 

hop. In principle, the same kind of classification needs to be 
performed by a switch, but the operation is generally thought to 
be more complicated for an IP packet than for an ATM cell or an 
Ethernet frame. 
 
    The classification operation performed by a switch can be 
done through a few and simple operations. This typically 
includes fetching a field from the header of the incoming data 
unit, perfo rming some simple arithmetical-logical operations on 
this field, and using the result as a direct index into a table with 
forwarding information. Such a table can be stored in ordinary 
RAM, which means that in the ideal case, a switch can classify 
data units at the rate of one data unit per memory cycle in RAM. 
 
    On backbone routers there are very few routes with prefixes 
longer than 24-bits. This is verified by an examination of the 
MAE-EAST backbone routing tables [6]. A plot of prefix length 
distribution is shown in Figure 1; note the logarithmic scale on 
the y-axis. In this example, 99% of the prefixes are 24-bits or 
less. 
 
    IPv6 is still some way off; IPv4 is here to stay for the time 
being. Thus, a hardware scheme optimized for IPv4 routing 
lookups is useful today. There is a single general-purpose 
processor participating in routing table exchange protocols and 
constructing a full routing table (including protocol-specific 
information such as route lifetime, etc. for each route entry). The 
next hop entries from this routing table are down loaded by the 
general-purpose processor into each forwarding table, which are 
used to make per-packet forwarding decisions. 
 
    This thesis demonstrates that it is possible to classify IP 
packets at the rate of one and more packets per memory cycle. 
The purpose is to present two IP address lookup schemes and 
promotion mechanisms, which are suitable to implement in 
hardware. The address lookup mechanisms are for unicast IP 
addresses, and performs a longest prefix lookup. The data 
structure we use for this is a variant of a trie [5] with few 
particular levels. The promotion mechanism that can be done in 
the early one stage of the pipeline so that the next hop can be 
determined early. 
 
1.1 Motivation 
 
    Our work is motivated by the need for faster route lookup; 
in particular, we are interested in fast, hardware -implementable 
lookup schemes. We desire a lookup mechanism that achieves 
four goals: The first is that the lookup procedure should be easily 
implementable in hard ware using simple logic. The second is that 
each lookup takes at most one memory access time on average. 
The third is that if a lookup takes more than one memory access, 
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then (a.) the number of accesses should be small, (b.) the number 
of accesses should be bounded by a small value in all cases, and 
(c.) the memory accesses should occur in different physical 
memories, enabling pipelined implementations. The fourth is the 
cost that is an important concern. 
 
    Both lookup scheme are based on cheap memory and 
standard logic, and are designed mainly with the goal to be 
scalable. The scalability is achieved in two ways: The first is that 
the lookup schemes are so cheap that it allows a distributed 
router design where each link interface card has its own  lookup 
schemes. A router can then be built with any number of interface 
cards, since the lookup schemes put a limit only on the capacity 
of individual interfaces, and not on the total capacity of the 
router.  
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Figure 2: Router design with power on interfaces
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    In Figure 2, a number of network interfaces [1], and 
network processor are interconnected with a switching fabric. 
The forwarding engines use a local version of the routing table, a 
forwarding table, downloaded from the network processor to 
make their routing decisions. The GRF routers from Ascend 
communications, for instance, use this design. The second 
scalability property comes from the fact that the lookup schemes 
themselves are flexible. Using slow SRAM with a memory cycle 
time of 100 nanoseconds, it is possible to process 10 million 
packets per second. Assuming that an average IP packet is 1000 
bits, this means that each lookup scheme can deal with 10 Gb/s. 
Higher capacities can easily be achieved by using faster 
memories. As for the promotion mechanism that can be done in 
the early one stage of the pipeline for the different physical 
memories resulting are lookup speeds increasing. 
 

1.2 Background 

 
    Our design for performing longest prefix match is based on 

a tree representation of the forwording table, where the tree is 
searched from shorter to longer prefixes. Since the advent of the 
Classless InterDomain Routing (CIDR) in 1993 [16], IP routes 
have been identified by a <route prefix, prefix length> pair, 
where the prefix length is between 0 and 32 bits, inclusive, for 
every incoming packet, a search must be performed in the 
router’s forwarding table to determine which next hop the packet 
is destined for.  
 

1.2.1 Longest Prefix Matching 
 
    With CIDR, the search may be decomposed into two steps. 
First, we find the set of routes with prefixes that match the 
beginning of the incoming IP destination address. Then, among 
this set of routes, we select the one with the longest prefix. This 
is the route that we use to identify the next hop. 
 

1.2.2 Classless InterDomain Routing (CIDR) 
 
    The objectives of CIDR are: 
 

l Prolong the life of the IPv4 address space. 
l Simplify the routing at the Internet’s major traffic 

exchange points. 
l Make more efficient use of the remaining IP address 

space. 

 
 

Figure 1: Prefix length distribution 
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    For example, with CIDR, a n etwork could be allocated eight 
Class C networks, spanning the 2048 addresses from 201.10.0.0 
to 201.10.7.255, instead of a single Class B network, with 65,536 
addresses. Since the network administrator is allocated eight 
Class C networks, which use three bits of the Class C space, the 
remaining 21 bits must be the network number. The address and 
prefix describing the network is, therefore, 201.10. 0.0 and 21, 
usually written as 201.10.0.0/21 shown in Figure 3. 
 
    The concepts of CIDR are relatively simp le. Instead of 
filling routing tables —particularly those for the routers at the 
core of the Internet —with entries for individual network 
addresses, why not refer to a whole range of contiguous network 
addresses with one entry? CIDR does just that, by what is known 
as supernetworking. CIDR also eliminates the distinctions of 
Class A, B, and C addresses by subnetworking all IP address 
space into closely fitted “chunks” of address space. For example, 
let’s say that all of the networks in the range from 190.100.1.0 
through 190.100.255.0 have been assigned to a single ISP. That 
ISP is a customer of one of the top-level national ISPs, which 
advertises the existence of those networks. To other top-level 
ISPs, all those networks are reachable through the national ISP. 
 
    So instead of having the national ISP, as well as all the 
others at the Internet NAP, maintain routing table entries for 255 
separate networks, why not just has one entry that represents 
them all? The CIDR entry for all 255 of those networks would be 
190.100.0.0/16. We will explain the /16 later, but, briefly here, 
it’s a shorthand notation to indicate a block of 256 Class C 
networks, not just one network. 
 
    Using routers and routing protocols that can pass around 
network updates along with that /nn notation, network 
administrators can carve IP address space into appropriately 
sized chunks, instead of the large, medium, and tiny Class A, B 
and C network sizes. ARIN (American Registry for Internet 
Numbers) can assign address space that way, too, instead of 
having to dole out huge chunks of classical address space. 
 

1.2.3 Routing and Forwarding Tables 
 
    A router design is shown in Figure 2 [1]. A number of 
network interfaces, and a network processor are interconnected 
with a switching fabric. The forwarding engines use a local 
version of the routing table, a forwarding table, downloaded from 
the network processor to make their routing decisions.  
 
    Inbound interfaces send packet headers to the forwarding 
engines through the switching fabric. The forwarding engines in 
turn determine which outgoing interface the packet should be 
sent to. It uses the destination address to determine the output 
port for the packet and its next -hop address (it also modifies the 
header or meta-data). This information is sent back to the 
outbound interface. The only task of a forwarding engine is to 
process packet headers. It is not necessary to download a new 
forwarding table for each routing update. Routing updates can be 
frequent but since routing protocols need time in the order of 
minutes to converge, This is because routing protocols, such as 
RIP (Routing Information Protocol) and OSPF (Open Shortest 
Path First). Forwarding tables can grow a little stale and need to 
be updated only once every 30-60 s [13]. The netwo rk processor 
needs a dynamic routing table designed for fast updates and fast 
generation of forwarding tables. The forwarding tables, on the 
other hand, can be optimized for lookup speed and need not be 

dynamic. 

 
2. RELATED WORK AND DISCUSSION 

 
    Recently, several groups have proposed novel data 
structures to reduce the complexity of longest-prefix matching 
lookup [1][12], which are software schemes. And there are 
hardware schemes also, such as [2], [5] and [9]. 
 

2.1 Software Schemes 
 
    The software scheme in [1] requires the prefix tree is 
complete that each node in the tree has either two or no children. 
Nodes with a single child must be expanded to have two children; 
the children added in this way are always leaves, and their 
next -hop information is the same as the next -hop of the closest 
ancestor with next -hop information, or the “undefined” next -hop 
if no such ancestor exists.  

 

 
This procedure, illustrated in Figure 4, increases the 

number of nodes in the prefix tree, but allows building a small 
forwarding table. In [12], the author proposal is to build an 
efficient, compact and easily searchable implementation of an IP 
routing table by using an LC-trie, a trie structure with combined 
path and level compression. The depth of this structure increases 
very slowly as function of the number of entries in the table. 
These data structures and their accompanying algorithms are 
designed primarily for implementation in software, and cannot 
guarantee that a lookups will complete in one 
memory -access-time. Figure 5 shows compare table of their 
performance [1] & [12]. The distinct marks of the fourth column 
are the memory utilization and the whole total routing entry. 

 

 
 

Figure 5: The compare of The Small Forwarding Scheme and The 
Level-Compressed Scheme 

Figure 4: Expanding a prefix prefix tree to a complete tree



 

   

2.2 Hardware Schemes 
 
    The current techniques for performing longest matching 
prefix lookups in hardware, for example CAMs [2] and Tries [5]; 
do not seem to be able to meet the goals set forth above. CAMs 
are generally small, expensive and dissipate a lot of power when 
compared to DRAM. Tries, in general, have a worst case 
searching time of 32 memory accesses, leading to a wasteful 
32-stage pipeline if we desire one lookup per memory access 
time. Furthermore, if we wish to fully pipeline the design, each 
layer of the trie needs to be implemented in a different physical 
memory. This leads to problems because the memory cannot be 
shared among layers; it could happen that a single layer of the 
trie exhausts its memory while other layers have free space. 
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Figure 6 :DIR 24-8-BASIC architecture. The next hop result comes from either
TBL24 or TBLlong  

 
    We have learned that the lookup technique outline here is a 
paper by P. Gupta, S. Lin, and N. McKeown, described in [9]. 
They call the basic scheme DIR-24-8-BASIC — it makes use of 
the two tables shown in Figure 6, both stored in DRAM. The first 
table (called TBL24) stores all possible route prefixes that are up 
to, and including, 24-bits long. This table has 16 million entries, 
addressed from 0.0.0 to 255.255.255. Each entry in TBL24 has 
the format shown in Figure 7. The second table (TBLlong) stores 
all route prefixes in the routing table that are longer than 24-bits.  
 

If longest route with this 24-bit prefix is < 25 bits long:

If longest route with this 24 bits prefix is > 24 bits long:

0

1

1 bit

1 bit

15 bits

15 bits

Next Hop

Index into 2nd table

Figure 7 : TBL24  entry format  
 
    As a summary, let’s review some of the pros and cons 
associated with the basic DIR-24-8-BASIC scheme. 
 
Pros: 
l Although (in general) two  memory accesses are 

required, these accesses are in separate memories, 
allowing the scheme to be pipelined. 

l Except for the limit on the number of distinct 
24-bit-prefixed routes with length greater than 24 bits, 
this infrastructure will support an unlimited number of 
routes. 

l The total cost of memory in this scheme is the cost of 
33MB of DRAM. No exotic memory architectures are 
required. 

l The design is well suited to hardware implementation. 
l When pipelined, 20 million packets per second can be 

processed with currently available 50ns DRAM. The 

lookup time is equal to one memory access time. 
 
Cons: 
l Memory is used inefficiently  

 
l Only one lookup valid per cycle in the multiple stages 

pipeline 
 

3. PROPOSED SCHEME 
 

In the paper, we present a route lookup mechanism that 
when implemented in a pipelined fashion in hardware, can 
achieve one or more routes lookup every memory access. We 
also present promotion mechanism that can be done in the early 
one stage of the pipeline for the forwarding table in the hardware.  
 
3.1 The Data Structure for Forwarding Table 
 
    The address space can be though of as a tree, where the 
nodes represent prefixes. Each level in the tree represents a 
specific prefix length, which is the same for all nodes on that 
level. In our schemes we limit the tree to a few levels. Figure 8 
depicts a prefix tree with 6-bit addresses using three prefix 
lengths (2 and 4). Prefixes with other lengths than the ones used 
in the tree have to be expanded into several longer prefixes. For 
example, for the tree in  Figure 8, a prefix with length 3 has to be 
expanded into two prefixes with length 4, so the binary prefix 
010/3 would have to be expanded into 0100/4 and 0101/4. This is 
due to prefix expansion. This will generate more nodes when 
there are few levels in the tree. 
 
    The tree has three types of nodes: valid, index and invalid 
nodes. A valid node represents an entry in the forwarding table. 
An index node corresponds to a prefix that matches an entry in 
the forwarding table, but is shorter than that entry (“prefix of a 
prefix”). An invalid node represents a prefix that does not appear 
in the forwarding table. 
 
    To simplify the processing of the tree, we introduce two 
restrictions: First, all possible children of an index node must be 
present in the tree (this is called a prefix group). The unused 
prefixes in a prefix group are marked as invalid. The second 
restriction is that we do not allow a node to be both valid and 
index at the same time. So if there is a prefix in the routing table 
which is both a route in itself and a prefix of other routes, it will 
appear as several nodes in the tree: The prefix itself is inserted as 
an index node and the prefix is expanded into a prefix group 
where all entries are valid. 
 
    To find a matching route, the tree is searched from 
the shortest prefix until the first valid or invalid node 

that matches the route is encountered. In this way, the 
longest matching entry is guaranteed to be found. For 

example, the following is the procedure to find the 

address 0101 in a forwarding table represented by the 
tree in Figure 8. First the shortest prefix 01/2 is 

looked up. The matching entry is an index, resulting in 
a second lookup, 0101/4. A last lookup 0101 is then 

performed, resulting in a valid entry. This entry points into a 
forwarding table where the forwarding information is stored. If 
only simple forwarding is needed for the entry, an output port 



 

   

identifier could be stored instead of the pointer.  
 

Figure 8: Example routes in a prefix tree
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3.2 Five-levels Hierarchy Searching Structure  
 
    The simplest addressing structure is a flat address space, 
where we simply assign each destination a unique address chosen 
anywhere from the address space. This is seen, for example, in 
Ethernet addresses and for local connection identifiers. This 
method has the advantage of simplicity; but is limited to small 
networks, where routing table size is manageable. 
 
    It is inefficient to store a prefix length in one memory blank 
that is comparatively considerable due to the pipeline system. 
Therefore, every  memory blank need to be independent and that 
means 32 individual memories blank are required for the worst 
case. How many individual memory blanks is required? On 
backbone routers there are very few routes with prefixes longer 
than 24-bits that shown in Figure 1. There are three prefix 
lengths (16, 19 and 24) with majority of routing entry in Figure 1. 
When we would like to construct a prefix tree as Figure 8, it is 
important to avoid expansion that can be fulfilled by using three 
individual memory blanks for the prefix lengths mentioned above 
(16, 19 and 24). Adds the prefix length of 8 and the prefix length 
of 32, there are five levels of memory tables. The prefix tree is 
partitioned into five levels, each level mapped to a memory table, 
as shown figure 10. We called this a 5-levels hierarchy searching 
structure. An entry in a table either represents a valid route, 
(contains an index points to a table defining the next hop), or 
represents an index of a route, (to the next level).  
 
    On a lookup, the IP address is divided into sub fields, one 
for each level in the prefix tree. These sub fields are used as 
indices into the tables at the corresponding levels in the trie. So 
the first sub field from the IP address is used as an index into the 
first level table. This gives an offset to a table at level two, 
indexed by the second sub field from the IP address; the rest can 
be done in the same way. 
 

00
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2 bit

2 bit

14 bits

14 bits

Invalid route

Index into next level

Figure 11 : 5-levels hierarchy searching structure entry format
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Figure 10 : 5- Levels hierarchy searching structure 
 
    Besides the pointer field, each table entry also in cludes two 
bits indicating whether the node is index or valid or invalid, so 
there are 16 bits in total in each entry. In contrast with other 
tables, each entry of the fifth memory only has a bit indicating 
the node whether is valid or invalid; therefore, there are 8 bits in 
total. Figure 11 shows the entry formats of the memory table. 
The memory consumption depends on the size of the table entries. 
The pointer with 14 bits can yield a maximum of the 16k next 
hops in the forwarding table; each entry occupie s 16 bits. 
 
    We can classify routing lookup engines in two schemes 
according to the times of valid lookup per memory cycle. One is 
called single output scheme, which has one valid lookup per 
memory cycle. The other is called multiple outputs scheme, 
which has one or more valid lookup per memory cycle. The 
performance of the two designs are mainly limited by the speed 
of the memory, hence the fast lookup is correspondent to the fast 
DRAM. 
 
3.3 Promotion Mechanism 
 
    We observe the distribution of forwarding tables that has 
two features in Figure 16. One is that there is small number of 
prefixes longer than 24-bits. The other is that the prefixes are not 
distributed evenly. The latter feature is the motivation of 
promotion mechanism comes from. The not evenly distributed 
feature can be explained easily by the data structure of tree. The 
father’s node has fixed number of child’s nodes in the data 
structure of tree. The fixed number of child’s nodes are called 
group. When there is one only child used in the group, it is 
defined as the not even distributed condition in Figure 12, which 
are the same as the condition of the 5-levels hierarchy searching 
structure, which is not even distributed in the certain memory 
level. By examination the backbone collected data, there are 19 
percent of the groups, whose condition is not evenly distributed 
in the 4th memory blank. 
 
    In the paper, we record the offset and next hop fields of the 
only one entry (child node) of the group into the entry of 
previous memory blank (father node) as shown in Figure 13. It 
will decrease one memory access cycle when lookup the only 
one entry of the group in the 4 th memory blank.  
 



 

   

1 group = 32' child

The third level

The fourth level

Only one child in

the group

Figure 12 : Not evenly distribution in the certain memory level
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    We implement the five memories blank by pipeline. The 
lookup process can be ended in an earlier stage with the aid of 
promotion mechanism. 
 

2 bit

10

Figure 13 : 5-levels hierarchy searching structure entry format  with
promotion mechanism
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4. IMPLEMENTATION 
 
    Figure 14,15 shows very simple hardware designs of two 
5-levels lookup engines. One is of single output scheme, as 
shown in Figure 14; the other one is the multiple outputs scheme, 
as shown in Figure 15. 
 
    The tables are stored in different memory blanks —that is to 
say each level stored in one blank. This results in a pipelined 
design, with one stage per level. The lookup is completed when a 
stage either has the valid bit set, or has both the valid bit and the 
index bit cleared. When a match is found (i.e., a stage has the 
valid bit set), the resulting next hop pointer flows through the 
following stages, without being changed. 
 
    When packet comes in the 5-levels single output lookup, the 
IP address will be divided into five subfieldes. The IP address of 
IP version 4 has 32 bits. The IP address of the five subfieldes are 
31 ~ 24 bits, 23 ~ 16 bits, 15 ~ 13 bits, 12 ~ 8 bits and 7 ~ 0 bits. 
 
    Figure 14 illustrated five pipeline address registers in strips 
on the top of the drawing, there is a stage (level 3) omitted due to 
the limited figure space. The 31 ~ 24 bits of the first pipeline 
address register are used as an index of the memory blank of 
level 1. There are a ptr in every entry of every memory blank. 
The ptr, that it’s the content of one entry of the memory blank of 
level 1, which is indexed by the 31 ~ 24 bits of address. The ptr 
used as segment and the 23 ~ 16 bits of the second IP address 
pipeline register is an offset. This combination of the segment 
and offset is used as indices into the memory blank of level 2. 
The outcomes of memory are latched into the pipeline register 
for the next stage to use as shown in the Figure. All other levels 
use the same principle. 
 
    The ptr address of the front memory blank with latch 
connects to the ‘0’ end of the input of the multiplex and other ptr 
address of the present memory blank connect to the other end of 
the input of the multiplex shown as in Figure 14. Therefore, the 
out of multiplex will by way of the ptr address of the front 
memory blank with latch when the valid of the front memory 
blank is set. Besides a ptr, there are valid and index fields in the 
content of every entry of every memory blank. The two fields 
mentioned above, are used as control signals in the 5-levels 
single output lookup engine. The valid and index fields cannot be 
set as ‘1’ in the same entry of every memory blank. In addition, 

we used the longest prefix-matching scheme. Hence, if the valid 
field of the entry of the front memory blank is set, the ptr will be 
selected and outputted from the multiplex in the corresponding 
memory level. In other words, the valid control signal outputs Hi 
from OR gate, which indicates a match is found and the next hop 
index is outputted. 
 
    As soon as packet comes into the 5-levels multiple outputs 
lookup engine, the packet head is stored into IP address buffer. 
There is a pointer, which is used as indices into the memory 
blank of level 1 by the 31 ~ 24 bits of the IP address buffer, in the 
IP address buffer. There are five stages in the pipeline for the 
5-levels multiple outputs lookup engine. These are indicated by 
the five strips on the Figure 15, which are named as the IP 
address’s pipeline registers. The content of the first IP address’s 
pipeline register (the left) is passed from the IP address buffer, 
when clock come in. At the same time, the content of the second 
IP address’s pipeline register will be also passed from the first IP 
address’s pipeline register’s content. This movement is 
simultaneously from left to right. 
 
    In general, the lookup action of the IP address data moves 
from left to right through each IP address’s pipeline register of 
the five stages. There is a dropped bit in every IP address 
pipeline registers. The dropped bit is used to indicate whether the 
IP address’s next hop index is found. If this bit is set to Hi, the 
next hop index is correctly found and the IP address data is 
drained from the pipeline, as shown in Figure 15’s lower pipeline 
register.  
 
    Each target IP address is divided by 5 fields, according to 
bit position 31~24, 23~16, 15~13, 12~8 and 7~0. Each field is 
used as an offset into the corresponding hierarchy memory level. 
The base of this segment is the latched pointer (or index) of 
previous level’s output, shown in Figure 11. 
 
    In order to accomplish the promotion mechanism, the 
memory’s content of level 3 is set differently as shown in Figure 
13. If bit 12~8 of the IP pipeline register is matched with the 3th 
level’s output’s offset field, then the promotion mechanism is 
activated. The next hop is found and outputted. 
 
    There is an OR gate in the third stage of pipeline. Which is 
used in the case that the valid bit of the latcher is Lo and the 
dropped bit of IP address’s pipeline register is Hi. In other words, 
the input end of the D type FIFO must be set as Hi. When next 
read clock come in, the latcher will be disabled in the stage of the 
pipeline. This will make sure the promotion mechanism is 
finished.  
 

5. EXPERIMENTAL RESULTS 
 

    The behavior of memory distribution for 5-levels hierarchy 
searching structure has been simulated. The experimental routing 
backbone is the Mac East [6]. The routing table data of the 
backbone files is  downloaded from the Merit Networks. 
 
    Figure 16 shows the simulated results. The sixth column, 
“16len’ level one child,” explains the group percentage of the 
group with only one entry in the memory bank of 16 prefix 
length. The “(88) and (89)” are the total groups of this hind. 
There are the candidates for promotion. But as the data shown, 
there are only 88 (or 89) group for the second level and 4163 (or 
4048) group for the third level, we choice the fourth level for 
promotion. 
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Figure 14: 5-levels  single output lookup engine 

 
 

 
Figure 15: 5-levels multiple outputs lookup engine 

 
 

 
    The memory consumption of five-levels searching structure 
lookup engine depends on the size of the table entries. Every 
entry of the above consists of one valid bit  and index bit plus a 
pointer field, which are 16 bits in total. There is a cleared valid 
bit indicates an invalid route, which is 8 bits in total, on the last 
level entry. The usage of the memory in the case of the large 
routing table such as the table from MAE-EAST (routing 
backbone) is less than 900KB (0.89MB) size. However, the total 
size of memory blank of the five level is approximately 14MB 
and therefore, the utilization of memory can be inefficient. 
 
 

6. CONCLUSIONS AND FUTURE WORK 
 

    We have demonstrated that hardware fast IP address lookup 
engines can be built from a small amount of inexpensive, 
ready-made components such as slow static or dynamic RAM 
(SRAM, DRAM) and programmable logic devices (PLDs). We 
have presented two designs: One for one output per memory 
cycle -- single output lookup engine and one for one or more 
outputs per memory cycle --multiple outputs lookup engine, and 
one mechanism: can be done in the early one stage of the 
pipeline.  
 



 

   

 
 
 

 
 
Both designs are pipelined and can perform lookups at the 

rate of one or more packets per memory cycle. Depending on the 
memory technology used, this corresponds to rates up to 50 
million packets per second. How will the memory be utilized 
efficiently? From the experiment, 14MB are required but only 
900KB are used. A hash function may be used to map the 14MB 
to 900KB memory. This is still another worth to be done. The 
improvement can be used with hash function, which is to contract 
memory table and to achieve good memory utilization. As to the 
selection of the hash function and the process of the contention 
with routing lookup table, which are the critical issues of future 

work. 
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