DEEGNTOUE2AFEHRBERE
Proceedings of Natiomal Computer Symposium 1995

M HEaEARBEE RITAIAHET AR
MAKING AN OODB A BEHAVIORAL TEMPORAL OODB

% BlAR =y

%4

HEIRF

ERER

Gwo-Dong Chen, Yeong-Hsen Lee, Baw-Jhinne Liu, Jorng-Tzong Horng, Jian-Cheng Dai*

Bz ¥ R TR AR R AT
Department of Computer Science and Information Engineering
National Central University
Chung-Li, Taiwan, R.O.C.

*FALERES
*Institute for Information Industry

W&

Azt EaEREEEERITZER
ERAESRALESZAABEINEL BETH
REEMEAEERLARETHENRS - £
AR BB~ ESTHPHNITE BRE
HEFTGEEEAHNBELNALEBFTELEAYE
A EREREETRIARGEEAA - A
ZABREHABEEALRARTERLGRA -
AXAARE BT EBRHEHHEEHTHABRE
FAAREABYeRN ATHASMEAAY &
MRk TEHSEX > HHMBET #EEA% 0 R—
B ARAERREAR - AMEA-HHEFSTH
BEELG LUNE—XRTAEZAHETRAE -

Mars : pada i 2NEEHE TENE
Abstract

Current object-oriented databases only
manage the newest data of objects which are stored
in the databases. That imply they can not support
those applications for which the history data of
objects must be taken into account. An application
not only need to record the data history of objects but
also need record the behavioral history of objects
which ~make the state of data changed. However,
current temporal database only consider the data
history of objects but do not take the processing of
behavior history of objects into account. The purpose
of this paper is to extend the ability of current object-
oriented database such that the database have the
capability to process the- data history and behavioral
history of objects.

Keywords : Object-oriented database, temporal
database, behavioral modeling

21

1. Introduction

Many Database applications requires history
of data elements to make proper decision. For
example, the credit department needs past account
history of a customer to decide how much they can
loan to him. Moreover, the department may also need
to know how the customer manage his accounts. This
requires the information of history of how accounts'
values changed, that is, behavior history of the
customer. Additionally, when an database application
program goes wrong, the designer need to locate the
errors of the program. It would be much easier for
the designer to debug the program if the database
provides information of data history and behavior
history of the application system.

To support providing data history, many
researches [1,7, 9,10, 11] tries to add time and data
history facilities to database management systems.
This kind of systems are called Temporal DataBase
system (TBS). Most of the works are done on
Relation DataBase (RDB) system, because RDB is
the most popular database management system at
current time. However, Object-Oriented DataBase
(OODB) systems are gaining more and more
attention in recent years. The interface description of
an object is captured by its data and behavior.
Although the behavioral part is essential for an object,
most OODB researchers and systems did not put
emphasis on the behavior aspect of objects. Some of
the reasons are conventional database systems are
only focused on data management.

Nevertheless, when we consider providing
facilities for dealing with data history, we should
consider not only data history but also behavior
history. The reason is that data changes are caused by
object behavior. By considering object behavior, a
database system can not only provide data history but
also the causes of data changes. Since an object is
captured by its data and behavior, the OODB is easier

to incorporate facilities for data history and behavior
history.

Since there are many commercial - OODB
systems available and they providing facilities for
object data management and object-oriented
programming language interface, it is more feasible
to try to extend these systems with facilities for
managing data history and behavior history.

The goal of this paper is to make an OODB
system a behavioral temporal OODB system.

. It must capture the data history, the event
history, and the interaction between event and
data. Thus we can get complete behavioral
temporal information of an application.

. It must have the ability to retrieve data in
accordance with the time which is given by
users.

. It can retrieve objects according to the data
history.

. It can retrieve the data history path of objects.

« It can retrieve objects according to the
behavior pattern.

« It can retrieve the behavior pattern of objects.
To make an OODB into a BTOODB, we
devised approaches for data model, query language,
storage system, and preprocessor respectively which
is described in the following.

« Data model
We propose a data model In TORI
model, which uses three views to describe the
database, that is Object-Relationship view,
Object-Behavior view, and Object-Interaction
view.

Query language

We propose a behavioral temporal
query language to process the temporal query
and is called BTQL (Behavioral temporal
Query Language) [2.] The BTQL is a pattern-
based query language which is able to issue
queries that involves data histories and event
traces. BTQL can also process the query that
contains the uncertain transition path.

+ Storage system

Our system is based on the C++
interface of GemStone OODBMS.Between
users and GemStone OODBMS, we provide a
behavioral temporal data management ievel to
manage the behavioral and temporal data for
users, Fig. 1 depicts this architecture. In this
level we support data structure and functions
for behavioral temporal QO database.

| BTOODB
Preprocessing

Storage System

; Behavioral ;Tr:mporal

e

Fig. 1 The behavioral and temporal data
management level.

Support Query

» Preprocessing for recording temporal data

A preprocessor is developed. Therefore,
when an application program calls a method
of object, it will call it via the database event
handler. Thus, the database can capture the
time of data history and event traces. We use
the event handler to record required
behavioral temporal data.

2 TORI Model

Since an object is defined by its data and behavior.
We should capture both static (data) and dynamic
(behavioral) aspect of objects. The behavior of an
object can be decomposed into two parts: (1) object
internal behavior and (2) object external behavior.
Therefore, in TORI model, it includes three logical
views of data. That is, object-relationship view,
object-behavior view, and object-interaction view.
With the object-relationship view, it mainly captures
the static structure of data, but not monitor the
dynamic evolution of data. The object-behavior view
is incorporate with object-relationship view in order
to capture the data evolution. Under the object-
behavior view, all the dynamic information could be
captured. In order to capture event traces or querying
transactions, the object-interaction view must be
included into the schema. TORI model integrates all
the three views to capture the static data structure,
data evolution, and event traces.The detail of TORI
model can be found in [12].

3 Temporal OO Storage System
A behavioral temporal OO storage system
must record all temporal and behavioral data of
system such that the system can support users to
retrieve behaviorai and temporal data of objects. That
imply the system should satisfy the following
requirements.
1. Recording the data history.
2. Construct the data history path.
3. Recording the behavior history and construct
the behavior history tree.
4. Connect the data history and behavior history
to build the behavior and data interaction.

The contents of BTSS include the store of data
history, data history path, behavior history, behavior
history tree, the interactions between data and

behavior, and support for behavior query. Section
3.4 shows the support for behavior query.

3.1 Data History and Data History Path

Data histories are the basic elements of a
temporal database. For the temporal database, any
version of an attribute should be recorded for
temporal query and some other purpose. We use the
approach called the attribute versioning approach [8,
3 ,5] to record temporal data of objects .Whenever
the data of a temporal attribute changed, a new
version of this attribute will be produced to record
the data and the old data version is unchanged.

Some factors should be taken into account.
The most important thing is how to make the data
can be retrieved quickly. Another consideration is the
data redundancy. Inevitably, the history data will cost
large storage space. Once users are not interested in
an attribute, they could set the attribute as non-
temperal and just catch the current value of this
attribute for saving the storage space. Fig. 2 shows
the contrast between non-temporal object and
temporal object.

‘ Hon-emporal object femporal object
~Employee ", <~ Employee "

} B w P

i

! name address position salary. name address @ position ®salary
! . it A/
o} I
i {
& &

Fig. 2 The different structure between non-temporal
and temporal Object

The storage structures of a non-temporal
object and a temporal object are show in Fig. 3. Since
the states of salary are varying and infinite, it must
define as a dynamic temporal attribute. For the
position attribute, the states of it is finite and can be
expressed in some fixed stages, it must be defined as
a state temporal attribute and own a STD (State
Transition Diagram) to describe the transitions of its
states.

non-temporal object | temporal object

Employee : Employee

| name:static:string;

. address:static:string;

. salary.dynamic:int in STD#;
. position:state:string in STD#;

name:static:string;
address:static:string;
salary:staticint,
position:static:string;

The storage data structure of non-temporal
object and temporal object

Fig. 3

In our method, the storage structure of each
temporal attribute is a link list of state entities. For
storing history data of a temporal attribute, the
structure is defined as below.

class szate{
char *Title; - // The value of state.
time FromTime;

// The time that an attribute transfer to

/Ithis state

time TillTime;
// The time that attribute leave this state

23

event ChangeBy;
// The event that will make the state change
I

The data history of a temporal relationship is
constructed in the same way as objects. While a
temporal relationship is built, a link list of data
history will be constructed at the same time.

Fig. 4 shows the data history path of employee.
Where the temporal attributes salary and position of
employee are associated with a data set which record
all the versions of the attributes, and each attribute
own a link list of history data.

{ L]
laasc) 20600 20.500

-)
,;(Ij\’""mwml.wxMJ (0711992, - | J

salary

position | g
v e ——
— - -
EMPLOYEE P N ase——
{ L . e
Anvistant Enginces Engineer ‘ Manager
| (07119917, 03/1992) § (041992.051993) | | [ow1993. ~]
Ass_Engineer Enginecer Manager

Fig. 4 The data history path of Employee

Fig. 5 show the class hierarchy of states. The
terminal nodes are concrete nodes, which means the
data are really stored in, and for the non-terminal
nodes, there only are Oids which are a pointer to an
instance of the concrete nodes.

position)

Corocy Oy 0y oy O
Operative Assistant Engineer Manager Loave Vaid InValid
Engineer

Fig. 5 The state class hierarchy

For temporal relationship, we conceive it must
contains at least three basic elements. Evidently, the
objects (at least two) that participate in the
relationship is necessary. The third is the status of
this relationship which indicates the relationship is
valid or not and is varying over time.

Fig. 6 is the data history path of relationship.
For which while the participates of an relationship
are changed, a new instance of relationship will
create and set the status of previous relationship
become Invalid.

\ InValid
Ti Isaac P et
Employee | o - status [[09/'991-])
—_ — .
7 { R
s] -
N = . Valid
WORK_FORT e N
] oo onion)
[h » \% - .
Depanmcn{ SA SD] [01992, -]

Fig. 6 The data history path of WORK FOR

3.2 Behavior History and Behavior
History Tree

Data history just record the state transition
data, while to complete record the behavior of

objects in a system, the circumstances of method
invocation must also be recorded.

The data of behavior history contains
function call and member function invocation.
While an object want to get some information
from other objects or just invoke a member
function of another object, this object must
request the services of other objects by function
calls. The member function invocation is the
function call insides an object. In our system, any
function call must be recorded in the behavior
history since without the behavior histories, we
can no: know the reason why makes data chage
and can not support queries about the behavior of
objects.

To capture the behavior history of an
object, how to record the method invocation is
difficult. Since a method of an object can only be
invoked by the object itself. If an object want to
invoke a member function of oiher objects, to
request the member. function supported by those
objects is the only method. Therefore, it is
impossible to know who invoke the member
function of an object when another object invoke
the function. :

An event handler is proposed to manage
the method invocation and construct these
behavior histories. When an event wants to invoke
other events (function call), this is to be done via
the event handler, and the event handler will store
these information into the database. Those data
recorded by the event handler is the data of
behavior histories.

For an instance of the behavior history, it
must keep the following information. A title
record the name of the function who had been
assigned to execute. The event time record the
time of function been invoked. The parameters
and return values are also record, where
parameters are transfer from the calling function
and return values are the results that will return to
the calling function. The state which is induced
by this event is also recorded which captured the

. interaction between data and event. Additionally,
an event are exist to signify the event who invoke
this event and will construct event traces as a
reverse link list. The reason we use this strategy is
for the consideration of implementation, since the
number of events who was invoked by a event is
varying and is difficult to record. The structure of
class event is define as

class event
char *Title;
// The name of this event(function);
time EventTime;
// The time for which the event was
//happened
params ~ Parameters;

24

//The parameters received from
//induced function
params ReturnValues;
// The result that will return to parent
//functions
event InvokeBy;
// The event who invoke this event.
state InduceState;
// The state induced by this event.

|5

Construct the Behavior History Tree (Event
Trace)

In our system, instances of behavior
history are stored in a single set which connect
the correlative instances to construct the behavior
history tree. Fig. 12 illustrates the behavior
history tree (event trace) of employee. Where
while an employee enters a company, the event
"EnterCompany” induces three functions, that is
"Promote”, "ChangeSalary"”, and "SetDepartment"
to initialize the data of an employee. All these
function calls will constitute the behavior history
tree.

The member function "ChangeSalary" of
employee is a trigger function, when the
condition of a trigger becomes true, the actions
associated with it are executed. As introduced in
O++ [6], a trigger must add to those member
functions who have the possibility to fire this
trigger with the method of event call. Since the
member function "EnterCompany" and
“Promote" can fire the trigger "ChangeSalary™ as
displayed in Fig. 7. That means, while method
"Promote” and "EnterCompany" been executed,
they also need to execute the trigger to check
whether the salary will be change or not.

! Promose | . EMPLOYEE
}
. LQJ———-E DEPARTMENT WORK_FOR
-
EnterCompany. TengeSdlary l.—‘—, —:—T-}—E! :
E T] ChoekBamd | Ameps
| S |
i SetDepartment I —

Fig. 7 Behavior history tree

3.3 Behavior and Data Interaction

For a temporal system, the state transition
construct the data history as describe in section 3.1,
the event trace build the behavior history as explain
in section 3.2. It is obviously that a state transition is
always induced by an event (function or trigger), and
the relationships between data history and behavior
history are defined as the behavior and data
interaction of a temporal system.

The data history path and behavior history tree
can not store independently. There should exist links
to connect the event traces and state transitions
therefore the behavior and data interaction can build.

Fig. 8 depicts the behavior and data interaction of an
employee. In this figure, the state transitions are
incorporated with event traces.

‘SucoslEneoll

‘ Fromea o —
l = Lo
pumt S| -

Y= o et =l
J— —_— H : | H
{0 | L [oncckBreu | Vet |
| EniarCompany m 4;u\uni DEPARTMENT WORK_FOR
| . ‘ [
| SaDerwrwnent | o

Fig. 8 Behavior and data interaction

3.4 Support for Behavioral and
Temporal Query

For those approaches that do not record the
event traces, to accomplish the queries that contains
the behavior patterns is impossible. In our approach,
the event traces are incorporated into temporal
database, that means the behavioral queries are
practicable in our system. Traditional non-temporal
queries are also support in our system. This section
demonstrates the queries that our system have
support, where the S, D, and E presented in BTQL
are represent the type of attributes is state, dynamic,
and event relatively.

3.4.1 Behavioral Query
Display the employees whose position

had promote to manager and then leave the company.
This query demonstrates for a given behavior pattern
we can get the objects which satisfy the behavior
pattern.

SELECT employee.name

FROM EMPLOYEE employee

WHERE employee.position WITH *

-E(promote)-S(Manager)-E(Leave)-*

3.4.2 Temporal Query
Retrieve the data history path of employee
Christia's salary during the time interval from
01/1994 to 12/1994. This query is a demonstration to
show the data history path of an object and with the
filter to select attribute which we want to retrieve the
data history path.
SELECT S.Title
FROM EMPLOYEE employee
WHERE employee.name =
Christia"
AND employee.salaryWITH*D-*
AND S.FromTime OVERLAP
[01/1994, 12/1994]
AND S.TillTime OVERLAP
[01/1994, 12/1994]

4 System Implementation

The system implementation will introduce
how to convert a database schema based on TORI
model into a behavioral temporal object-oriented
database. We use an ODL handler and an ODL code

25

generator to accomplish this. An database of
employee is used to demonstrate the processing of
implementation.

4.1 System Architecture

In this system, the process to construct a
behavioral temporal OO database was separate into
three steps. The first is build the schema of database,
where the attributes, state transition diagram,
constraints, triggers, and the relationships should be
well defined. After the schema definition finished,
the ODL handler begins to progress and produces a
temporary program that use the literal statement to
describe the behavioral temporal object-oriented
database schema.

The purpose of ODL handler is to convert the
system from conceptual level to implementation level.
In the conceptual level, what user need to do is
describe the properties of classes and the
relationships between classes. Implementation level,
which provide the concepts that may be understood
by end users but that are not too far removed from
the way data is organized within the computer.
Implementation data models hide some details of
data storage but can be implemented on a computer
system in a direct way[4].

We support the flexibility for user to define
the special functions in this step, where user can add
the pseudo function code to the temporary program
which are not present in the schema, or modify the
pseudo code. If user had defined schema well during
the first step, then the modify can pretermit and
execute the code generator to generate the C++
program.

After the program succeeded generate, use the
GemStone C++ compiler to compile the program into
executable behavioral temporal object-oriented
database system. Fig. 9 depicts the architecture of
this system.

TORI Schama TORI ODL+method implementation

GDL Handier Phane 1

Description mOCRAM.THP

Fig. 9 System architecture

We use two phases to accomplish the system.
The purpose of this architecture is for the flexibility
of users, the reliability for system, and the simplicity
for processing. After phase 1, the pseudo program
code generated and users can check or modify it to
satisfy the requirement of themselves. For the reason
of reliability, the two phases architecture can analyze
more accurately than one phase architecture. Since
the one phase architecture generate the C++ program

code from schema diagram directly, it's evidently that
the process of one phase architecture will more
complex than two phases architecture,

4.3 ODL handler

The ODL handler is a preprocessor of the
system, it extract objects, state transitions, member
functions, and other information from the schema. In
this step, three temporary files will be generated, that
is "STATE.DEF", "RELATE.DEF", and
"PROGRAM.TMP". All the information describe in
the schema will extract to these temporary files. The
metafile "STATE.DEF" store the information of
interactions between state and event of the system.
This file will be helpful while system want to
calculate the next state of current state.
"RELATE.DEF" store the information about the
relation of class, set, and relationships in the system.
This file is useful to make the temporal query process
fast and easy. Besides, there exist another temporary
file called "PROGRAM.TMP". It is not an executable
file, but will be helpful while the generating of
executable program is progress. If need, user can
modify or add instructions, or functions to this file.

The Algorithm of ODL handler

Table 1 describes the algorithm of ODL handler.
This ODL handler will extract the components from
schema. During the schema diagram construct, a file
will create to store the log of traces while construct
the schema diagram. The trace file contains a lot of
descriptions that register the steps while construct the
schema diagram. The algorithm of ODL handler will
search the trace file and get information to build the
temporary files that had mentioned above. The
algorithm of ODL handler is list as follows.

while there still have other classes not proceed
select a class component that still not processed.
get class name and attributes.
add these data to "PROGRAM.TMP"
while there have any STD not processed{ // Construct
STATE.DEF
select a STD that still not processed.
extract the state and event information from STD.
add the state and event information into "STATE.DEF™.

;dd the data of member functions to "PROGRAM.TMP"
while there still have other constraints or triggers{
get the information of constraints and triggers.
add the condition and action to the member functions
that will be influenced

}

while there have a'relationship not proceed{ /! Construct
RELATE.DEF .
Get the relationship information and add into the

"RELATE.DEF".

}

Tabie | Algorithm 1--ODL handler

26

The Metafile "STATE.DEF"

The metafile is a auxiliary file for
executing the state transition. While the state
attributes are going to promote, degrade, or
transfer to next state, system can search this file
and get the position of next state,

In the "STATE.DEF" file, the data are indicate in
a triple form, and is leading by a name of class
which owns these state transitions.

The Metafile "RELATE.DEF

There have two parts in this file. It is
"CLASS" and "RELATIONSHIP", and the
declaration of "CLASS" part can be expressed’
with the tuple<ClassName SetName>. For
example, the <"EMPLOYEE",
"EMPLOYEESET" > means the instances of
class EMPLOYEE are stored in the set named
EMPLOYEESET. Of course, users can declare
the name of set as "PERSONSET" or other names
as they like. We must notice that the name of set
can not as the same of class name, since the
OODBMS will be confused and induce an error
message as in GemStone OODBMS.

In like manner, the "RELATIONSHIP"
part can be expressed with the triple
<Relationship, Class 1, Class 2>. The first
component is the name of relationship. The last
two components are the class who had participate
in the relationship. For example, the tuple.

To generating the relational table for
classes is intuitional from the schema diagram.
With the ODL handler algorithm, while a class
been selected the name of the class will known at
the same time and the name of set which store the
instances of this class has verified.

The Pseudo Program Code
"PROGRAM.TMP"

A class in "PROGRAM.TMP" contains six
parts static, dynamic, state, constraint, trigger, and

member. The static declare the static attributes
and is list in table 2.

static: // Define static attributes.
char* sno;
char* name;

PERSON spouse;

Table 2 The declaration of Static attributes

Table 3 shows the declaration of dynamic
attributes.

dynamic: // Define dynamic attributes.

int salary;

Table 3 The declaration of Dynamic attributes

The state part declare the state attributes
and is list in table 4.

state: // Define STATE attributes.
STATE position;

Table 4 The declaration of State attributes

Constraint and trigger describe the
conditions and actions of constraints and triggers.
A constraint must follow the attribute for which
the constraint is working on and is list as table 5.

constraint: // Detine constraints.
(spouse): // The name of attribute
(spouse == NULL) | (this == spouse->spouse) :
[spouse->Spouse(this);]
trigger: /1 Define triggers.
month >= 7 && SFlag:
[ChangeSalary();
SFlag = 1SFlag;]
month >= 8 && !SFlag:
[SFlag = !SFlag:]

Table 5 The declaration of Constraint and Trigger

The latest part is the declaration of
members which describe the member functions of
a class.

class EMPLOYEE({
.r.r;;;;;ber: /f Define member
functions.
void Spouse(person):
[spouse=person;}
void Promote():
[position=Get_Next_Position("PERSOT ", position,
romote");]

|

"

Table 6 PROGRAM.TMP

4.4 The ODL code generator

Before to processing the ODL code generator,
we should define some basic classes for the system.
For a temporal database, we abstract four basic
classes, that are "METADATA", "METASTATE",
"STATE", "EVENT", and "RELATION". Where the
"METADATA" and "METASTATE" is the
definition of metadata. The purpose for us to define
these classes are to extend the OODBMS into
behavioral temporal OODBMS.

4.4.1 Definition of Basic Classes
The first basic class is the state class,
which is used to record the data of temporal
attributes. The event which makes the position
transfer to next state is also been record. A state
attribute must carry the data as follows.
1. The value of this state, it may be a
string or other types.
2. The event which makes the status
transfer to next state.
3. The time duration for which the
attribute stays in this state, and

27

contains a begin time and an end
time.

As the manner of state class, the event
class also use the recursive declaration to
construct the event traces. Other important note is
the link method of events. Since it's hard to
connect from an object to many objects, we use
the back trace method to resolve this problem.
That means an event will point to only one event
that make it execute, and an event can be pointed
by many events where those events were induced
by this event. An event attribute must carry the
following data.

1. The title of this event.

2. The happen time of this event.

3. The name of function which induce

this event.

4. The parameters which are
transferred from the function that
induce this event.

5. The return values which will return
to the applied function.

6. The state which is induced by this
event,

To reduce the complexity of the system to
process the relationship, all the multi-degree
relationships in our system are decomposed to
one-degree relationship. That means a
relationship is always constructed by two objects
and has at least one attribute to record the status
of this relationship (Valid or Invalid). Any other
relationships that carry more temporal attributes
can derive from this class by inherit this basic
class. A relationship must carry the following
data.

1. Two objects who are the

participators of this relationship.

2. The status of this relationship and is

one of valid or invalid.

4.4.2 The Algorithm of ODL code
generator

The following algorithm will going to
extract the class declarations and method
declarations from the "PROGRAM.TMP". Since
in the temporary file, all the messages had well
defined, to extract the classes and methods will
become easy than the ODL handler. Table 10 is
the algorithm to accomplish this, where contains
two major parts. The first is to extract the class
declarations, that is the type define of attributes,
and the signature of member functions. Second,
the methods' declaration will construct. As
describe in 4.3.4, the instructions of constraints
only insert to the member functions which have
the possibility to change the value of the attribute
that set in the constraint. Comparing with the
constraints, triggers are manipulated in a different
manner. To imitate the function of trigger, the

instructions of triggers must add to each member
functions of this class. While a member function
executes, the triggers can execute as well.

construct the structure of code file and head file.
while there still have other classes{
Select a class name {

store the primitive constructors and destructor.
add the declaration of member functions.

// construct code file
read the information of method declaration from
"PROGRAM.TMP".
write the information of methods to the code file.
add constraints to relative member functions.
add triggers to all member functions.

13}

construct the structure of this class // construct head
file] .

get static attributes and store it to the private part.

get dynamic and state attributes and store to the public
part.

Table 7 Algorithm 2 -- ODL code generator

L[4

6 Conclusion

To make an existing OODB a behavioral
temporal object-oriented database.system, we devised
a data model and query language first. Based on the
proposed data model and query language, we
develope and implement a storage system and a
preprocessor for object interface and implementation
programs which was built on GemStone object-
oriented system. A query processor then
implemented on the storage system. This making
GemStone into a behavioral temporal object-oriented
system. _

The extra burden for a database designer
caused by the extension is that the designer needs to
describe the state machine diagram for temporal
attributes. Thus, developing effort on the behavioral
temporal database system is about the same as on an
existing OODB. By building application on an
system, users of the application are able to query
behavioral and temporal aspect of data history.
Besides, application developer can use the system as
a debugger tool for locating problems in the
application system.

Our system do require extra processing time
and extra storage space. However, owing to the rapid
decreasing of the storage media cost and
improvement of the processing computation speed,
the storage requirement and performance is still
acceptable, since the behavioral temporal database
system can offer information that can not provided
by existing database systems.

References

[1] J. Clifford and A. Croker,
historical relational data

HThe
model

28

[2]
K

(4]

[5]

(6]

(7]

(8]

{9

[10]

[11]

[12]

(HRDM) and algebra based on
lifespan.", Proceedings of the third
International Conference on Data
Engineering, pp. 528-537, Los Angeles,
CA, February 1987.

G.D. Chen, C.C. Liu, "A Behavioral
Temporal Query Language"

J. Clifford and A.U. Tansel, "On an
Algebra for Historical Relational
Databases: Two Views.", Proceedings,
ACMSIGMOD Conference, 1985.
Ramez Elmasri, Shamkant B. Navathe,
"Fundamentals of Database System",
The Benjamin/Cummings Publishing
Company, Inc., 1989. ’
R. Elmasri, G. Wuu, "A Temporal
model and Language for ER
Databases.", Proceedings, Sixth IEEE
Data Engineering Conference,
February 1990.

N. Gehani, H.V. Jagadish, "Ode as an
Active Database: Constraints and
Triggers", Proceedings of the 17th

International Conference on Very
Large Data Bases, pp. 327-336,
‘Barcelona, Sep. 1991,

SK. Gadia, S.8. Nair, "Temporal
Databases: A Prelude to Parametric

Data.", Temporal Databases: theory,
design, and implementation, pp. 28-66,
1993.

S. Gadia, C. Yeung, "A Generalized
Model for a Temporal Relational

Database."”, Proceedings, ACM
SIGMOD Conference, 1988.
N.A. Lorentzos, "The Interval-

extended Relational Model and Its
Application to Valid-time Databases.",
Temporal Databases: theory, design,
and implementation, pp. 67-91, 1993.
A.U. Tansel, "Adding time dimension
to relational model and extending
relational algebra.", Information
System, 11(4):343-355, 1986.

Gene T.J. Wuu, U. Dayal, "A Uniform
Model for Temporal Object-Oriented
Database",JEEE, 1992.

Chen-Jun, Liu “A behavioral temporal
data model and it's query language”
Master Thesis 1995 Dept. of CSIE
National Central University.

	
	
	
	
	
	
	
	
	

