CTERBN+TUNE2EFERBERLE

Proceedings of National Computer Symposium 19985

S & i p RSP S)
THE CONVERGENCE ANALYSIS OF THE
ANNEALING-GENETIC ALGORITHM

WEFE
Feng -Tse Lin

, TEXCRZERARKESR L
Department of Applied Mathematics, Chinese Culture University, Taipei, Taiwan

HmE

RAEEREES(AG) B—EREANEEL
TH GREFENHESERE(CHE - ER
RMERERREMN - AG MBREREREEEM
ABEEHR KD » DUREGESEEBR K D R EREE &%
BHBITEY - LLBEEF TIZEYE - (DEW
wEE—EEERKEEE BEEEAORE
B AR BB R RS DL R IR E B F () HE B I Th g
s QEFHARER—EEREREE BEEHE
SRRAMPRES - BRERET 0 AGER -
KESBERER 01 HEMAENREEIR1%
 REESSEEERAIR0.1% REHESR
AT ERNEREI 3% EAENER
oI AG EHEEEEERXEEREREES
BERIENRIE -)

RARR S BB —EHE MR
AG HE BN EY « MO EIH AG EEEN
ZBBUCEE BT T EE R ERIT S
M EERE - mEENNERHRE R
O(logA(Scy*(1-e)N+1/NP) » ErHA(Sc*) B EEAH
B Sc* ST TS/ RERE N E
F-RAOHE pPRYREIRERRE -

BEgE MUEIR K - EREERE BAERNERE
C ZBINE O ABER BREEOM

Abstract

The Annealing-Genetic (AG) algorithm is a
powerful optimization tool for solving hard
combinatorial optimization problems. The AG
approach was proposed by author two years ago. This
approach incorporates genetic algorithms into
simulated annealing for improving both the
performance of simulated annealing and genetic
algorithms. The AG approach has the following
features: (1) it can be viewed as a simulated annealing
algorithm with the population-based state transition
and with the genetic-operator-based quasi-equilibrium
control, (2) it can be viewed as a genetic algorithm
with the Boltzmann-type selection operator.
Empirically, the error rate of the AG algorithm for
solving the multiconstraint zero-one knapsack
problem is less than 1%, for solving the set

415

partitioning problem is less than 0.1%, and for
solving both the traveling salesman as well as bin-
packing problems are around 3%. In all the test cases,
the AG approach obtains much better performance
than either simulated annealing or genetic algorithm
does. In this paper, we present the schemata theory for
discussing the efficiency of the AG algorithm. We not
only show the global convergence of the AG
algorithm but also include the analysis of the
convergence behavior and the running time
complexity of the algorithm. The ratio of convergence
is bounded by O(loga(Sc*)(1-e)N + 1/NB), where

A(Sc™) is the minimum selection ratio of optimal
k) . .
schema S~ for propagating to the next generation, N

is the size of the population and $ is the probability
of ever visiting the optimum.

keyword : simulated annealing, genetic algorithuns,

annealing-genetic algorithun, global convergence,
schemata theory, Boltzmann distribution.

1. Introduction

Both simulated annealing (SA) and genetic
algorithms (GAs) are nature-based, stochastic
computation techniques, the former 1s based on
thermodynamics and the latter is based on natural
evolution. During the past few years, they have been
applied to solve many combinatorial optimization
problems in diverse areas[1, 2, 5]. Theoretically, the
SA can be viewed as an algorithm that generates a
sequence of Markov chains for a sequence of
decreasing temperature values. At each temperature,
the generation process is repeated again and again
until the probability distribution of the system states
approaches the Boltzmann distribution[8]. If the
temperature is decreased slowly enough, the
Boltzmann distribution tends to converge to a
uniform distribution on the set of globally optimal
states. Thus, SA may require a long computation
time in order to converge to the optimal solutions.
However, in any implementation of the algorithm,
asymptotic convergence can only be approximated [1,

7, 8, 12]. Due to these approximations, the SA
algorithm is no longer guaranteed to find a global
optimum with probability 1. Moreover, without a
carefully designed annealing schedule, SA may easily
be trapped into a local optimum.

GAs were pioneered by John Holland [6] that
based on the survival-of-the-fitness principle and try
to inherit more genetic information from generation
to generation. Whenever some individuals exhibit
better than average performance, the genetic
information of these individuals will be reproduced
more often. GAs work with a rich database of
population and simultaneously climb many peaks in
parallel during the search so that the probability of
trapping into a local optimum is reduced
significantly. However, there are several drawbacks
prohibiting GAs from becoming a powerful
optimization tool for various problems[2,5]. First, it
needs a chromosomal representation of solutions to
the problem. Second, if the highly fit, short, low-
order schemata (also called building blocks) are
misled due to coding used or the function itself, the
problem may require a long evolution time to arrive
at near optimal solutions. Third, it is widely
recognized that genetic algorithms are not well suited
to perform finely-tuned local search.

Consequently, we propose an approach that
incorporating the advantages of GAs into SA so that
it is very similiar to a combination of steepest
descent and Newton's method to improve each other
for the constrainted optimization problem of the
continuous type. Our approach is called annealing-
genetic (AG)[9]. The AG approach has the following
features: (1) it can be viewed as a SA algoritlun with
the population-based state transition and with the
genetic-operator-based quasi-equilibrium control, (2)
it can be viewed as'a GA with the Boltzmann-type
selection operator. Our previous empirical results
[9.10,11] show that the proposed approach seems to
facilitate the exhaustive and parallel treatment of the
hard problems and to increase the probability of
finding global optimums. Empirically, the error rate
of the AG algorithm for solving the multiconstraint
zero-one knapsack problem is less than 1%, for
solving the set partitioning problem is less than
0.1%, and for solving both the traveling salesman as
well as the bin-packing problems are around 3%. In
all the test cases show that, the AG approach obtains
much better performance than either SA or GA does.

In this paper, we present the schemata theory
for discussing the efficiency of the algorithm. We not
only show the global convergence of the AG
algorithm but also include the analysis of the
convergence behavior and the running time
complexity of the algorithm. The ratio of
convergence is bounded by O(logA(Sc*)(1-¢)N +

x,
1/NB), where A(Sc™) is the minimum selection ratio
. * .
of optimal schema S.." for propagating to the next

416

generation, N is the size of the population and B is
the probability of ever visiting the optimum. In the
remainder of this paper, we briefly describe the AG
approach in Section 2. Section 3 shows why the
schemata exhibit high efficiency in a large search
space to guide the searches of the search paths. Then,
we show the global convergence of the AG algorithm
by a serial theorems in Section 4. The conclusions
are finally given in Section 3.

2. The Annealing-Genetic Algorithm

‘The AG approach consists of a set of two-stage
cycles. The first is the search stage by the annealing
process and the second is the evolution stage by the
genetic operations. Fig.1 shows the basic concept of
the AG approach and it is described as follows.
Starting off with a set of arbitrary points (individuals)
from the population of current generation at the
current temperature, our approach creates a number of
different search paths that trying to find better
solutions simultaneously. A heuristic with .a
probability measurement is used to guide these search
paths when they climb in the search space. The
heuristic includes a probabilistic generation
mechanism and a probabilistic acceptance criterion.
The generation mechanism is implemented by a
transition function. At each temperature, the points
visited by these search paths become the members of
a set called the quasi-population. When the size of the
quasi-population reaches a predefined population size,
the search stage is complete. This action is an
implicit parallelism which is absent in the other
approaches to implement SA. It is worthwhile to
note that our approach is search from a population
instead of search from a single point as in the other
approaches. After completing the quasi-population of
the first stage, the second stage is started. The
genetic-operation stage is an evaluation of the
evolution function. The evolution function consists
of a selection function and a production {unction.
After applying the evolution function to the quasi-
population, the population of the next generation is
created. The next generation is more mature than the
last one in the sense that the-average performance of
the population has been improved. The new
structures of the population and the new temperature
are then evaluated, and the cycle repeats until a
specified number of generations have been done or the
temperature approaches the frozen condition.

The AG algorithm is formally described as
follows. Let t; be an arbitrary point in the search

space Q. The population of current generation P is a
fixed size subset of Q,P C Q. Actually, the
annealing stage is the search by SA. SA evaluates the
population of the current generation, determines the
current temperature T, and creates many search paths
at the temperature T. Initially, one search path starts

v

population of the current generation

v

searching via the
annealin transition function

includes the move generation
strategy, the current temperature,

stage %

and the acceptance criterion.

quasi-population

. includes the selection function
> and the production function

: evolving by applying the evolution
genetic- 2
operation funiction
stage ‘

(crossover, mutation, inversion).

population of the next generation

Evolution

Fig. 1 The basic concept of the AG approach.

with a randomly selected point t; in P and the

remaining points of the search path are proceeded and
based on the following searching procedure. Given a
point t;, the next point t is obtained by the move

generation strategy Mg. Let AC = C(tj) - C(1p), the
probability for point tj to be the next point of the

search path is determined by the Metropolis criterion
M, at the current temperature T. The search path is

continued only when 4 1s accepted; otherwise another
search path is started. Let SP = {tj | tj e Q; tJ is
accepted by M} denote a search path and the search
paths have been indexed by SP{, SP», Then, the
Quasi-populatioxl is Pq =SSP U SPr U ... We

define the above search procedure as a transition
Junction of Fy = [Mg, M¢, T] which means the search

paths are determined by the move generation strategy,
the Metropolis criterion, and the current temperature,
then Fy(P) = Pq. The genetic-operation stage is the

evolution by GAs. The selection function Fg is to
choose a set of parents from P, to the mating pool
for generating the offsprings, i.e. mating pool = {(t;,
tj) F(t, tj) = FS(Pq)}. The production function Fp
includes the crossover (cro), the mutation (mut), and
the inversiou (inv) operators. Fp is used to produce

the children from the set of parents in the mating
pool and to create the population of the next
generation, i.e., F,(t, tj) = (cro + mut + inv) (t;, tj)
= {t | tx € Q, ti is the offspring of (t;, tj)}z P,
where the operator "+" means "or".

The genetic-operation stage is defined as an
evolution function of Fo(Pq) = (Fp(FS(Pq)) =P. The
AG algorithm can be formulated as a sequence of

417

interaction between the transition function and the
evolution function. Let {w,, | n = 0} denote the

cycles (repetitions) of the AG algorithm. The cycles
can be defined as the following iteration and also
shown in Fig. 2.

forn=0,wp = P,is the imtial population.
fornz1,w, =Fy(F(P)) = Fy(SP{USPLU..) =
FO(Pq) = (Fp(FS(Pq)) = P, is the population of n-th

cycle.

F Mg, Mg, T]

v

/'

v F, includes F, Fp

if convergence

Fig.2 The execution of AG is a sequence of
the interaction of I¥; and Fg.

If we let the time index include in the population P,
i.e. P(0) denotes the initial generation, P(1) denotes
the first generation, we have wg = P(0), wy =
Fo(F(Pg)) = P(1), ..., wy = Fo(F((Pp.1)) = P(n).
Let Avg(P(k)) denote the average performance of the
population in the kth generation. We say that the
evolution satisfies the monotone restriction if
Avg(P(k)) = Avg(P(k+1)), for kK 20. The A G
algorithm will satis{y the monotone restriction if we

let the genetic operators to be performed according to
the following steps.

Step 1. The parents are setected from the population
based on their fitness values. Then, applying the the
crossover operator to the parents to produce their
offsprings. The offsprings must have their
performance not worse than the average performance
of the old generation; otherwise, the parents
continuffollowing steps.

Step 2. Applying the inversion operator to the parents
for reordering their own sequence to obtain the new
structures. If the performance of the new structures
are better than the parents, then they come into the
next generation; otherwise, the parents continue the
last step.

Step 3. Applying the mutation operator to the
parents for expecting a better performance
structure.otherwise, the parents remain in the next
generation.

3. The schemata theory

In this section, we discuss why the schemata
exhibit high efficiency in a large search space to
guide the searches of the search paths. The discussion
will be given by examining a simple example of
Multiconstraint Zero-One Knapsack Problem
(MCKP). Formally, MCKP is a maximization
problem and has the following form :

n
Maximize Z = . Pj;
J=1
n
Subject to E Wij%js b ad Xj=0orl,

J =1
wherei=1,..,mandj=1, .., n

We give a simple instance of the MCKP with the
problem size n = 6 and the constraints i = 10 which
is shown in Table I. The optimal solution is a vector
X =(0,1,1,0,0, 1) with cost = 3800. We define a
schema is a building block describing a subset of
points with similarities at certain positions in a
point. By examining the fitness of any one point,
one might expect to obtain information about other
points which have a structure similar to it. Usually,

we can create 39 schemata over the extended alphabet
{0, 1, *} with length = n in each point. The notion
of schemata arises from the observation that in
evaluating the fitness of a point we can also derive
implicit knowledge about the schemata which
describe that point. The accuracy of this extrapolation
depends on the specification of the given schema. It
is important to us to identify the sets of schemata
which have above average fitness in the population.
Because the important similarities among highly fit

418

points can help guide a search during the search stage
by SA,

we can imagine sets of schemata as the hyperplanes.
These high performance hyperplane schemata also
play an important role in investigating the structure
of large, complex search spaces. However, the high
performance schemata is limited in each hyperplane.
Table II shows the high performance schemata in
term of #(S.), the number of specific positions
contained in the schema, in increasing order of the
given example.

Table I Test data withn =6 and m = 10.

_] pJ le W2J' W3j \V4j Wsj W6j W7j “’8j W9_j Wle
1/ 10008 8 3 55 3503 3 3
2| 600{ 12 12 6 10 13 13 0 0 2 2
311200{ 13 13 4 8 8 8 0 4 4 4
412400 64 75 18 32 42 48 0 0 0 8
51500222 6 6 6 6 8 8 8 8
62000] 41 41 4 1220 200 ¢ 4 4

bj= 80 96 20 36 44 48 10 18 22 24

optimal solution = 3800 ;
Xi=1(1=2,3,6); all others = 0.

In order to identify the high performance
schemata, it is necessary to study the dynamics of
schemata frequency as a function of search progress.
By examining which schemata have above average
fitness values, we can foresee the population of
subsequent generations due to the fact that these
schemata are expected to proliferate. Then, the
structure of the future populations can be estimated
through schema frequency and fitness. It means that
the expected proliferation of above average schemata
are at the rate of O(IOgN*A(Sc)*(I - ¢) N) which we
will be proved in the next section. Fig. 3 shows the
growth of high performance schemata #(Sp=1,2,3,
4, 5, aiid 6, which are indicated in Table II, as a
function of search progress in term of generations. At
the first generation, only #(S.) = 1 and #(Sy) = 2
have the frequency of occurrences 12 and 8,
respectively. At the second generation, the frequency
of #(Sc) = 1 is decreased but #(S;) = 3 is appeared,
and the frequency of #(S.) = 2 is increased. While at
the third generation the frequency of #(S;) =3
become dominant in the population and the high
performance schema #(S.) = 5 is appeared.
Eventually, at the fifth generation only the high
performance schemata #(S.) = 5 and #(Sy) = 6 exist
in the population.

As we have stated in the previous paragraph, the
concept of schemata leads to the quality of the search

Table II The high performance schema structures.

#(S9 Schemata cost value
(xr*1**) 2400
2 (*1xx*1) 2600
(**1**1) 3200
(**10*1) 3200
30 (**1x11) 3700
(*11**1) 3800
4 | (**1011) 3700
(*110*1) 3800
s | oFrorn) [3700
(*11001) 3800
6 (011001) 3800

#(S.) means the number of specific positions
contained in the schema.

30~

E #§SC)=1
#(Sc)=2
1 B #Sc)=3
= Fl #(Sc)=‘_‘ 3
8 201 B #Se)=5
3 SH Y
ol 5
&
7,
’
/ :
‘ A s
A A T
2 :
i 2 3 4 5
generations

. Frequency histogram of the six schemata.

space. The underlying concept of schemata is that
schemata are a degenerate description of the entire
space resulting the search paths are also degenerated
so that the search paths will eventually converge to
an optimal or near-optimal point. Fig. 4 shows the
percentage of reduction in the search space vs. the
number of specific positions contained in the schema.
As #(S8.) = 1, the percentage of reduction in the
search space is 50%. While #(S.) = 6, the percentage
of reduction in the search space is 100%; this means
that the search path is staying at the optimal point
X=(0,1,1,0,0,1). The choice of the population
size is essential to the quality of the final solution as
well as the total running time required by the AG
algorithm. According to the concept of schemata and
the operations of genetic operators, the AG algorithm
guarantees an increasing order of performance
generations after generations. The larger population

419

size may obtain higher performance than the smaller
population size but at the expense of prolonging the
execution time. Fig. 5 shows curves of the average
cost of the population obtained by the AG algorithm
in six generations according to population size are 6,
12, 18, and 24 respectively. The high performance
population is appeared in the larger population size.
However, all the four population size converge to the
optimal solution while at the sixth generation. Fig. 6
shows the total running time required by the AG
algorithm in all these cases. The larger population
size needs more running time than the smaller ones.
From our empirical results the population size should
depend on the structure of the underlying problem.
Usually, the choice of population size is simply as a
constant of the problem size.

< 100 4
g
v S50
37 g
4 @ 70
g w60 4
Z 30 4
40, . : ' r r .
1 2 3 4 5
#(Sg) the number of specific positions
contained in the schema
Fig. 4 The percentage of reduction in the
search space.
—&—— popsize =3
] ——-#——— popsize = 6
average s POPSiZE = 12
cost ~——0— popsize = 18
40009 | i popsize = 24
3600 »
32004
28004
2400 A
2000 T T 1 1 1 1 1
1 2 3 4 5 6 7
generations

Fig. 5 The average cost of the population in different
population sizes. '

popsize = 6
popsize = %
=2

execution time (sec)

Fig. 6 The comparison of the running time
required by the AG algorithm .

4. Convergence of The AG Algorithm

The schemata theory states that the growth ratio
of a particular schema S is the ratio of the average

cost of points belonging to S to the average cost of

the current population P(k). For the typical
maximization problem, it implies that a S in P(k)
with above the average cost of P(k) will receive an
increasing number of points in the next generation.
On the other hand, a S; in P(k) with below the

average cost of P(k) will receive a decreasing number
of points in the next generation. In the following
lemma we show an above average schema S_ will

receive exponentially increasing trials in the
subsequent generations by the selection function Fg

of the AG algorithm. That is, the above average
schema will live and the below average will die in the
evolution process.

Definition 1: The growing ratio of a schema S,
in the population of the next generation P(k+1) is
defined as u(S¢) = CaygK)/Cayg(k), where Cayg(k)
is the average cost of P(k), and C'av g(k) 1s the
average cost of all points belonging to S in P(k).

Definition 2: The frequency of a schema S,
appears in P(k) is denoted by #(S., P(k)).

Lemma | The selection function Fg allocates

exponentially increasing numbers of trials of the
above average schema S. for reproducing the

offsprings to the next generation.

Proof. The propagation of a schema S; can be
written as #(Sg, P(k+1)) = #(Sg, P(k)) * 1)(So). Let
the initial population be P(0). Then, we can obtain
the following sequence

420

P(1) = #(S¢, P(O)) * no(S)s
P(2) = #(S¢. P(0)) *, np(Sp* m1(Sp). and finally
Pk) = #(S¢, P(0)) * uo(S* m1(Sp* ... * Mk-1(80-
Because of u(Sy) = C'avg(k)/ Cavg(k), the above
average schema should have py(S.) > 1 and the
below average schema should have pp(Sy) < 1. If we
let k= min{pp(S, u1(Se. - » Uk 1(S)}. then the
last equation becomes P(k) = #(S., P(0)) * uk. Itis
obvious that if S. is an above average schema then it

will be allocated exponentially increasing numbers of
trials to the subsequent generations. Q.E.D.

However, a S, may be disrupted due to the fact
that the genetic-operation stage applies the production
function Fp to the population P(k) for producing the

offsprings of the next generation. Then, the
propagation of the {requency of a schema S, to the

next generation should be written by #(S, P(k+1)) =
#(S¢, P(K)) * ui(Se) * (1 - e), where ¢ is the
probability to be disrupted.

Lemma 2 The approximated propagation of an
above average schema S, 10 the next generation is

#(Se P(k+1)) = #(S,, P(k)) * wiSe) *(1 - €), where
£ is the probability to be disrupted due 10 the
production function F P Then, a high performance
schema S, will be propagated exponeniially

increasing numnbers of trials to the next generation in
the AG algorithm.

Proof. By our definitions, the search procedure is a
transition [unction, Fy(P) = Pq, for creating the quasi-
population of the next generation, and the evolution
function, FO(Pq) = (Fp(Fs(Pq)) = P, for creating the
population of the next generation. The production
function F, includes crossover, mutation, inversion
operations, i.e. Fp = [cro, mut, inv]). Let a point be
represented by a parameter vector of the form A =
(ay, @, ..., ay) with size n. If 8, is the probability
for crossover, then the probability of S; tobe
disrupted due to crossover is given by 8.0 * (3(Sg) /
n-1), where n-1 is the metric distance between the
first and the last positions of a point. If 85, is the
probability for a mutation, then the probability of S
to be disrupted due to a mutation is given by 8, *
#(S¢). If the probability of a inversion is 8;,, and 6p
is the proportion of the population undergoing
inversion in a given generation, then the probability
of S; to be disrupted due to a inversion is given by

By * Gp *OSY/n-1). Lete= 8, * (6(SC_) ! n-1)
+ Ot * #(Se) + By * Bp * (8(8.) / n-1) be the
probability to be disrupted due to the production

function Fp. Then, the approximated growth of an
above average schema Sc is obtained by #(Sc,
P(k+1)) = #(Sc, P(k)) * ui(Sc) * (1 -). However,
due to the AG algorithm satisfies the monotone
restriction, for the high performance schemata, the
disruption is minimized and ¢ will be very small.
Therefore, a high performance S, will be propagated
exponentially increasing numbers of trials to the next
generation. Q.E.D.

Definition 3: The ratio of expected frequencies of
S propagating from the P(k) to P(k+1) is defined as

Z)
s

Ax(Ss,) = .
K20 T

Then, the above average schema has the larger ratio
for propagating than the below average schema and
the Ag(Sc) is proportional to pi(Sc).

Since the crossover is the main operator for
propagating high performance schemata to the
subsequent generations, one should set 8.4 to 1. On
the other hand, in order to minimize ¢, one should set
8 qut and Oy to a very small value. However, the
value of 8y, and 8;,, are not critical in the AG
algorithm. In fact, one can set 8, and 8,y to 1 in
AG. It is due to the fact that the AG approach adopts
the monotone restriction in the genetic-operation
stage which rejects all below average offsprings. Asa
result, only those above average offsprings can
survive to the next generation. Thus, ¢ is a small
value in the AG approach. From the equation of
lemma 2, #(Sc, P(k+1)) = #(Sc, P(k)) * uy(Sc) *(1 -
g), if ¢ is small enough and p(S.) > 1, then the
high performance Sc will be reproduced more often.
However, the exact frequency of S appears in the
next generation should depend on the selection ratio
Ay (8c). Thus, we have the following theorem to
prove which stage that the convergence of a high
performance schema S, in the genetic-operation stage
of the AG algorithmis O(loga(Scy#(j - ¢) N), where
N is the population size.

Theorem 1 The convergence of the genetic-
operation stage is O(logA(SC)*(] - ¢) N), where N is
the population size, A(Sc) is the minimum selection
ratio of the schema S, for propagating 1o the next
generation and € is the probability of disrupting the
schemata. :

Proof. From the definition 3 the equation of #(Sc,
P(k+1)) = #(Sc, P(k)) * uy(Sc) * (1 - ¢) should be

421

rewritten as #(Sc, P(k+1)) = #(Sc, P(k)) * A(Sc) *
(1 - €). This recurrence relation states that
#(Sc, P(1)) = #(Sc, P(0)) * Ap(Sc) * (1 -¢),
#(Sc, P(2)) = #(Sc, P(1)) * A1(Sc) *(1-¢)

= #(Sc, P(0)) * (1 - €)2 * Ag(Sc) * Aq(Sc).
Then, we have #(Sc, P(k)) = #(Sc, P(0)) * (1 - e)K *
Ap(Sc) * A1(Se) * ... * Ax_1(Sc).
Let the frequency of a particular schema Sc in the
initial population P(0) be 1, i.e. #(Sc, P(0)) = 1, and
let A(Sc) = min{Ap(Sc), A1(Sc), ..., Ax_1(Sc)}. The
convergence of the evolution is the frequency of the
highest performance schema S grows to be N, the

population size. Therefore, the last equation becomes
N=1*{A(Sc)* (1 - e)}K.
Finally, we obtain k = O(loga(scy*(1 - g) N)-

Following the theorem 1, we can prove that the
global convergence of the AG algorithm is

O(loga(Sc*y*(1 - ¢) a ! +1), where Sc* is the
schema containing the optimal solution and a is the

oy - X
probability of S.." first appears in the ith generation,
1=12, ..

Theorem 2 The global convergence of the AG
algorithm is 0(logA(SC*)*(] -g) al + i), where
SC* is the schema containing the optimal solution, «
is the probability of SC* first appears in the ith
generation and A(Sc*) is the minimum selection ratio
of SC* Jor propagating to the next generation.

Proof. We assume that the schema Sc* first appears
in a certatn generation P(i1), 0 s i <k, has probability
o and N is the population size. The frequency of
reproducing Sc* to the subsequent generation is given
by #(Sc”, P(i+1)) = #(Sc”, P(i)) * A;(Sc™) * (1 - &),
#(Sc” P(i+2)) = #(Sc* P(i+1)) * Ay, 1(Sc”) * (1 -
£), ...

Then, at the 4&th generation we obtain

#(Sc™, P(k)) = #(Sc™, P()) * (1 - e)K-1 % A;(Sc™) *
A 1(SS™) * . * Ay 5(Sc¥).

Since a is the probability of Sc* first appears at P(i),
the frequency of Sc* in PQ) is #(Sc*, P(i)) =N *q.
Let A(Sc™) = min{A;(Sc™) * &;, 1(Sc™) * ... * Ay
i(Sc*)}. The convergence condition of the evolution

is #(Sc*, P(k)) = N. Thus, the equation becomes N =
N *q * ((1-¢)*A(Sc*)K-1. We obtain k =
O(loga(Sc™y*(1 -)&t +1). Q.E.D.

Theorem 3 If B is the probability of ever visit the
optimal point tp by the annealing stage, then the
global convergence of the AG algorithm is
O(logp(Sc*) * (1 - g)N + 1/ NB), where N is the

population size and A Sc*) is the minimum selection
ratio of the schema SC* for propagating to the next
generation.

Proof. We can assume there is one search path ever
visit the optimal point tg once by the probability § =
1 / V!, where IVl is the number of points in the
search space. Then, the maximum number of
transitions for visiting tgis 1/f. That is, {y appears
at the 1/NB-th generation in the worst case, N is the

. . . Ed
population size. The equation of theorem 2, #(Sc',
P(k)) = #(Sc*, P(i)) * (1 - €)* A;(Sc™) K1 becomes
N =1%(A;(Sc™) * (1 -)k where i = INB.
Finally, we obtain

O(lOgA(SC*) *(1 - £)N + 1/ NB). Q.E.D.

5. Conclusions

We have shown the global convergence and
analysis the running time complexity of the AG
algorithm. Goldberg {4] indicates that the connection
between GAs and SA have been explored elsewhere
{2, 3] but only loosely, and GAs have sometimes
been criticized because they lack of convergence
proofs, asymptotic or otherwise. Goldberg proposes a
selection procedure for GAs called Boltzmann
tournament selection and claims that the asymptotic
convergence in GAs is guaranteed by Boltzimann
distribution and thermal equilibrium of SA without
any further proofs [4]. However, the AG algorithm
has tighter connection between GAs and SA than
what Goldberg proposed. We not only adopt the
Metroplois criterion for approaching the Boltzmann
distribution but use the annealing schedule for
improving the convergence of the algorithm.
Although the concept of AG algorithm is equivalent
to Goldberg's Boltzmann tournament selection, the
implementation of AG is more sophisticated than the
Boltzmann tournament selection does. The AG
algorithm is used for improving the performance of
either SA or GAs and used for solving combinatorial
optimization problems. Further work in comparing
the AG approach and Goldberg's Boltzmann
tournament selection is in progress.

422

(1]

(2]

(3]

&

[6]

7]

8]

°]

[10]

(11]

(12

References

Aarts, E., and Korst, J., Simulated annealing
and Boltzmann machines - A stochastic
approach o combinatorial optimization and
neural computing. John Wiley and Sons
publishing, 1989.
Davis, L., Genetic algorithms and Simulated
annealing, Los Altos, California: Morgan
Kaufmann Publishers, Inc., 1987.
Eiben, A. E., Aarts, E. H. L., Van Hee, K. M.,
"Global convergence of genetic algorithms: a
Markov chain analysis", Parallel Problem
Solving from Nature, Springer: LNCS # 496,
pp.3-12, 1990.
Goldberg, D. E., "A note on Boltzmann
tournament selection for genetic algorithms and
population-oriented simulated annealing",
Complex Systems 4, pp.445-460, 1990.
Goldberg, D.E., Genetic algorithms: In search,
Optimization and Machine Learning,
Addison-Wesley Publishing Company, Reading
Mass., 1989.
Holland, J. H., Adaptation in natural and
articifial systems, Ann Arbor: The university of
Michigan Press, 1975.
Huang, M. D., Romeo, F., and Sangiovanni-
Vincentelli, A., "An efficient general cooling
schedule for simulated annealing"”, Proceeding of
[EEFE international Conference on Computer-
Aided Design, Santa Clara, pp. 381-384, 1986.
van Laarhoven, P. J. M., and Aarts, E. H. L.
Simulated annealing : theory and applications,
Dordrecht, Holland: D. Reidel Publishing
Company, 1987.
Lin, F. T., Kao, C. Y., and Hsu, C. C.,
“Incorporating genetic algoritiuns into
simulated annealing”, Proceedings of the 4ih
International Symposium on Artificial
Intelligence, Cancun, Mexico, pp.290-297,
1991.
Lin, F. T,, Kao, C. Y., and Hsu, C. C,,
"Applying The Genetic Approach to Simulated
Annealing in Solving Some NP-hard
Problems" JEEE Transactions on Systems,
Man, and Cybernetics, Vol. 23, No. 6,
Nov/Dec, pp. 1752-1767, 1993.
Lin, F. T, and Kao, C. Y, "The Annealing-
Genetic Approach for Solving The Bin-Packing
Problems", the Proceedings of International
Computer Symposium 1994, Hsinchu, Taiwan,
pp- 126-131, 1994
White, S. R., "Concepts of scale in simulated
annealing", Proceedings of IEEE [nternational
Conference on Computer Design, Port Chester,
pp. 645-651, 1984,

	
	
	
	
	
	
	
	
	

