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Abstract

In this paper, we propose a new method for
bidirectional approximate reasoning using
interval-valued fuzzy sets. The proposed method
is more flexible than the one presented in [1] due
to the fact that it allows the fuzzy terms
appearing in the fuzzy production rules of a rule
-based system to be represented by interval-
valued fuzzy sets rather than general fuzzy sets.
Furthermore, the proposed method can be
executed much faster and more flexible than the
single-input-single-output  approximate reasoning
method presented in [11].
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1. Introduction

1t is obvious that much knowledge in the
knowledge base of a rule-based system is fuzzy
and imprecise. Therefore, a powerful rule-based
system must have the capability to deal with
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approximate (fuzzy) reasoning [1]-[7], [9]-[12].
The following single-input-single-outpout (SISO)

approximate reasoning scheme has been
discussed by many researchers:
R, ! IFXis Ay THENY is B,
R, ! IFXis A, THEN Y is B,
: (D

R, : FXis A, THENY is B,
Fact : Xis Ao

Consequence - Y is By

where R; are fuzzy production rules [13], 1 <1
<p + XandY are linguistic variables [16], Ay,
Al, Az, veny Ap, B[, Bz, cees and Bp arc fllZZY
terms, such as “very small”, “large”, etc. A
linguistic variable is a variable whose values are
fuzzy terms. For example, let “speed” be a
linguistic variable, its values may be fuzzy terms,
such as “slow”, “moderate”, “fast”, “very slow”,
“more or less fast”, etc. The fuzzy terms are
usually represented by fuzzy sets [15].

In [1], Bien et al. presented an inference
network: for bidirectional approximate reasoing
based on fuzzy sets; if a fuzzy input is given for
the inference network, then the network renders
a reasonable fuzzy output after performing
approximate reasoning based on an equality
measure, and conversely, for a given fuzzy
output, the network can yield its corresponding
reasonable fuzzy input after performing
approximate reasoning. In [14], Turksen
proposed the definitions of interval valued fuzzy
sets for the representation of combined concepts
based. on normal forms. In [11], Gorzalczany
presented a method of inference in approximate
reasoning based on interval-valued fuzzy sets. In
[12], Gorzalczany further presented some basic
properties of the interval-valued fuzzy inference
method described in [11].

In this paper, we extend the works of [1]



and [11] to develop a new method for
bidirectional approximate reasoning based on
interval-valued fuzzy sets. The proposed method
is more flexible than the one presented in [1] due
to the fact that it allows the fuzzy terms
appearing in the fuzzy production rules of a
rule-based system to be represented by interval-
valued fuzzy sets rather than general fuzzy sets.
Furthermore, because the proposed method
requires only simple arithmetic operations and
because it allows bidirectional approximate
reasoning, it can be executed much faster and
more flexible than the single-input-single-output
approximate reasoning scheme presented in
[11].

The rest of this paper is organized as
follows. In Section 2, we briefly review some
basic definitions of interval-valued fuzzy sets
from [11] and [12]. In Section 3, a method for
measuring tlte degree of similarity between
interval-valued fuzzy sets is presented. In
Section 4, we present a method for bidirectional
approximate reasoning using interval-valued
fuzzy sets. The conclusions are discussed in
Section 5.

2. Interval-Valued Fuzzy Sets

In [15], Zadah proposed the theory of fuzzy
sets. Roughly speaking, a fuzzy set is a class
with fuzzy boundaries. A fuzzy set A of the
universe of discourse U, U = { uy, uy, ..., u,}, is
a set of ordered pairs, {( w, fa(uy)), (uy, fa(uz)),
vov, ( Un, fa(up))}, where f, is the membership
function of A, fa * U — [0, 1], and fa(u)
indicates the degree of membership of u; in A. In
{111 and [12], Gorzalczany has presented
interval-valued fuzzy inference methods based
on interval-valued fuzzy sets. If a fuzzy set is
represented by an interval-valued membership
function, then it is called an interval-valued
fuzzy set. An interval-valued fuzzy set A of the
universe of discourse U, U= { uy, u,,..., Uy}, can
be represented by

A = {(uy, [a11, Q12]), (v, {221, 322]), ...,
(um [anl’ an2])}9 (2)

where interval [ai;, ai2] indicates that the grade
of membership of u; in the interval-valued fuzzy
set A is between a; and aj, where 0 < a; < ap
<land1<i<n

Let A and B be two interval-valued fuzzy
sets,
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A= {(u, [an, a12]), (uy, [321, 222]), ...,
(un, [an1, a2])}

= {(u; [au, 3]} |1 <i<n}, 3)
B = {(u, [b11, bi2]), (uz, [ba, b22]), ...,
(Un, [, b2}
={(u;, [bu, b)) | 1 <i<n}. 4)

The interval-valued fuzzy sets A and B are
called equal (i.e., A = B) if and only if Vi, [a;,
aa] = [bn, b,z] (i.e., ap= bn and ap= bQ), where 1
< 1 £ n The union, intersection, and
complement operations of the interval-valued
fuzzy sets are defined as follows.

A v B = {(u; [cu, cal) | cu =Max(ai, bi), cp =
Max(ap, bi), and 1 <i<n}, (5
AN B = {(u, [di, d]) | di = Min(ay, by), dp =

Min(a;, by), and 1 <i<n}, 6)
A = {(u, [xi, XD | X =1 - aig, xip = 1 - &y,
and 1 <i<n}. b

3. Similarity Measures

In {17], Zwick et al. have made a
comparative analysis of measures of similarity
among fuzzy concepts. A method for measuring
the distance between two real intervals is also
presented in [17]. Let X and Y be two real
intervals contained in [B;, B,], where X = [x;, x]
and Y = [y;, y2]. The distance between the
intervals X and Y can be calculated as follows:

_xy = yiHlx, -y,
M= sy ®

It is obvious that if X and Y are identical
intervals (i.e., X =7Y), then A (X, Y) = 0. In 8],
we have developed a similarity measure based
on [17] to measure the degree of similarity
between interval-valued fuzzy sets summarized
as follows:

Casel : If X € [0, 1] and Y is a real interval [y;,
y2] in [0, 1], then

|X —wl ; |X~,v:l, ©)
where S(X, Y) € [0, 1]. The larger the
value of S(X,Y), the higher the
similarity between X and Y.

Case2 : If X and Y are both real interval in [0,
1], where X = [x;, X} and Y = [y1. y2],
then

S(X,1)=1-



b =yl + b=l

S(X,Y)= 1—-————-—2"——'—, (10)

where S(X, Y) € [0, 1]. The larger the
value of S(X,Y), the higher the
similarity between X and Y.

In the following, we introduce a method for
measuring the degree of similarity between
interval-valued fuzzy sets [8]. Let A and B be
two interval-valued fuzzy sets of the universe of
discourse U, U = {u, Uy, ..., Uz}, where

A= {(u, [an, a2]), (uz, [az21, az2]), -,
(Un, {2n1, 2n2)}

B = {(m, [bi1, bi2]), (uz, [b21, b22]), ...,
(g, [Bar; a2},

where 0 <a; <ap <1,0<by Ssbp<li,andl<i
< n. Then, based on the matrix representation
method, the interval-valued fuzzy sets A and B
can be represented by the matrix A and B,
respectively, where

E = <[ay, ar2), [a21, a2}, .-, [2n1, 2]
B = <[by, bi2}, bz, b22l, ..., [Bar, b2}

Based on formula (10), the degree of
similarity between the interval-valued fuzzy sets
A and B can be measured by the function T,

o iS([ail’an]’[bil’biZ])
T(4,B)= £

11

n

where T (Z, _E) € [0, 1]. The larger the value

of T (Z, 73_) , the higher the similarity between
the interval-valued fuzzy sets A and B. It is
obvious that if A and B are identical interval-

valued fuzzy sets (i.e., A=B), then T (X, §) =
L.

4. Bidirectional Approximate Reasoning
Using Interval-Valued Fuzzy Sets

Let's consider the following gencralized
modus ponens (GMP) :

Rule : IFXisATHENY isB

Fact : XisA* (12)

Conclusion : Y is B*

where X and Y are linguistic variables, A* and
A are interval-valued fuzzy sets of the universe

- of discourse U, U = {uy, Uy, ..., Ua}, and B* and
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B are interval-valued fuzzy sets of the universe
of discourse V, V = {vi, V1, ..., Vm}. Assume that

the interval-valued fuzzy sets A*, A, and B have
the following forms :

A* = {(uy, [xi1, x12]), (U2, [X21, X22]), -
(Un, [Xa1, Xn2D)},
A = {(uy, [y, Yi2), (ua, [y21, y221), -,
(um [ym, ynZ])},
B = {(vi, [z11, Z12D), (V2, [Z21, Z222]), -,
Vm, [Zm1> Zm2D)},

where 0<x; €xp<1,0<yp <yp <1, 1<i<n,

0<zy<zp<landl<j<m Let A" and A

be the matrix representation of the interval-

valued fuzzy sets A% and A, respectively, where
A" = <[xu, xi2l, [Xa1, X22], --or [Xat, Xn2)>,
A =<[yn, Yizh, 21, Y221, ooy Bats Yo2l™>

Then, based on the matching function T, the

degree of similarity between the fuzzy sets AY
and A can be measured, where

- _ _.%.S([xil’xiz]:[yil’))izl)
T(4",4)="2

(13)
n

Let T(A*,A) = k, where k e [0, 1]. The
deduced consequence of the rule is “Y is B*”,
where the membership function of the interval-
valued fuzzy set B is as follows:

B* = {(vi, [Wi1, wial), (v, [War, Waal), ...,
Vo [Wanls WD)} (14)

wherewy =k *z;, wo=k*zp,and 1 <ism.

It is obvious that if A” and A are identical
interval-valued fuzzy sets (i.e., A* = A), then
T(A*, A)=1and B isequal to B.

Let's consider the following single-input-
single-output approximate reasoning scheme:

R, : IFXisA; THEN Y is B,
R, : IFXis A, THENY is B,

: (15)
R, : IFXis A, THENY is B,
Fact : Xis Ay

Consequence - Y is By



where Ao, A, As, ..., and A are interval-valued
fuzzy sets of the universe of discourse U, U={u,,
U, ..., Uy}, and Bo, By, By, ..., and B, are
interval-valued fuzzy sets of the universe of
discourse V, V = {V1, V3, ..., Vm}. Assume that

A= {(u, [xa, xal), Uz, X2, x2]), s
(u,, [Xin, xi‘n ])}’ .
Bj={(vi, i, ¥ D O Ii2s Y31 s

Vs smo Vi DD

where 0 < i < p and 1 € j < p. By using the
matrix representation method, the interval-
valued fuzzy set A; can be represented by the

matrix X; , 0 <1i<p, where

A()= <[x01> x(.)] ]9 [xoz) x02 ]) seey [xﬁlv x;n]>
- L] L] L]
A] = <[xll’ x]] ]’ [x12’ xlz]’ seey [xlm xln ]>

—_— » » .
A2 = <[x21y x2l], [x22s x22 ]9 reey [x2n, xZn ]>

— * * *
Ap = <[xp1) xp] ]7 [XPZ’ xpz ]) “rey [xPﬂ’ xm]>-

Based on the previous discussions, we can get
the following results:

T(:A—(;, X]_) = k, = the deduced consequence of
rule R, is “Y is B)”, where

Br = {(v1, (ki *yi. ki *y1, 1), V2, [k * o,

ki * Y12 D s (s K1 * Yim K1 * Y1 DY,

T(_A—o,_A:) =k, = the deduced consequence of
rule R, is “Y is B; ” where

B = {(v1, (k2 * Ya, ko * ¥, 1), (va, (k2 * v,

Kz * Y32 Ds o (Vs (K2 * Yo K2 * Y30 D,

T(K;,X;) =k, = the deduced consequence of
rule R, is “Y is B, ", where
B’ = {(v1, [kp * Yo, o * Y51 ), V2, Ko * Yo,

Ko * Vo2 Db s Vs [Kp * Yo Ko * Y D)

where k; € [0, 1] and 1 <i <p, and the deduced
consequence of the SISO approximate reasoning
scheme is “Y is By”’, where

B, =BjUBY ... UB), (16)

w9

and “U” is the union operator of the interval-
valued fuzzy sets. That is,
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Bo={u, [z1, Z}]) V2 [22, 231, ooor

Ve (2w 20 D}, (17
where

z; =Max(k; * yi, ka *ya, ..., kp * yp1)
2y =Max(ki *¥;1, ka2 * Y31, o Kp * V1)
z; = Max(k; * yi2, k2 * y22, ..., Kp * ¥p2)
25 =Max(ki *¥y5, k2 * Y3, o Ko *¥32)
E 18)
Zm = Max(k * Yim, K2 * Yom, -, Kp * Ypm)
z, = Max(k, Vi Ko * y;m o Kp ¥ Y;m )

0<z <z s1,and 1<i<m. Ifk;is the largest
value among the values k;, ks, ..., and k;, then
the interval-valued fuzzy set B, is the most
similar to the interval-valued fuzzy set B;, where
1<i<p. ’

Conversely, let's consider the following
SISO approximate reasoning scheme:

R, : IFXisA, THEN Y is B,
R, : IFXis A, THENY is B,

: (19)
R, : IF Xis A, THEN Y is B,
Fact : Y is B,

Consequence : Xis Ay

where

A= {(u, [xa, xal)s U2, [X2, xi2]), -,
(Un, [Xiny xin D},
B = {(vi, Iy, Y1 V2 Iys YD, ooos

(Vas Dir ¥ DY

1<i<pandO < j< p. By using the matrix
representation method, the interval-valued fuzzy

set B; can be represented by the matrix E—; , 0
<j < p, where

BO = <b’01’ y:)l]: [)’02, y;z ]; ceey [)’Om, y:)m ]>
B, =<[yi, Yl M2 Yiz) - Him Yim 1>
By =<[ya, Yol V220 Y2215 oo V2ms Yo P>

BP = <[Yp1: Y;l ]’ [ypza Y;Z ]) cevy [yli!n’ Y;m ]>

Based on the previous discussions, we can get
the following results:



T(i%,fib:sl — the deduced consequence of
rule R; is “X is A,‘ ” where
A= {(u, [si * X, 80 * X D, (ug, [51 * X1z,

* *
Sl * xlz ])’ ey (“nx [51 * Xin, S‘ * x]n ])},

T(B,,B,) = s, = the deduced consequence of
rule R, is “X is A; ”_ where
AL={(u, [s2* X, 52 * X1 1), (U, [52 * X2z,

2% X35 Dy ooy (Uny [S2* Xamy 52 * X3, D},

T(B_O,ﬁg) =s, = the deduced consequence of
rule R, is “X is A;”, where

Ab={(w, [S* X1, S * X5 D), (U2, (5 * oz,

Sp * X;Z ])’ ey (um [Sp * xpn’ sp * X‘pn])}»

where s; € [0, 1] and 1 <1 < p, and the deduced

consequence of the SISO approximate reasoning
scheme is “X is Ay”, where

Ay = AJUAIU ... UAY, (20)

and “uU” is the union operator of the interval-
valued fuzzy sets. That is,

Ao = {(uy, [wi, Wi]), (U, [Wo, W3 D), .0
(U, [War Wo D}, @)

where

w; = Max(s; * X;1, 52 * Xa1, ..., Sp * Xpi)

- - - *
wy =Max(s; * Xy, 82 ¥ Xg), s S *Xpp)

Wiy = Max(sl * X12, S2 * X22, .0 §p * sz)
- - * *
W, =Max(s; * X3, 52 ¥ Xy, .o, S ¥ Xp3)
: (22)

Wy = MaX(S| * Xin, S2 * X2ns -oo» Sp * xpn)

» Ll L] -
W, =Max(s *Xy,, 82 * Xoq, s S F Xpn )

0<w;< w, <1,and1<i<n. Ifs;is the largest

value among the values sy, Sy, ..., and s;, then the
interval-valued fuzzy set A, is the most similar
to the interval-valued fuzzy set A;, where 1 <i

<p.
5. Conclusions
In this paper, we have presented a new

method for bidirectional approximate reasoning
using interval-valued fuzzy sets. The proposed
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method is more flexible than the one presented
in 1] due to the fact that it allows the fuzzy
terms appearing in the fuzzy production rules of
a rule-based system to be represented - by
interval-valued fuzzy sets rather than general
fuzzy sets. Furthermore, because the proposed
method requires only simple arithmetic
operations and because it allows bidirectional
approximate reasoning, it can be executed much
faster and more flexible than the single-input-
single-output approximate reasoning method
presented in {11].
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