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Abstract

Interpolating algorithm using piecewise biquadratic
Bezier curves is developed. The algorithm can
automatically generate shape preserving biquadratic
curves which faithfully describe the shape implied by
the given data points. The curves obtained satisfy the
conditions for 'visual content'. Using this algorithm, the
designer is able to control the tension of the
interpolating curve at each of the interpolating points.
Besides the ease of shape control, the algorithm is
conceptually simple and computationally efficient. It
can be used to model 2D objects of various shapes. By
appropriately adjusting the shape parameters at related
interpolating points, the designer can easily change the
curve segments' shape without affecting the remaining
portions of the curve. From the comparisons of our new
interpolating curves with cubic splines, it shows that our
method is simple, direct and easy to be implemented.

Keywords: shape preserving curves, shape parameter.
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1. Introduction

Curve generation plays an important role in CAGD
(Computer Aided Geometric Design) and data
interpolation. In a CAD system, the generated curve is
supposed to interpolate, or approximate, a given set of
points such that the curve can be used to model some
desired objects, for example, the aircraft bodies or car
bodies. While in the 'data interpolation’ field, it is
reasonable that the curve must faithfullv depict the
information contained in the given data points.

Many curve interpolation methods have been
proposed since the early sixties, but it is disappointing
that the curve generated by some algorithms are less
‘eye-pleasing’ than the one drawn by a drafisman. The
elementary requirement of the curve's shape is the
designer's 'visual content'. It is really vague that whether
a curve satisfies 'visual content' or not. In this paper. the
interpolating curve maintains at least slope continuity
(visual smoothness).

Comparing with generating interpolating curves
with cubic Bezier curve segments traditionally, using
biquadratic Bezier curve segments instead have many
benefits:

e The same control points, but with one more
degree of freedom.

¢ The control polygon of quadratic Bezier curve is
much closer to the curve than the control
polygon of cubic Bezier curve.

¢ There is no need to classify convex. inflective
and straight cases.

¢ QGenerating quadratic curve is faster than cubic
curve.



From the merits list above, we begin our research
on generating shape preserving curves with
biquadratic Bezier curve segments. Figure 1.1. and
Figure 1.2. show the difference between cubic Bezier
curve and biquadratic Bezier curve.

Figure. 1.1 Cubic Bezier curve.

Figure. 1.2. Biquadratic Bezier curve.

Walton and Xu {8] use biquadratic Bezier curve for
drawing turning point preserving curves, that is, the
curvature extremum of the spline is forced to occur at
the turning points. Their method ensures that the
generated curves have non-self-intersection property (if
the polygon of input data points does not intersect itself,
the curve does not intersect itself), whereas the
generated curves are sometimes too taut. It is also
impossible to change the appearance of the curves
uniess the user changes input data points.

In this paper, we first infer tangent vector and
normal vector of each control point. Then a geometric
algorithm for locally generating quadratic shape
preserving curves is proposed, so that the interpolating
curve maintains at least slope continuity (visual
smoothness) [5, 7], that is, adjacent curve segments
have the same tangent direction at the point p, (1 <i<n,
p; is the given control point). It is further assumed that
no more than three data points are given collinear to
form a straight line. From the given examples, we will
snow that our method is simple, direct and easy to be
implemented, and the interpolating curves possess all
e properties of a good interpolation method.
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2. The Bezier Curves
2.1 Introduction

In this paper, Bezier curve [3] will be used to
interpolate data points. The Bezier formulations for
parametric curves possessed the following advantages:

* The Bezier curve passes through the first and the

last Bezier points of the Bezier polygon.

Each Bezier curve segment is computed
separately.

There is an intuitive relationship between the
shape of the Bezier potygon and the curve.

The method is easy of computation and
subdivision.

Bezier curves are invariant under affine

transformations.

The method is simple and efficient than others.

2.2 Bezier curves

A Bezier curve [3] is a parametric curve whose
shape approximates the control polygon. Two of the
polygon's vertices are the end points of the spline. Since
the curve's shape will tend to follow the polygon's
shape, it is intuitive that changing the position of the
polygon's vertices will change the shape of the curve.
Even a new user is able to change the shape of the curve
to his intent by reposition the control points.

The mathematical basis of the Bezier curve is a
polynomial blending function which interpolates
between the first and last vertices. The Bezier basis
functions are Bernstein polynomials. Thus, the Bezier
curve is said to have a Bernstein basis. It is more strict to
call the Bezier curves as Bemnstein-Bezier curves.
Figure 2.2.1. gives two examples of Bezier curves.
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Figure 2.2.1. Bezier curves.



The Bezier curve of degree n can be expressed as:

n 1 ;

@21) B(t)= ¥ ———1'(1=1)""P, 05t <1

i=0 i(n—-10)!
Where —————'(1—¢)""" is the so called ‘Bemnstein
i(n—- i)l

polynomials.” From Equation (2.2.1), we can find that:
B(0) = Py,

2.2.2) B(1)=P,

B(0) = n(P, - Py),
B(1V)=n(P,-P,.)-

Where B,(¢) stands for the first derivative of the segment
B(f). Thus we know that the curve depicted by the
Bezier's form passes through the end points P, and P,
The tangent vector at P, points from P, to P, and the
tangent vector at P, points from P, to P,. The straight
lines P,P,, PP, .. P, P, foorm a figure called
"characteristic polygon" or "Bezier polygon" of the
curve. Py, P,, P,, ..., P, are called "control points" or
"Bezier points" of the Bezier curve.

2.3 Composite Bezier curves

The Bezier curve does not possess the local
property, i.., any positional change of P; (i=0, 1, ..., n)
influences the shape of entire curve. The simplest way
to attain local property is to stitch Bezier curve
segments to form the whole curve. Suppose that we
wish to join segment B(z), 0 < f; < 1, (segment / for
short), to segment BY(¢), 0 < < 1. For human's 'visual
pleasantness', the basic requirement is to make the curve
continuous at the joint, and maintains at least slope
continuous there. Thus we must have:

(23.1) BO(1) = BY(0)

for position continuity, and,

(2.3.2) BP()=ao,T
BY(0) =o,T

for slope continuity. Where, T is the unit vector in the
common tangent direction at the joint, moreover o; and
a are scalar constants which influence the fuliness of
the curve segments. Figure 2.3.1. illustrates the
composition of two cubic Bezier segments. The end
point B(1) of segment BY joins with the start point
BY(0) of segment B?. The tangent vector on B(1) and
the tangent vector on B%0) point to the same direction.
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Figure 2.3.1. The composition of two cubic Bezier
segments.

If we regard Bezier segments as segments BY(t)
and BY(z)), then Equation (2.3.1) and (2.3.2) become to
be:

P = p,
(2.3.3)
B.(PY PO

n-1

)= P](D _ ‘DOU)'
where £, is equal to a/c;.

From Equation (2.3.3), we are able to construct a
composite Bezier curve with slope continuity on each
joint by defining each 3.

3. Generating Biquadratic Shape
Preserving Curves by a Geometric
Algorithm

3.1. Definition of Shape Preserving Curve
Interpolation

Before proceeding, we have to introduce some
preliminary definitions first. A plane parameterized
differentiable curve segment R(f), 0 < < 1; is said to be
regular if all of R(f) # 0. The curve R(¢) is simple if it
has no further self-intersection except possibly at end
points. A regular plane curve segment R(¢) is convex if
and only if it is simple and can be oriented so that its
curvature is positive or zero. This means that the
curvature of each point in the curve segment does not
change sign. A differentiable curve segment is an
inflective one if it has an inflection point. Finally, it is
trivial that a curve segment is a straight line segment if
curvature is zero everywhere.

From above discussion, we are ready to define the
shape preserving interpolating curves now. Since the
unit tangent continuity at each joint point is a basic
requirement, here we take into account the directions of
tangent vectors.

Definition 3.2.1 Let tangent vector 7, at the

i

interpolating point P, be chosen such that 7, = V' / |/,



where V = (1-6) F_ /B +6 PP, , then a smooth
interpolating curve is shape preserving if we construct

each curve segment / with the following rules:

- - -
w and PR, xP P,
have same directions and both are not null
vectors, we generate curve segment ;i to be a

convex one.

If vectors P, P.xPP

i-1

Rule 1:

-

If vectors P_, P xE;

Rule 2: 2P 2, and PP, xP P

i+14i+2
have different directions and both are not null
vectors, we generate curve segment j to be an
inflective one.

—

If either P_ P,

i-1%

- - —
~, .
RUle Je x P;PHI or PiPh-l X Pi+lF;+2 15 a
null vector, we generate curve segment i to be

a straight one.

We note that if PP, corresponds to a convex
curve segment then the curve must be locally convex at
both P, and P,,,, which means that the curve lies on one
side of the tangent.

From' the above definition, the shape of curve
segment / is implied by four consecutive interpolating
points. Hence, we can show that the shape preserving
condition requires the turning behavior of an
interpolating curve to accord with its control polygon.

3.2. Compeosite Quadratic Bezier Curve
Interpolation

Consider a curve segment that is composed of two
quadratic Bezier curve segments, Bi(¢) and B,(¢). The
quadratic Bezier curve segment B,(f) can be defined by
the following equation:

(3.2.1) By(H)=(1-D%by + 2((1-0)b, + £, 0 <t < |

Here b, b, and b, are Bezier points. We refer b, and
b, as boundary Bezier points and b, as interior Bezier
point. The control polygon formed by b, 5, and b, is a
triangle, and the curve segment B,(?) is a parabola.

Similarly, By(f) is defined by:
(3.2.2) Br(d)=(1-0%b, +21(1-0)b; + £, 0 <t < 1

Here b, b, and b, are Bezier points. We refer b, and
b, as boundary Bezier points and b, as interior Bezier
point.
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Figure 3.2.1 Inflective curve.
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Figure 3.2.2 Convex curve.

Bg(f) and B(¢) are joined at b, such that they have
the same unit tangent vector at b, Figure 3.2.1
illustrates the composition of an inflective curve and
Figure 3.2.2 illustrates the composition of a convex
curve.

From Equation (3.2.1), we can derive Equation
(3.2.3) and Equation (3.2.4) easily.

(32.3) B(0)=b,, B(1)=b,
(3.24) B(0)=2(b; - by), B,(1)=2(5;- b))

According to Equation (3.2.3), the quadratic Bezier
curve segment passes through its boundary Bezier
points. From Equation (3.2.4), we know that the tangent
directions at Bezier points b, and b, are the same with
vector {4, and 1, respectively, where ¢, is a vector with
initial point b, and terminal point 4,, and 4, is a vector
with initial point 5, and terminal point 4,. The same
inference can be used on the quadratic Bezier curve
segment passes through, b,, b3, 5n4 bs.

and

For C' continuity of slope at the joint 4,, we must
have B, (0) = B, (1), that is, (b; - b,) = (b, - b,). But we
know that slope continuity is enough to attain 'visual
content'. Thus 4, can be placed on any position on line
segment b, b,.

3.3. Locally Inferring Tangent Vectors and Normal
Vectors

The smoothness of a piecewise curve has
traditionally been measured by maintaining parametric
continuity at joints; that is, a continuity in the
parametric derivatives on both sides of the joints.
Recent work has shown that parametric continuity is



overly restrictive; more relaxed constraints of geometric
continuity have recently been proposed [4, 1, 2]. For the
visual content of human beings, the interpolating curve
maintains at least slope continuity at joints [5, 7]. Thus
the tangent vector on each data point affects how the
generated curve looks like.

Locally inferring tangent vector and normal vector
plays an important role in an automatic curve-
generating algorithm. Walton and Xu [8] have proposed
a method to compute tangent vector on each boundary
Bezier point p;.

Supposed p; = (x;, ¥), i =0, 1, ..., n, are boundary
Bezier points. The interior unit tangent vector £ -on p;
may be defined as:

3.3.D) G, = P~ Py, Pin - P
Ipi—pi‘ll ]pm_P,-
G,

(3.32) ;=
G

and the unit normal vector »; as:

c0s90°
n =1 .
—sin90°

This technique for choosing the tangent vectors
ensures that the angles from the tangent vector 4 to the
vector p; - p., and p,, - p; are within 7/2 rad. While
generating biquadratic curve segments with our
algorithm, this property is useful that ensures the
generated curves will not have undesired shapes. The
curves generated using tangent vectors derived by this
method are satisfactory as far as the shape preserving
property is concerned.

sin90°

333
(3:3.3) cos90‘1

3.4. Generating Biquadratic Bezier Curve Segments
by a Geometric Algorithm

Let the i-th curve segment be denoted by index i
and begins from boundary Bezier point p; to p,,,. As we
have inferred the unit tangent vector £, and unit normal
vector »; on each boundary Bezier point p, we can
compute the shape preserving curves easily from the
following steps:

(1) Find the intersection point f; of line T; and T},,,
where T, and T, are lines which parallel to vector ¢, and
t..,, and pass through points p; and p;,,, respectively.

(2) Find the intersection point g; of lines ¥, and T,
and the intersection point /; of lines N,,, and T}, where ¥,
and N,,, are lines which parallel to vector ; and n,,,, and
pass through points p; and p;.,, respectively.
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(3) Then we can get the interior Bezier point
and bzi = piy — 0. fatin » here b(; =Di»
bi = Pias a;= min( Hpisfill ’“pi’hi“) andﬂ
min(|[p,,., £]» |p...-g{). lle.d| denotes the distance

function between c and d. &, ( 0 € & < 1) is a shape
parameter of the i-th curve segment. For the purpose of
keeping the quadratic Bezier curve segments C'

bl =p,+5,a

it

i+h

continuous at the joint b, where b, is supposed to be
the mid-point of 4,5; .

Figure 3.4.1. shows the intersection point f; of lines
T, and T,,,, the intersection point g, of lines N, and 7.,
and the intersection point 4; of lines V., and T,.

fi
. {/ N
i . AN .
Pi = /{.' .\\b:'rzp”
,,/ n *flt‘}&'% tis
hl /" ) gi\

Figure 3.4.2.

In Figure 3.4.2., if we just take into account the
interpolation point f; of lines T, and T},,, when the angle
g between lines 7 and T}, become smaller, evidently
the distance between f and line pp;, will become
longer, and the shape of generated curve will tend to
bend too much. Thus the use of normal vector is a good
solution for this problem. In our algorithm, no matter
how the angle g changes, the interpolating curve will be
limited in a reasonable area.

Figure 3.4.3. and Figure 3.4.4. illustrate the
composite of convex curve and inflective curve. They
show that if the tangent vectors ¢ at the interpolating



points P; are chosen by the method we have mentioned
in 3.3, and the interpolating curve segments are
generated from the above steps in this section, then the
generated curves satisfy the definition of shape
preserving curve interpolation.

Figure 3.4.4 The composite of inflective curve.

The locally non-self-intersection property can be
illustrated as follows: The shape preserving curve
segments of three consecutively input data points does
not intersect itself.

If the tangent vector on each data point is inferred
by the above method, it can be shown that the curve has
the locally non-self-intersection property.

4. Shape Control with Interpolating
Biquadratic Bezier Curves

4.1. Shape Parameter

To use interpolation as curve design has become
popular. For interpolating curves, shape parameters
ofrer a good way to vary curve's shape. In our shape
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preserving method, each & can be served as shape
parameter which can be adjusted locally.

Figure 4.1.1 gives examples of curves with
different shape parameter 8. We show the control of the
curve's shape by using a global shape parameter. If &, is
increased or decreased, the curve will be loosened or
tightened accordingly. This effect is called tension.
When the value of §become smaller, the curve is closer
to the linear polygon which interpolates the given
points.

7
1
3
5
(@) 5=0.
s q‘? al‘. "8
oI | 7
%
s
(b) 5=0.3
%2 °3 %
01 7
0’3 ou’v/.
5
(€)6=0.5
:;’ c\z 4~ 96
;1 °7
0’3 N v
5
(d) 6,=0.7

Figure 4.1.1 Curves with different §,.



Since each shape parameter & can be adjusted
locally, our method can provide the user with greater
convenience in the construction of the curves. By
varying the shape parameter, the user can modify a
portion of the curve without affecting other portions of
the curve, and it is not necessary for the user to re-input
new data points for the purpose of modifying the curve's
shape. In Figure 4.1.2.,, we change & (the shape
parameter of curve segment 2) from 0.5 to 0.2. It
changes the shape of curve segment 2 without affecting
other portions of the entire curve.

~

(a) 5=0.5

(b) 5,02

Figure 4.1.2. The change of single shape parameter.

4.2. Example

The proposed method was implemented in Visual
Basic under Windows environment. Here the example
is given to compare our method with other approaches.

Example 1. This example combines convex data,
oscillatory data, and data extracted from straight line
segments.
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The method of Goodman and Unsworth [6] is
shown in Figure 4.2.1. This curve has the undesirable
feature that the curve segment joining the points labeled
6 and 7 intersects the curve segment joining the points
labeled 7 and 8.

The usual C? cubic spline is shown in Figure 4.2.2.
It also has the undesirable feature that the curve
segment joining the points labeled 6 and 7 intersects the
curve segment joining the points labeled 7 and 8.

The method of Walton and Xu [8] is shown in
Figure 4.2.3. The curve segments joining the points
labeled 4 and 5, the points labeled 6 and 7, and the
points labeled 7 and 8, appear to be too taut for visual
smoothness.

The proposed method is shown in Figure 4.2.4. The
curve has the locally non-self-intersection property. The
curve appears to be less taut than the curve generated by
the method of Walton and Xu.

Figure 4.2.1 Method of Goodman for Example 1.

7

Figure 4.2.2 Usual cubic spline for Example 1.



Figure‘4.2.4 Our method for Example 1.

5. Conclusion

Our method has the following advantages:

It is easily computed so that it may be generated
fast in an interactive graphics environment.

The curve has some degree of smoothness (i.€.,
slope continuity).

There is no need to classify convex, inflective
and straight cases.

The curve has the iocaliy non-self-intersection
property, so that the generated curve does not
have the undesirable intersections.

The shape parameter offers an easy way to vary
curve's shape locally under an interactive
environment.
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