DERIN+OE2DHEMSARLE
Proceedings of National Computer Symposium 1995

P VLRI R e

Visualization of Well Engineered

Logic Specification Programs”®

3 8 X

BEE

& XH

Timothy K. Shih, Chin-Hwa Kuo, and Wen-Shan Yu
R X ERFRLAR
Department of Computer Science and Information Engineering
Tamkang University
Tamsui, Taipei Hsien, Taiwan
R.0.C.
email: tshih@cs.tku.edu.tw

. fax: Intl.

R 3

Prolog A BB AR A BT PREREY—# .2 F 8
AIRHELER - AN BN ERY —RASGAAER
FHELEY. SPECHERA®KANTHNEEMGES =
A, SPECHEAZBRELFWREARERH L FRAEL.
Exxy ANy —MmMeuEGRR- VSPEC kT 88—
BEREARIXAERBRLA AR -—E5 A BRGAAAY
BEFWR, FAA— “and-or" HHRR A XT—RESAE
RWBEL. VSPECHR—BILTH SPECARR S AT
TAREKANGATAR TR £ UL T, ANEAH
@ SPECH T , AAAXMBE, AT & ERA X
Bzt ANMERHT—REMBARS AELAXR
REFGEBRAR .

MW C gl dtt A AR B

Abstract

Prolog is one of the most popular languages in logic pro-
gramming. However, when programmers deal with the task
of developing large systems, A well-designed programming
environment is necessary. The Specification Processing En-
vironment with Controls (SPEC) project was earlier devel-
oped by the author. However, it is still Icaking supporting
tools for the analysis and design of logic programs. In this
paper, we propose a visualization environment (VSPEC)
that facilitates a hyper-text like navigation of large logic
specification programs., In addition to the hyper-text exitor,
a declarative specification browser utilizing an “and-or” tree
showing the semantics of the specification program is also
addressed. The visualization tool is integrated with a sim-
plified version of SPEC running on the MS Windows. The
revised SPEC language is addressed, followed by a discus-

949

(02) 623-8212

sion of the program transformation algorithm that generates
Prolog programs from their specifications. A number of lan-
guage constructs are also discussed.

Key words: Specification, Software Engineering,
Visualization, Logic Programming

1 Introduction

Prolog is one of the most popular languages in logic pro-
gramming. As Prolog became widely used for research
in Artificial Intelligence as well as for commercial and
industrial work, its drawbacks, such as the unsoundness
of implementations of negation and the lack of control
facilities, was realized by researchers [8, 9, 1]. Several
extensions to and revisions of Prolog have been defined
(e.g., IC-Prolog (2], Epilog [11], Parlog [3], Concurrent
Prolog [12, 13], MU-Prolog [9]), some with the intent
of providing the programmer more control over the ex-
ecution of a program and others aimed specifically at
parallel programming applications.

However, when programmers deal with the task of de-
veloping large systems, a programming language is not
enough. A well-designed programming environment 1s
necessary [6, 7, 4, 16, 15]. A well-designed programming
environment not only supports the efficient implemen-
tation of programs, but also encourages a good style of
analysis, robustness and validation of implementation,
and ease of maintenance. A good approach is to design
a system to support the entire software development
life cycle including requirements analysis, specification,
design, implementation, testing, verification and main-
tenance.

The SPEC project is a logic programming envi-
ronment developed at Santa Clara University!. The
project is designed to support the software developmen-
t life cycle from requirements analysis, specification,
design, implementation, and testing through mainte-
nance. A specification language with high level deciar-
ative constructs as well as execution control facilities
was developed. The system supports the separation
of declarative and control specifications, enabling one
to generate different implementations of the declara-
tive specification by changing the control strategy. The
users are asked to provide formal documentation and
performance constraints as part of the specification of
their programs. The system also provides a debugger
and other tools, including a test generator, a verifica-
tion assistant, and statistical analvsis tools. Details of
the SPEC project are discussed in {18, 19, 20].

However, in the development of SPEC system, it
is still lacking supporting tools for data and control
flow analysis. Even though there are a number of
well-developed structured analysis/design and object-
oriented analysis/design tools available, they are not
quite suitable for logic programs. Structured analy-
sis/design tools are suitable for procedural languages
and the methodology focus on describing how data
or controls are passed in between modules. Object-
oriented analysis/design tools, with a different focus,
pay more attention on how data are shared and how
methods are invoked via message passing. These
methodologies are relatively procedural in that their
main strengths are to describe how system should be
built. Logic programming, on the other hand, focuses
on the declarative aspect of a system. Declarative pro-
gramming is one of the most important goals of logic
programming researches. A declarative logic program
describes what system the program is trying to mod-
el instead of how the program is executed. Current
paradigms of requirement analysis, however, do not pro-
vide such a declarative methodology for logic program-
mers. The need of a good analysis tool for declarative
programming is thus worthwhile be investigated. Due
to this reason, VSPEC aims to provide such a method-
ology and tool for the logic program developers.

Figure 1 gives the system architecture of the VSPEC
project. Under the integrated graphical user interface,
the specification hyper-text editor allows the user to
navigate through pieces of a mini-specification. The
declarative specification browser shows the declarative
semantics of the design in an “and-or” tree. The trans-
lator takes as input the user’s specification, and gen-
erates a Prolog program which can be run under our
interpreter/debugger. The debugger also comes with a
SLD tree viewer that allows a real time snap shot of
a program execution. The VSPEC project also has an
automatic testing tool for system verification. Due to
the limitation of space, in this paper, we focus on the

!'The SPEC project was originally proposed by Dr. Ruth E.
Davis.

Graphical User Interface

1 1 1 1
|
Specification Program Interpreter % Automatic
Hyper-text Generatof and l Testing
Editor Debugger { Tool

Specificationi Prolog

Declarative SL.D tree

ificati .
Specificatio Viewer

Browser

Testing
Modules

Figure 1: System overview of the VSPEC project

discussion of the hyper-editor, the declarative specifica-
tion browser, and the translator.

This paper is organized as the following. Section 2
introduces a hyper-text like navigation methodology a-
long with a declarative program browser for logic pro-
gram/specifications. Section 3 discusses a revised ver-
sion of the SPEC language earlier developed by the au-
thors. A short conclusion showing our contributions is
given in section 3.

2 Hyper-text Navigation of
Logic Specifications

When an individual constructs a logic specification pro-
gram, one does not think about the declarative seman-
tics of the program linearly. In spite of different soft-
ware architecture approaches, such as a top-down, or a
bottom-up strategy, a programmer usually cross refer-
ences different pieces of a specification while construct-
ing a new piece. In our VSPEC environment, we pro-
vide a hyper-text like specification editor which allows
a user to click on a highlighted Prolog predicate in the
specification in order to perform a cross reference a-
mong different parts of a specification. Each specifica-
tion part is dispiayed on a separate window. The user
is given an option to close a specification window or
leave it on the screen after changing the window focus
to another specification. This hyper-text specification
editor, enabling a convenient navigation, allows the user
to stepwise refine their specification programs.

During the construction of a specification program,

950

uhie user can use a declarative specification browser to
review the current status of his/her specification pro-
gram. The browser displays an “and-or” tree like struc-
ture representing the semantics of the program. The
browser, while activated, will ask the user to give a
predicate which serves as the root node of the seman-
tics tree. Starting from the given root predicate, the
browser searches for predicates used by the root predi-
cate. If the root predicate is defined as a disjunction of
more than one clause, an “or” subtree is expanded. For
instance, in figure 2, predicate solution/1 is defined
in two clauses and an “or” subtree of two branches is
expanded. It is possible for an “or” subtree to consist of
only one branch (e.g., thie subtree of predicate equeen).
The declarative specification browser then looks at the
body definition of each clause of the expanded predicate
and construct an “and” subtree if the body definition
of a clause is a conjunction. For example, the second
clause of the solution/1 predicate has a body defini-
tion which is a conjunction of predicates solution/1,
member/2, and noattack/2. Thus an “and” subtree of
three branches is expanded. Disjunctions are treated
as separate clauses and “or” subtrees are used. The
expansion continues until all predicates are expanded.
Some exceptions that terminate a branch of the expan-
sion are the expanded predicates, the system predicates,
and the undefined predicates. An expanded predicate
is a predicate that exists in an upper level of the tree.
A predicate will not be expanded more than once in the
tree. A system predicate is one provided by the Prolog
interpreter (e.g., write/1). An undefined predicate has
not yet been declared in the specification program when
the browser is invoked. An empty black box is used in
the tree to indicate an undefined predicate. Figure 2
shows the “and-or” tree of the eight queen’s problem
solving specification.

In addition to the “and-or” tree expansion, there are
three types of annotations used in a semantics tree. A
“down” arrow annotation indicates that data is provid-
ed by the parent predicate. That is, the parameter in
a parent predicate should be instantiated (or bound) in
order to provide information for its child predicates in
the tree. An “up” arrow, on the other hand, indicates
the information is collected by the child predicates and
passed to their parent predicate. An “bidirectional”
arrow indicates that the information is passed in both
ways, allowing the invertibility of logic programming.
An edge in the tree can have multiple arrows if the
predicate has more than a parameter.

3 The revised SPEC Language

The revised SPEC language enables a specification pro-
gram to be compiled to a standrd Prolog program. A
specification program contains one or more specifica-
tions. Each specification is a combination of the follow-
ing objects:

(Yo
[$]

equeen()

S

write(term+)

solution(list+)

solution(list+) noattack(term+, list+)

or

member(integer?, list?)

or\
AN

member(integer?, list?)

true

true integer+

=\=

integer: integer+
integer+ noattack(
=\= term+,
integer+ list+)

Figure 2: A “and-or” tree used in the declarative pro-
gram browser

e Signature

e Preconditions

Specification Body

Postconditions

L]

Test Cases (optional)

¢ Comments

A signature consists of the name of the specification
plus types and modes information of the specification.
Types are treated as unary predicates in Prolog. For in-
stance, atom(X) holds if object X is an atom. Modes can
be input, output, or bidirectional, indicated by +, -, or
?, respectively. Modes are postfix declarations attached
to type tags (e.g., atom, integer). The signature of a
specification is used in type checking, and in the gen-
eration of annotation arrows while a declarative speci-
fication semantics tree is expanded. Preconditions are
a conjunction consisting of predicates which must hold
in order for the specification to produce useful results.
The default precondition is true which always holds.
The specification body is a number of Prolog clauses.
Special language constructs in SPEC [18, 19, 20] are
also allowed. Postconditions of a specification hold in
the time point after a successful execution of its cor-
responding specification. The default postcondition is
none that indicates no assertion is necessary. Postcon-
ditions are also conjunctions of Prolog predicates. Test
cases are optional. If provided, the automatic testing

tool will test the specification according to the test cas-
es on the demand of a user. Comments are standard
ASCII code that is not analysed by the system.

A specification program is compiled into a standard
Prolog program with some renaming. Each specifica-
tion, while translated to a Prolog program, consists of
two parts. The first part is a predicate of one clause
with its name as the name of the specification. The
body of this part of the predicate is a conjunction of the
precondition, a call to the renamed specification body,
and the assertion of the postconditions. The renamed
specification body has its name attached with a special
tag “_body” right after the name of the specification.
For example, the following specification is translated to
Prolog code:

Specification in VSPEC

specification noattack(X/Y:term+, L:list+).

precondition ::= X >= 1, X =< 8,
Y >=1, Y =< 8.
bodyspec ::=
noattack(_, [1).
noattack(X/Y, [X1/Y1 | Others]) :-
X =\= X1,
Y =\= Y1,
Y1-Y =\= X1-X,
Yi-Y =\= X-X1,
noattack(X/Y, Others).
postcondition ::= none.
testcase ::= noattack(i/1, [3/41).
noattack(1/1, [1/4]).
noattack(1/2, [2/4,3/1,4/3]).
comments ::= ’'condition must hold for the

eight queen problem’.
Prolog program generated

noattack(X/Y, L) :
X >=1, X =<8, Y >=1, Y =<8,
noattack_body(X/Y, L).
noattack_body(_, [1).
noattack_body (X/Y, [X1/Y1 | Othersl])
X =\= X1,
Y =\= Y1,
Y1i-Y =\= X1-X,
Yi-Y =\= X-X1,
noattack(X/Y, Others).

Note that if the postcondition is none, no assertion
is made. Similarly, if the precondition is by default, no
precondiction call is generated.

4 VSPEC Language Constructs

In this section we discuss some of the language con-
structs developed in our VSPEC project.

952

4.1 Conditional Constructs

Alternative solution paths for a given procedure may
be mutually exclusive so that only one branch of the
search space needs to be investigated for a given call.
Moreover, for procedures involving a large case analy-
sis, a general conditional structure is helpful. Instead of
using disjunctions or several clauses with many redun-
dant subgoals, two high level language constructs are
provided to enhance readability and efficiency. Before
discussing the syntax and semantics of the “if con-

struct” and the “cond construct”, some terminology is
defined.

Definition: A subgoal is a component of a specifica-
tion that is an atomic subgoal (i.e., a predicate applied
to terms), a construct, a conjunction of subgoals, or a
disjunction of subgoals.]

Definition: The lexical boundary of a clause is the
head and body of the clause. The lexical boundary of
a construct inciudes the construct key words (e.g., if,
then, else, cond) as well as all of its test subgoals
and branches. n

Definition: A clause, an if construct, or a cond
construct containing no constructs forms a single re-
gion. 1f a clause or construct contains another con-
struct, the region of the outer construct or clause is its
lexical boundary excluding the lexical boundary of the
inner construct. Regions are disjoint and separated by
constructs. The parent region of a region R is the en-
closing region of region R. |

Definition: The region name of the region of a clause
is the functor of the clause’s head followed by a unique
clause number. The region name of the region of a
construct is a concatenation RN_CN# where RN is the
region name of the enclosing region, CN is if or cond
(as the construct is an if construct or cond construct
respectively), and # is a unique number for each region
name. n

Definition: The variable set of a region or a lexical
boundary is the set of variables (Prolog variables) that
occur in the region or the lexical boundary.]

Definition: The communication variable list I(R) of
a region R is a lexically sorted list of the variables ob-
tained by the I function:

I(R) = ¢, if R has no parent (i.e., R is the region of a
clause).

I(R) S(R) N (var.set(parent_region(R)) U
I{parent_region(R)))

where N and U are the usual set operations, ¢ is the
empty set, var_set(R) is the variable set of region R,
parent_region(R) is the parent region of region R, and

S(R) is the variable set of the lexical boundary corre-
sponding to region R (i.e., the union of variables in R
and all its descendent regions). Intuitively, the commu-
nication variable list of a region contains all variables
that are referenced both inside and outside the region.

]

A body specification is a logic procedure written in
a super set of Prolog. Two constructs are provided to
enhance the readability of a body specification. An if
construct has the following syntax and semantics:

Syntax:
(if Test_subgoal (VAR1, ...
True_branch
else
False_branch)

, VARn, TV) then

where n > 0, TV is a logical variable whose domain
of ground values is {true, false}; Test_subgoal is a
literal with parameters VAR1, ., VARn, and TV; and
True_branch and False_branch are subgoals.

Declarative Semantics:

(Testsubgoal(VAR!, ..., VARn, true) A
True_branch) :
vV (Testsubgoal(VAR1, .., VARn, false) A

False_branch)
Operational Semantics:

Call the Test_subgoal. If the variable TV matches
true, then proceed with the True_branch; if TV match-
es false, then proceed with the False branch. If the
Test_subgoal fails or binds TV to something that will
not match either true or false, then the entire if con-
struct fails.

This is not the if-then-else provided by Prolog,
which relies on negation as failure by proceeding with
the False branch if the Test_subgoal fails. If the
True_branch is attempted and fails, the False_branch
may still be attempted (if TV matches false). It is also
possible to backtrack over solutions to Test_subgoal.

Note that it is possible that TV is left unbound, in
which case either branch may be taken, as TV will suc-
cessfully match either true or false, though the op-
erational semantics specifies that the True_branch will
be attempted first. Note also that the Test_subgoal
is attempted first before either of the two branches are
taken. When the if construct is the only component of
a clause body, its surrounding parentheses can be omit-
ted. If the if construct is used in a conjunction with
other literals or constructs, the parentheses are neces-
sary since the comma has higher priority than then and
else.

A cond construct has the following syntax and se-
mantics:

Syntax:

953

=> Branch_1 3%
=> Branch_2 $

(cond (Test_subgoals_1)
(Test_subgoals_2)
(Test_subgoals_n) => Branch_n)

where Test subgoalsi, 1 < i < n, are subgoal-

s (for atomic subgoals, parentheses are not needed),
Branch.i, 1 € i < n, are subgoals.

Declarative Semantics:

(Test_subgoals_.1 A Branch_1)
V (Test_subgoals.2 A Branch_2)

V (Test_subgoals.n A Branch_n)
Operational Semantics:

Test_subgoals_i’s are attempted in the order
given in a cond language construct. If one of
the Test_subgoals_i succeeds, the corresponding
Branch i is attempted. The cond construct fails on-
ly if every Test_subgoals.i — Branch_i combination

fails.

When the cond construct is the only component
of a clause body, its surrounding parentheses can be
omitted. Backtracking is allowed to traverse different
branches to find alternative solutions. Note that con-
structs can be nested to any finite level.

The program generation (or translation) module of
the VSPEC project takes as input a specification and
generates an internal representation of logic program
(i.e., ILP). It is also possible to execute the specification
with the interpreter accessing control information at
runtime. The system translates a logic clause, which
may or may not contain if and cond constructs, into
a Horn clause or clauses without the constructs. Note
that control information is also incorporated into the
translation.

In the following example, A definition of merge(L1,
L2, ML) and the clauses that result from the transfor-
mation of the cond and if constructs it contains are
given. merge(L1, L2, ML) holds if L1 and L2 are sort-
ed lists and ML is the sorted list containing all elements
of L1 and L2. The clause “merge” consists of three re-
gions. Note that regions do not overlap each other so
that regioni contains only one literal. The variable
sets of the regions in the example are:

regioni: {L1, L2, ML}

region2: {L1, L2, ML, N, Litail, M, L2tail}

region3: {N, M, Is_1t, Litail, L2, MLtail,
ML, L1, L2tail}

The communication variable lists of the regions in the
example are:

regionl: {}

region2: {L1, L2, ML}

region3: {L1, L1tail, L2,
L2tail, M, ML, N}

The subgoal generated for the cond construct is
merge_cond0(L1,L2 , ML)

which is built from the predicate name “merge”, the
construct name _cond, a unique number 0, and the com-
municacion variable list L1, L2, ML of region 2 (the
region of the cond construct). Similarly, the if con-
struct is replaced by a new subgoal

mergs.cond0_if1(L1,L2,Litail,L2tail ,M, ML, N).

The example showing the body specification of a
merge relation is

--- regionl
jmerge(L1, L2, ML) :- |
| === e mm == mm e e e e region2|
(cond L1 = [] =>L2 =ML $ [
L2 =] =>1L1L=MLS
(L1 = [| Litaill, L2 = [K | L2tail]) =
---------------------------------- region

if 1t(¥, M, Is_1t) then
(merge(Litail, L2, MLtail),
ML = [§ | MLtail])
else
(merge(L1, L2tail, MLtail),
ML = [M | MLtaill))).

By applying a program generation algorithm, the fol-
lowing Prolog program is generated.
merge(L1,L2,ML) :- merge_cond0(L1,L2,ML).
merge_cond0(L1,L2,ML)
merge_cond0(L1,L2,ML)
merge_cond0(L1,L2,ML)

(Li={¥|L1tail],L2=[MIL2taill),
merge_condO_ifi(Ll,L2,L1tai1,L2tai1,H,HL,N).

:= L1=[1, L2=ML.
:- L2=[1, L1=ML.

merge_condO_ifl(Ll,L2,thail,LZtail,H,HL,N) :
1t (N,M, true), .
merge(L1tail,L2,MLtail),
ML={N|[MLtaill.
merge_condO_ifi(Ll,LZ,thail,LZtail,H,HL,N) :
1t (N,M,false),
merge(L1,L2tail,MLtail),
ML=[MIMLtail].

Note that clauses of the same predicate name are
placed together in the generated ILP. After the ILP is
generated, optimization can be made to improve the
runtime performance of the program. For example, the
three clauses of the merge_cond0 predicate can be op-
timized to:

merge_cond0([], ML, ML).
merge_condO(ML, [1, ML).
merge_condO([NIL1tail], [MiL2tail] ML) :-
merge_condo_ifl([NLLItail],[HIL2tail],
Litail,L2tail ,M,ML,N).

954

4.2 Iterative Constructs

Failure-driven loops are claimed to be a bad program-
ming style. One way of defining a failure-driven loop
is to use a repeat/0 predicate with a Prolog cut and
a fail. For instance, the repeat/0 predicate can be
defined as:

repeat.

repeat :-~ repeat.

Subgoals in each iteration of a repeat loop are visited
again at a new level of a search tree. The search tree
becomes deeper and deeper as the iteration proceeds.

The continuation mechanism can be used in the im-
plementation of structured iterative constructs. Since
a continuation call performs a jump to a previously de-
fined node in the search space, the depth of the search
will not be increased.

Structured iterative constructs in logic programming
can be designed using the continuation predicates. The
syntax and semantics of a while construct are:

Syntax:
while Test_predicates,
Loop_goals,
end_vwhile

where Test _predicates is a subgoal or a conjunction,
Loop_goals consists of Prolog predicate(s) or logic con-
struct(s), and while and end_while are reserved words.
Loop.goals is optional.

Operational Semantics:

The Test predicates are called. If they succeed,
the Loop.goals are solved and a jump is made to the
Test_predicates. If the call to Test_predicates or
Loop.goals fails, the iteration ends, and the compu-
tation continues from the continuation after the while
construct.

Declarative Semantics:

Since a while construct cannot fail, and one can as-
sume nothing about the success of the goals in its body,
its declarative semantics is simply: true. This, less than
satisfying, semantics highlights the fact that the while
loop is a non-logical construct invented for procedural
convenience.

For the implementation, a while construct can be
translated statically. For instance,

predicate :
Goals,
vhile Test_predicates,
Loop_goals,
end_vwhile,
Other_goals.

can be translated to
predicate :-
Goals,
assert_continuation(while#),
(Test_predicates,

Loop_goals
; retract_continuation(while#)
), !,
(call_continuation(while#)
; true
), !,
Other_goals.

A continuation associated with the while construc-
t (where # is a unique number for the while con-
struct) is asserted before the loop starts. If the
Test_predicates and Loop_goals succeed, a contin-
uation call is made to the beginning of the loop. If
the call to Test_predicates fails or Loop_goals fails,
the unique continuation_associated with the while con-
struct is retracted, and the computation proceeds from
Other_goals.

One may write a while loop in ordinary Prolog as
follows: .
while(T, L) :~

call(D),

call(L),

while(T, L).
while (_

Most Prolog interpreters support tail recursion elim-
ination. However, not all of them use a fixed amount of
stack space for executing a tail recursive predicate. In
that case, the while loop implemented above will cost
lots of memory due to the recursive call to while. Using
a continuation jump, one can save memory. Note that
both the while loop implemented above and the one in-
troduced in this thesis need to rely on using assert/1
and retract/1 Prolog predicates (or other non-logical
goals, such as read/1) in T or L in order to terminate
the loop.

Similarly, a do-until construct can be designed. A

do-until construct has the following syntax:

Syntax:
do,
Loop_goals,
until Test_predicates

where Test_predicates is a subgoal or a conjunction,
Loop_goals is a Prolog predicate(s) or logic construec-
t(s), and do and until are reserved words. Loop_goals
1s optional.

The operational and declarative semantics of a do-
until construct are equivalent to the following while
construct:

955

vhile
Loop_goals,
not(Test_predicates),
end_while

For the implementation, a do-until construct can be
translated. For instance,

predicate :
Goals,
do,
Loop_goals,
until Test_predicates,
Other_goals.

can be translated to

predicate :
Goals,
assert_continuation(do#),
(Loop_goals,
\+ Test_predicates,
call_continuation{(do#)
; retract_continuation(do#)
J I '
Other_goals.

A continuation associated with a do-until construc-
t is asserted before the loop starts. The Loop._goals
are solved and the Test _predicates are called. If the
Test_predicates fail, the loop is started again via a
continuation jump. If the Test predicates succeed,
the computation proceeds from Other_goals.

One way to implement a do loop in Prolog is

do(T, L)
call(lL),
call(not(T)),
do(T, L).

do(_, _).

The drawback of using this do loop is similar to the
one of an ordinary while loop written in Prolog as dis-
cussed earlier.

5 Conclusions

In this paper, we presented a visualization environment
that allows logic programming engineers to design their
logic specification programs. The system (i.e., VSPEC)
is a continuous work based on the SPEC proyect ear-
lier developed by the authors. The visualization tool-
s support a hyper~text like editor allows the user to
navigate different pieces of a specification program via
hyper-links. A declarative spec1ﬁcatlon browser is al-
so introduced, which uses an “and-or” tree structure to

display the semantics of a logic specification program.
These visualization tools, integrated with a revised ver-
sion of SPEC running under the MS Windows, help
logic programming engineers in designing their speci-
fications. We believe that, the proposed visualization
tools will make a contribution to the study of Software
Engineering in Logic Programming.

(6]

(10]

(11]

References

M. Bruynooghe, D. De Schreye, and B. Krekels. “Com-
piling Control”. In Proceedings 1986 Symposium on
Logic Programming, pages 70-77, 1986.

K. L. Clark, F. G. McCabe, and S. Gregory. “IC-
PROLOG Language Features”. In K. Clark and S.-A.
Tarnlund, editors, Logic Programming, pages 253-266.
Academic Press, 1982.

K. L. Clark and S. Gregory. “Notes on Systems Pro-
gramming in Parlog”. In Fifth Generation Computer
Systems 1984. North Holland, 1984.

Ruth E. Davis and Timothy K. Shih. “A CASE for
Logic Programming”. In Proceedings of The Tenth In-
ternational Conference of The Chilean Computer Sci-
ence Society, pages 73-84, 1990.

H. Gallaire and C. Lasserre. *“Metalevel Control for
Logic Programs”. In K. Clark and S.-A. Tarnlund,
editors, Logic Programming, pages 173-185. Academ-
ic Press, 1982.

M. Meier and H. Grant. “SEPIA Programming Envi-
ronment”. In Proceedings of the NACLP '89 Workshop
on Logic Programming Environments: The Next Gen-
eration, pages 103-114, 1989.

P. Mello, A. Natali, and C. Ruggieri. “Logic Program-
ming in a Software Engineering Perspective”. In E. L.
Lusk and R. A. Overbeek, editors, Logic Programming:
Proceedings of the North American Conference 1989,
pages 441-458. MIT Press, 1989.

L. Naish. “Automating Control for Logic Programs”.
The Journal of Logic Programming, 2(3):167-183, 1985.

L. Naish. Negation and Control in Prolog, volume 238
of Lecture Notes in Computer Science. Springer-Verlag,
1986.

L. M. Pereira. “Logic Control With Logic”. In Pro-
ceedings of the First International Logic Programming
Conference, pages 9-18, 1982,

A. Porto. “Epilog: A Language for Extended Program-
ming in Logic”. In Proceedings of the First Internation-
al Logic Programming Conference, pages 31-37, 1982.

E. Y. Shapiro. “A Subset of Concurrent Prolog and Its
Interpreter”. Technical report, Weizmann Institute of
Science, 1983.

E. Shapiro, editor.
1987.

Timothy K. Shih and Ruth Davis. “Intelligent Back-
tracking and Control Based on a Deduction Status Rep-
resentation in Logic Programming”. In Proceedings
of the Second Golden West International Conference,
1992. :

Concurrent Prolog. MIT Press,

956

(15]

(16]

(17]

(18]

[19]

[20]

Timothy K. Shih and Ruth Davis. “Program Gener-
ation and Controls in a Specification Processing En-
vironment”. In Proceedings of the 1992 International
Computer Symposium, 1992.

Timothy K. Shih, Ruth Davis, and Rob Langsner. “A
Specification Processing Environment for Making Well
Engineered Logic Programs”. In Proceedings of the Sec-
ond Golden West International Conference, 1992.

Timothy K. Shih, Ruth Davis, and Fuyau Lin. “Cop-
ing with Failure: Disciplined Exceptions in Logic Pro-
gramming”. In Proceedings of The 1992 ALP UK Logic
Programming Conference, 1992.

Timothy K. Shih. “Continuation Semantics of
Runnable Specifications in Logic Programming”. Ph.D.
Thesis, Department of Computer Engineering, Santa
Clara University, 1993.

Timothy K. Shih, and Ruth Davis. “SPEC: Specifi-
cation Processing Environment with Controls”. to be
published in Journal of Information Science and En-
gineering, 1995.

Timothy K. Shih, and Fuyau Lin. “Continuation Se-
mantics of Logic Programs with Exception Handling”.
to be published in the Computer and Artificial Intelli-
gence Journal 1995.

	
	
	
	
	
	
	
	
	

