PERBNTODEEE

HEMB AR E

Proceedings of National Computer Symposium 1995

R TR 8k Rl

A Specification Model for Graph Theory

| LA

Tsung Lee and Chi-Chia Lai

.l X TR TAER R
Department of Electrical Engineering
National Sun Yat-Sen University
Kao-Hsiung, Taiwan. ROC

#H %

ERERYT BfTERERERER IR IEY
EHE RfTSERER 2 EARMR AR ML
R, o] DA gR iyt e = B Mt R _LaYRoR. A%
AR, 00, 2 e 2 A o\ 5 et ASERAA
URBa—amEeEs Jit, gaE. SHE, &g
EoiEmE —EAE I EEZ QIR EE RiBEL
By, SRR T EAEPE RGN, 15
AEELARATSTERM R MM, EEERITAAROR
ERREERT S SR, EREANEEEE.
BRI B, B E Ry H BHEEE.

Abstract

In this research, we construct graph models by
describing the basic properties of graphs for spec-
ifying various types of graph objects. By charac-
terizing basic graph properties into orthogounal de-
scriptious, graph models for undirected graphs, di-
graphs, and hypergraphs can be unified in a generic
graph model. With these graph models, a knowl-
edge base of basic definitions of graph theory was
coustructed to form the basis of a graph specifica-
tion system. The specification system was proved to
be a terminating, confluent, and complete algebraic
specification system and can be used in automated
reasoning of graph theory,

Keyword: graph specification model, automated
reasoning of graph theory.

1 Introduction

Over the decades, graph theory was widely
applied iu computer system modeling. A unified
graph model for all kinds of graphs will be use-
ful in the modeling of complex computer systems.
In the past, the specified graph knowledge are re-
stricted in lmited classes of graphs. The unifica-
tion of graph models will bring us the advantages of
knowledge compatibility and information exchanga-
bility among graph-modeled systems. In this paper,

794

we present an approach to construct 4 unified graph
model for all kinds of graphs and specify graph
knowledge in an algebraic specification. With an
embedded theorem prover, we cau perforin reasou-
ing of graph theory in computers.

Previously. Woug [2] coustructed a model for di-
graphs. He applied the model in modeling railway
signaling probiem. Wong's model is illustrated in
Fig. 1.1. In the model,

o A vertex is specified as an abstract type =,
o An edge is specified as a record of two ver-
tices with the abstract type =x represeuting o

weight,

o A graph is specified as the composition of a
vertex set and an assocated edge set.

Vertex = *:*" 4
Edge = ":(* # * § *x)-» G
Graph = ":(*)set % (* # * # **)get"
Fig. 1.1 Wong’'s model of digraphs

The description is suitable to describe the traver-
sal of digraphs. However, it cannot he directly used
to model undirected graphs aud hypergraphs.

In {3]. Chou coustructed a model for nndirected
graphs. He applied the wmodel in distributed algo-
rithmn research. Chou's model is illustrated in Fig.
1.2, Inu the model.

o Vertex and edge are speciied as two abstract
types.

e A link is specified as i record for wodeling the
incidence relations and graph traversids such
as widks and paths in undirected graphs, The
record cousisty of two vertices and au edge inei-
dent to the vertices. When the vertex ordering

the record is meaningful, it specifies a digraph,
otherwise an undirected graph.

o A graph is specified as the composition of a
vertex set, an edge set, and a link set.

Vertex = ":*"

Edge - u:**u

Link = u:t # * > * o

Graph = ":(*)set # (**)set # (* # ** % *)set”
Fig. 1.2 Chou's model of indirected graph

Clou's model tailors to directed and undirected
graphs by specifying two incident vertices of an
edge. However, the model cannot be directly used
for modeling hypergraphs.

Both models are used to specify the knowledge of
limited classes of graphs. In order to develop a uni-
versal theorem proving tool for all kinds of graphs,
we need to coustruct a unified graph model. In this
research, we developed a generic graph model and
a set of derived graph models for this purpose.

I a graph-based modeling system, the specifica-
tion of various types of graph objects is a fundamen-
tal issue. Based on the analysis of graph theory |?],
we identify three basic components of a graph which
should be specfied: the vertex set. the edge set,
and the relationships that exist between vertices,
between edges, and between vertices and edges. Dy
elaborating these components, we need to design a
mnodel to specify the following graph objects : the
vertex set, the edge set. the incdence of a vertex
and an edge. the adjacency of vertices, the adja-
cency of edges, and the traversal in a graph, such
as walks. A graph model satisfying above specifica-
tion requiremnents can provide us a complete view
of basic graph properties of the modeled graphs.
Therefore, such a graph mnodel can be used in spec-
ifving the knowledge in graph theory as the basis
for proving graph theorems.

In order to represent various types of graphs
in a unified graph model, from an analysis on a
graph theory. the graph properties of different types
of graphs should be decoupled into orthogonal de-
scriptions for incrementally specifying the proper-
ties specific to the corresponding type of graphs.
The analysis results in the requirements of a uni-
fied graph wodel listed in the following:

1. The set of vertices should be independently
modeled.

2. The set of edges should be independently mod-
eled.

3. The incidences of vertices and edges should be
independently modeled.

4. Tle direction of edges should be independently
wmodeled in order to apply the model for both
undirected graphs and digraphs.

(1]

The number of incidences of an edge should not
be fixedly specified in the unified model.

6. The traversal in a graph structure should be
independently represented.

These requirements form the basis for designing
incrementally specifiable graph models. In the fol-
lowing, we introduce a generic graph model and the
associated derived graph models as a solution satis-
fying these requirements incrementally for specify-
ing various types of graphs.

2 Graph Models

In this section. we describe the graph mod-
els by specifying basic graph components, integrity
constraints, and graph properties in abstract data
types. By characterizing basic graph properties,
graph models for undirected graphs. digraphs. and
Lypergraphs can be unified in a generic graph model
and the associated derived graph models.

Approach

A graph model can be specified by describing
the basic components and integrity constraiuts of
the represented graph objects. The construction of
several graph models is illustrated in Fig. 2.1, A
generic graph model is used to specify the graph
components. the sraph properties. and integrity
constraints common to all kinds of graphs. By de-
cowposing these graph descriptions into orthogonal
dimmensions as described in introduction. each type
of graphs can be modeled with additional graph de-
scriptions to form derived graph models,

In this approach. we capture all the required or-
thogonal comrponent descriptions in a basic model
called the generic graph model referred by other
derived graph wodel. In addition. the counnou
validity properties for all kinds of graphs in this
description method forin the hasic integrity con-
straluts which are also recorded in the genervic graph
model. In order to represent each specific type of
graphs, we can refer to the component description
and basic integrity constraiuts. and add the addi-
tional integrity coustraiuts for the validity testing
of the type of graphs. Therefore. we obtain the fol-
lowing categories of graph models.

1. The generic graph model is specified with

o basic graph components and their access
faction for vertices. edges. teruinals.
vertex sets. edge sets. terninal sets. and
graph objects.

o basic integrity coustraints common to all
kinds of graphs:

The integrity coustraints enforce the re-
latiouships between abstract objects that
all types of graphs should possess. Thus.

795

the illegal combinations of abstract ob-
jects in specifying graphs are excluded.
The types of iutegrity coustraints include
naming identity for graph objects, exis-
tence consistency between graph objects,
and attribute range restrictious.

2. The model of undirected graphs is specified
with

e the specification of generic graph model

e an integrity counstraint: The number of in-
cidences of an edge is two.

3. The model of digraphs is specified with

o the specification of generic graph model.
e an additional access function direction for
terminal

e two integrity constraints : (1)The number
of incidences of an edge is two. (2)One
incident terminal of an edge is with the
incident from direction attribute. and the
other is with incident.to direction.

4. The model of hypergraphs is specified by iden-
tity of the generic graph model.

e the specification of the generic graph
model.

In the following, we describe the counstruction of
generic graph model.
Generic Graph Model
objects: graph,verex.edge,termianl.traversal edge
aocess function: VertexSet(g),terminal _vertex(b),....
derived function: {ncidentVertexSet(g.e)JncidentEdgeSet(g,v)....
mxcgn(y constraints:
naming identity: v1 }= v2 <-> vertex _name(vl) d=vertex_name(v2)
: ALL t:TerminalSet(g). terminal_edge(t):EdgeSet(g).
attributes range remx:uon ALL t:TerminalSet(g).
terminal_direction(t): {incident _fromincident_toundefined}
Graph Models:
model of generic graph MGG
model of hypergraph (MHG)
model of ditected hypergraph (MDHG)
model of sirmple hypergraph MSHG)
meodel of sirmple directed hypergraph (MSDHG)
mode! of sirople edge-directed hypergraph (MSEDHG)
mode] of peeudograph (MPG)
model of multigraph (MMG)
mode! of undirected graph (MUG)
mode] of sinple undirected graph (MSUG)
model of digraph (MDG)Y
model of simple digraph (MSDG)
{Intwo_incident_edge coastraint:
ALLe:EdgeSet(g). two_incident_edge(g.¢)
(Dlocpless constraint:
ALL e:EdgeSet(g). Loopicss(g.e)
(Gnique_edge constraint:
EX el:BdgeSeu(g). EX ¢2:EdgeSet(g). Incident Ve (g.eD)=IncidentVer
(4direction constraint:
ALL ¢:EdgeSet(g). EX t!:edge_terminal_set(ge). EX 2:edge_terminal_set(g.c).
—{t1=t2) & terminal_direction(ti)=incident_from & terminal_direction(2)=incident_to))
(5) directed constraint:
.‘LL T 1 S

where (1) and (4) imply (5)

Ug.e2) > el=e2

terrninal_di

:{incide mt_from.incident_to}

MGGMHG
Q)

Fig 2.1 construction of graph models

Generic Graph Model

Our view of graphs for desiguing the generic
graph model is illustrated in Fw 32, The ba-
sic graph componeuts and access functions of the
generic model are designed for specifying graphs
and satisfying the requirements in botl sec Tion one.
These gr d,I)h modd compounents are suinnarized in
the following:

basic objects: graph,vertex edge terminal.traversal edge
Attributes:(access functions)

graph: VertexSet
EdgeSet
TerminalSet

vertex: vertex_name
vertex_label

edgeedge_name
edge_label

terminak:terminal _name
terminal_vertex
terminal_edge
terminal_direction

traversal-edge:traversal_source
waversed_edge
traversal_destination

Fig.2.2 The generic graph model

o basic objects: graphs, vertices. and edges

o object for modeling the iucidence relation: ter-
minals. This description specifies the relation-
ships between vertices aud edges.

o object for modeling graph traversal: traversal-
edges. This description is used to specify walks.
aud paths.

In the generic graph model. we obtain sowme dis-
tinct descriptive features which unifv the models
for different types of graphs with the generic graph
model. The distinct descriptive features of the
generic graph model are as followed:

1. Terminals for the incidence and the directions
of edges

In order to wuify the descriptious of the inci-
dence of vertices and edges in simple graphs
and hypergraphs and the associated edge di-
rection, we introduce the terminal concept to
directly describe the incidence relationship be-
tween vertices and edges.

o A terminal represents a link between a
vertex and an edge.

e A terminal has access functions ter-
minal.vertex(t) and termiunal.edge{t) to
record the incident vertex and the in-
cident edge. Two derived fuuctions.
edge_terminalset(g.e) for edge and ver-
tex_terninal set(g.v) for vertices. can be
used to capture the incidence relation
from another abstract view., The in-
cidence function between vertices and
edges. Incident(g.v.e). is specified also

796

with the terminal concept. These de-
rived specificatious will be given in section
three.

e terminal_direction(t) records the incd-
dence direction on an edge : It is either
incident_from or incident_to in model
of digraphs. For an edge in a digraph, its
edge_terminalset consists of two termi-
nals that one is a starting (incident from),
and the other is a leaving (incident_to)
terminal. The two terminals thus con-
nect their two incident vertices via the
edge with the direction specified in termi-
nals. It would be specified to undefined
in model of undirected graphs. The situ-
ation in hypergraph is similar.

2, Flexible value of edge incidences

Since the terminal is independently specified,
the incidences of an edge is not fixed to two.
Thus, we can extend the generic graph model
to a model of hypergraphs.

. Traversal graph for describing graph traversal
A traversal graph is invented to record the
traversal in a graph. A traversal graph is
a directed graph(hypergraph). The directed
edges in the traversal graph record the traver-
sal which enters the vertex traversal source(te),
passes through the edge traversed.edge(te) and
leaves at vertices traversal_destination(te) in
the source graph. With these attributes. the
specification of structures, walks, paths and
various graph traversals are viable.

1. Cuique representation for graphs

In Chou's model, when undirected graphs are
specified, the two vertices in an edge record
formn an ordered combination. Each edge thus
Las two possible representations. For a graph.
the redundancy results in 2/E1 different repre-
sentations. Chou uses a predicate aliost-equal
to test for edge equivalence whicli is an external
checking for edge equivalence. In this model,
edge equivalence checking is coutained in the
underlying set theory and heuce is transparent
in the formulation.

. Integrity counstraint checking for graph validity
verification

Since the orthogonal descriptions of graphs
span data space larger than the space of any
specific kind of graphs, integrity constraints
can be used to specify the required properties
among orthogonal descriptions, and heuce de-
fine the valid space of the the type of graphs.
Integrity constraints can thus be checked to
verify the validity of specific type of graphs
given graph specifications or instances. Ounce
1tegrity coustraints are verified, all graph op-
erations and kuowledge inferences can be ap-
plied safely.

The generic graph model should capture the

common structure, properties. and definitive in-
tegrity coustraints for all types of graphs. In the
following, we describe the orthogonal composition
of structures and properties, aud the definitive in-
tegrity coustrainuts for the generic graph model.

797

o orthogonal composition for graph description

The specifications for graph theory of various
types of graphs cau be constructed by giving
the orthogonal basic functions. These Dasic
functions are :

— access functions of basic objects

* grapl: VertexSet(g). EdgeSet(g). and

TerminalSet(g).

* vertex: vertex_naie{v) and ver-
textabel(v).

* edge: edgenaine(e) and
edgedabel(e).

* terminal: terminalname(t). terini-
nal_vertex(t). terminaleedge(t). and

termninal-direction(t)

* traversal: traversalsource(te), tra-
versed_edge(te). and
traversal.destination(te).

- derived functions
* incident relation: Incident{g.v.e)
* 1ncident-vertex set Inci-
dent VertexSet(g.v)

* lncident-edge set concept: Incident-
EdgeSet(g.v)
% adjacent vertex relaton: Adjv(g.v)

coucept:

* adjacent edge relation: Adj-elg.e)

* adjacent-vertex set concept:
centVertexSet{g.v)

* adjacent-edge set concept: Adjacent-
EdgeSet{g.e)

Adja-

e integrity coustraints

Integrity constraints are used to specifyv the
conditions that a modeled data represents a
valid graph. The constraints contains the cor-
relations between basic objects, special con-
straints of an object({direction limitation). cou-
straints to prevent ambiguity, and the identity
of objects.

— naming identity of vertices. edges. and
terminals: For exawple. the constraint
ALL v1: VertexSet(g).

ALL v2: VertexSetig.
vl £v2 —
vertex_name(vl; £ vertex_name(v2)
(L)

represents that the vertex object is iden-
tified by vertex_uaine(y).

— existence i
consistency between VertexSet(g), Edge-
Set(g), and TerminalSet(g).

* existence relationships between ver-
tices, edges, and terminals: For ex-
ample, the constraint

ALL t : TerminalSet(g).
(2) terminal edge(t): EdgeSet(g)

represents that the edges incident

with any terminals in terminal set
must be an edge in the edge set.
* existence uniqueness: For example,

ALL ¢t : TerminalSet(g).
(EX v1: VertexSet(g).
EX v2: VertexSet(g).
t : vertex_terminalset(g, vl) &
t : vertex.terminal.set(g, v2))
(3) —vli=v2

represents the same terminal should
be mapped to the same vertex.
— attribute range restriction: For examnple,
the constraint

ALL t : TerminalSet(g).
terminal-direction(t) :
{incidentfrom, incident_to,
(4) undefined}

represents the possible incidence rela-
tion represented by terminals is one of the
three types.

When all constraints are satisfied. the modeled
data is a valid graph in defined space. We will illus-
trate the extension of our generic model to several
kinds of graphs in next section.

3 Graph Specification

The specification of graph knowledge is orga-
nized at two levels: graph model level(GML) and
graph specification level(GSL). The specifications
are specified at the two levels hierarchically to define
the graph models and the high-level graph knowl-
edge. We use the generic theorem prover Isabelle
[?] in building the graph models. The HOL the-
ory in Isabelle implements higher-order logic {7].
It's based on Gordon's HOL system, which itself
is based on Church’s original paper [?]. We choose
higher-order logic as the specification language.

The higher-order logic inference rules are sup-
ported in Isabelle. The natural number theory, set
theory and list definition are separately specified in
higher order logic. These theoretical and specifi-
cation foundations form the basis for our specifica-
tious of the graph models.

Graph Knowledge Hierarchy

From an analysis of graph theory. the graph
knowledge can be specified hierarchically. We de-
signed a two-level organization which cousisting of
graph model level and graph specification level. At
the graph model level. the basic level of graph con-
cepts, graph construction operations. awd defini-
tions of models are specified. At the graph specifi-
cation level, sowne high level graph properties, graph
construction operations. and graph theorems are
specified. The specified graph kuowledge hierarchy
is illustrated in Fig. 3.1. In the following. we de-
scribe the model in details,

1. graph model level(GML): At this level. the
specified kuowledge includes

o model description: primitive functions
and derived functions are described at this
stage.

— primitive
functions: VertexSet{gi. LdgeSetiy).
TerminalSet{g), vertex_name{vj. etc.
for access functions of hasic objectsin
the generic graph wodel.

— derived func-
tions: vertex_terminalset{g.v). In-
cident VertexSet{g.v). Incident{g.v.e).
ete. for dertved fuuctions for describ-
ing the relations between vertices and
edges,

o model operation: basic coustruction and
destruction operations for graph are de-
scribed at this stage. such as addver-

tex(g.v).

¢ model definition: eraph
models are described at this stage. such as
Generic_Graph(g). Hyper Graph{g). ete.

2. graph specification level (GSL): Ar this level.
the specified knowledge includes

s object specification: Some grapl struc-
tures aud graph properties are described
at this stage. such as Isowalk{g.w).
Is.path(g.,w). subgraphfgl.n2)j.ete.

e object operation: Soule wuiore complex
construction and destruction operatious
for graph are listed at this stage. Such
as graph coutraction operation.

e high-level kunowledge: Turther descrip-
tious of graph knowledge will be included
at this stage. Such as Evenototal_degree
theorewn.

798

Graph Specification Level
Object Object High level
Specifications | operations | knowledge
Graph Model Level
Model Model Modet
Descriptions | operations | Definitions

Fig. 3.1 Graph knowledge hierarchy

In the following, we describe the specifications of
the derived functions in the generic graph model,
and those of the derived graph models.

Derived Functions in the Generic Graph
Model

Based on the basic functions of graph models,
we further specify the relationships between vertices
and edges. In the following, we list these relation-
ships. and the corresponding specifications in HOL
description. .

e The derived function wvertez.terminal_set is a
derived access function for the collection of ter-
minals incident to the vertex,

vertex-terminalset(g,v) ==
{t. t: Terminal!Set(g) &
(3) v = terminal.vertex(t)}
o The derived functiou edge_terteminal set repre-

sents the collection of terminals that are inci-
dent to the edge.

edge.terminal.set(g. e} ==
{t. t : TerminalSet(g) & e =
(6) terminal.edge(t)}
o The predicate Incident represents the inddence
of a vertex and an edge in the graph g.
Incident(g,v.e) ==
(EX t : TerminalSet(g). v : VertexSet(g)&
e: EdgeSet(g) &
v = terminal_vertex(t)) &
(7 e = terminal_edge(t))
o The derived function IncidentVerterSet repre-
sents the incident vertex set of an edge.
IncidentVertexSet(g,e) ==
(8) {y.Incident(g,y.e)}
o The derived function IncidentEdgeSet repre-
seuts the incident edge set of a vertex.
IncidentEdgeSet(g,v) ==
(9) {y. Incident(g, v.y)}
o The predicate Adj_v represents two vertices are
incident to a common edge.
Adjv(g.vl,v2) ==
(EX e : EdgeSet(g).
vl : IncidentVertexSet(g,e) &
(10) v2 : IncidentVertexSet(g, e))

o The predicate Adj_e represents two edges are
incident to a comoun vertex.,
Adj-e(g.el,e2) ==
(EX v : VertexSetig).
el : IncidentEdgeSet(g.v} &
(1 e2 : IncidentEdgeSet(g.v))

o The derived function AdjacentVertexSet repre-
seuts the adjacent vertices of a vertex.
AdjacentVertexSet(g. v} ==
(12) {y. Adjvig.v.¥)}

o The derived function AdjacentEdgeSet rvepre-
seuts adjacent edges of an edge.
AdjacentEdgeSet(g.e) ==
(13) {v. Adje(g.e.y)}

The above derived formulas enrich the descrip-
tion of the specified basic components. They repre-
sent the basic relations between vertices and edges
of graph theory.

Derived Graph Models

With the descriptive structure, properties, and
integrity counstraints for the generic graph model.
additional conditions for various types of graphs
can be introduced to enhance the generic graph
model descriptious into odels of other types of
graphs. In the following. we iuclude the work for
undirected graphs. multigraphs. pseudograpls, hy-
pergraphs, and digraphs.

1. Model of {simple) undirected graphs

In graph theory. the undirected graph is
usually taken as a (siinple} undirected graph.
There are three constraints for simple undi-
rected graphs. These constraints are two-
incidence edge constraint. unique edge con-
straint. and loopless coustraint. The relax of
constraints will construct some relaxed graphs.
The relax of unique edge coustraint aud loop-
less constraint coustruct the multi-graphs, The
relax of loopless constraiut construct pseudo-
graphs. The relax of the three constraints con-
struct hypergraphs.

o two-incidence constraint: The number
of incidences of any edge is equal to
two, Thus, the two-incideunce constraint
is specified as:

(ALL e : EdgeSet(g).
(14) two_incident_edgeig.e})

A predicate twoducident_edge is intro-
duced for specifying two-incidence prop-
erty of an edge e useful in modeling of
undirected graphs.

two.incident_edge(g.e) ==
(e: EdgeSetigi\:
" card(edge_terminalset{g.e}} =
(15) Suc(Suc(0)))

799

e unique edge constraiut: There exists a
unique edge between two vertices, Thus.
the unique edge coustraint is specified as:

EXel : EdgeSet(g).EXe2 : EdgeSet(g).
IncidentVertexSet(g,el) =
IncidentVertexSet(g, e2)

(16)

e loopless constraint: No selfloops exist in
the graph. Thus, the loopless constraint
is specified as:

(ALL e: EdgeSet(g).
Loopless(g,e))

— el = e2

(17
A loopless predicate is introduced for
specifying the property that any edge in
the graph is not a selfloops.
Loopless(g,e} ==
(ALL t1: edge.terminalset(g, e).
ALL t2: edge_terminal_set(g,e).
terminal_vertex(tl) =
terminal_vertex(t2)

(1) — (t1 =1t2))

As mentioned above, there are three con-
straints for simple graphs. Thus, the simple
graph model is specified as:

simplegraph(g) ==

{Generic.Graph(g)&
(ALL e : EdgeSet(g).
two.incident_edge(g,))&

(EX el : EdgeSet(g).EXe2: EdgeSet(g).
(IncidentVertexSet(g.el) =
IncidentVertexSet(g,e2))

— (el = e2))&

(19) (ALLe : EdgeSet(g).Loopless(g,e)))

The undirected graphs commonly used in
graph theory refer to simple graphs. Therefore,
the definition of undirected graphs equivalent
to that of simple graphs.

(20) Graph(g) == simplegraph(g)

Models of (relaxed) undirected graphs

By relaxing the simple graph coustraints, other
graph models can be derived. Some of them are
multi-graphs, pseudographs, and hypergraphs.

A multi-graph model is a kind of graphs in
whicli there can be multiple-edges between two
vertices. Thus, the multi-graph model is spec-
ified by relaxing unique edge coustraint and
loopless constraint.
Multi_Graph(g) ==
(Generic.Graph(g) &
{ALL e: EdgeSet(g).

(21) two.incident_edge(g, e)))

800

A pseudograph model is a kind of graphs in
which there can be with selfloops but without
multiple-edges. Thus, the pseudograph model
is specified by relaxing loopless constraiut.
Pseudo_.Graph(g) == (Generic.Graphi(g) &

{ALL e : EdgeSet(g). two.incident_edgeig.e)i\:
(EXel : EdgeSet(g).EXe2 : EdgeSet(g).
(IncidentVertexSetig.el) =
IncidentVertexSet(g. e2);

(22) — (el = e2)))

A hypergraph model is specified by the generic
graph model. The simple hypergraph wodel is
specified by the generic graph model with the
unique edge constraint and loopless coustraint,

Hyper_Graphig) ==
(23)
Simple_Hyper_Graph(g) ==

Generic.Graphig:

Generic.Graphig)\

{EXel : EdgeSet(g).EXe2 : EdgeSeti(g).
(IncidentVertexSet(g.el} =
IncidentVertexSet(g.e2;;

— (el = e2)j\

(24) {ALLe: EdgeSet(g).Looplessigz. e}

. Model of directed graphs

In the general undirected graph model. the
multi-graph wodel. when each edge is required
to be directed. we obtaiu the general directed
graph model. Hence. there are two coustraints
i the general directed graph model. They are
the two-incidence constraint and the direction
constraint. When we add the loopless con-
straint and the unique edge constraint in the
general directed graphs. we get the simple di-
rected graph model for commonly nsed directed
graphs in graph theory. T

o direction coustraint: In directed graphs,
the direction of edge is from one vertex
to the other. That 1s. the iucidence rela-
tionships of the one terminal of the edge
must be incdentfrom. that of the other
must be incident.to. Thus the direction
constraiut is specified as:

ALL e: EdgeSet(g).
EX t1: edge_terminalsetig.e).
EX t2: edge_terminalsetig. e,
~(tl = t2;58
terminal.direction(tl) = incident_from A:
terminal_direction{t2; — incident_to
{25)

A digrapli model is a kind of graph in which the
edge 1s directed. The incidence of one end ver-
tex with the edge is incident_from and another

oue 18 incident.to.
Digraph(g) ==
{Generic.Graph(g) &
(ALL e : EdgeSet(g).
two.incident.edge(g.e)) &
(ALL e : EdgeSet(g).
EX t1 : edge_terminalset(g,e).
EX t2 : edge-terminalset(g.e).
~ (t1 = t2)&
terminal_direction(tl) = incident_from &
terminal.direction(t2) = incident.to))
(26)

The addition of loopless coustraint and unique

edge constraint on the specified directed graphs

constructs simnple directed graphs.
Simple-Digraph(g) == (Digraph(g)&:

(ALLe : EdgeSet(g).Loopless(g,e)i&
(EXel: EdgeSet(g).EXe2 : EdgeSet(g).
(IncidentVertexSet(g, el) =
IncidentVertexSet(g,e2))

(27) — (el = e2))

4 A Proving Example

Since the specification in HOL is supported in
a generic theoremn prover Isabelle, graph theorems
can be specified and proved. For the consistency
verification of the specified model and the corre-
spouding mnathematical mnodel, several model asser-
tions are wmechanically proved in the systemn. The
script of an exawnple proof is as followed:

-val incavs goal gen.thy “Incident(g.v.e)
(v:IncidentVertexSet(g.e))";

-by (rewrite_goals_tac {IncidentVertexSet.def]);
-by (fasttac set.cs 1)

No subgoals!

-val incnvs =resule():

Incident(g.v.e) <==> v:IncidentVertexSet(g.e)

rewrite rule(definition of IncidentVertexSet)

vi{vl. Incident(g,vl.e)}

equality established

Fig. 4.1 equality testing by term rewriting

801

The goal is to prove that the incidence of a vertex
and an edge is equivalent to the membership of a vertex
in the incident-vertex set of an edge in a graph. By
expanding the definicion of incident-vertex set of an edge
and applying depth-first search of inferences. the result
"No subgoals™ is obtained. It means that all subgoals
are verified. Hence. the goal statement is proved.

5 Conclusion

In this research. we designed a set of graph mod-
els based on the orthogonal graph descriptions. A set
graph knowledge is specified for the graph models and
higher level graph properties in HOL algebraic specifi-
cations. In the development of the graph models. we
introduced concepts of the generic and derived graph
models which consist of orthogonal descriptions. In ad-
dition to vertices and edges. terminals and traversal-
edges are introduced as new graph components for the
orthogonal description of graphs. Different from other
graph specification models. the orchogonal property of
the developed graph model forms the basis of a unified
graph model for various tvpes of praphs. The unifica-
tion of graph models can bring us the advantages of
knowledge compatibility and information exchangabil-
ity among graph-modeled svstems,

References

[1] Ronald Gould. Graph Theory. The
Benjamin/Commings publishing Company. 108S,

Wai Wong. " A Simple Graph Theory and Tts Appli-
cation in Railway Signalling™ . H OL Theoren Prov-
ing System and its Application. IEEE Computer So-
ciety Press. 1002,

Ching-Tsun Chou. "A Formal Theory of Undirected
Graphs in Higher-Order Logic™. Higher Qrder Logic
Theorem Proving and Its Applications. 7th Interna-
tronal Workshop. LNCS 8539, Springer-Verlag. 1004,
Lawrence C. Paulson. lsalelle: 4 Generic Theorem
Prover. LNCS 828, Sprin ger-Verlag, 1094,

M. I.C. Gordon. and T. F. Melham. Introduclion to
HOL: & Theorern Proving £ environiuneni for Higher
Order Logic. Cambridge Tniv. Press. 1003,

(6] A. Church, A formulation of the simple theory of
tvpes. J. Symb. Logic. 3. pp36-68. 1040,

	
	
	
	
	
	
	
	
	

