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Abstract 
Wireless sensor networks provide an alternative way 

of improving our environments, such as environment 
surveillance, hazard monitoring, and other customized 
environment applications. The quality of these 
applications depends on good coverage of a sensor 
network. This paper studies the best-case and 
worst-case line coverage problems for line paths in 
sensor networks. Based on computational geometry and 
graph theory, a plane sweep algorithm is proposed to 
find the optimal line paths for both coverage problems 
in polynomial time. 
 
 

1. Introduction 
 

Wireless sensor networks are composed of a large 
number of tiny sensor nodes, which consist of sensing, 
data processing, storage capacity, limited memory, and 
communicating components. The sensor nodes are 
densely deployed to monitor the phenomenon inside an 
area. For example, surveillance sensor networks in a 
museum can keep the safety of priceless art crafts from 
burglaries; similar networks in forest alert when 
temperature arises abnormally. Different networks in 
these applications have different requirements on 
network coverage and the quality of sensed data. Some of 
them, e.g., hazard monitoring, may require higher 
coverage as delayed information or incomplete data can 
cause tragedies. How to evaluate the coverage of a sensor 
network, thus, becomes an essential issue in practice. In 
this paper, we study this problem and find a way to find 
the optimal line paths for both worst-case and best-case 
coverage problems. 

Many researchers have studied the coverage 
problems of sensor networks, for example, worst-case 
coverage, best-case coverage, area coverage, and 
connectivity maintenance. Among them, the two 
well-known problems, i.e., the worst-case and the 
best-case coverage, are defined by Meguerdichian et al. 
[1]. The former quantifies the quality of service (QoS) 
by finding a path with the lowest “observability” among 
all other possible paths through the network from a 
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starting point to a destination. A path with such property 
is called the maximal breach path since it is the one 
which is the most far away from all sensors in the 
network. The best-case coverage of a network, on the 
other hand, finds a path, among others, with the 
maximal observability through the network between two 
end points. Such a path is called the best support path of 
the sensor network. Meguerdichian et al. [1] proposed 
two centralized algorithms for the above problems, and 
the centralized best-case coverage algorithm was later 
extended to a distributed localized algorithm by Li et al. 
[2]. 

In some applications of sensor networks, time and 
energy might be the major consideration for an agent 
who wants to travel through the networks. For example, 
when flying through the field filled with interceptor 
missiles, how can a missile find a path that is hardly to 
be intercepted, as shown in Figure 1. In these cases, line 
paths could be the best choices for the agent. In this 
paper, we will extend the work by Meguerdichian et al. 
[1] and study the coverage problems of straight paths. 

The rest parts of this paper are organized as follows. 
Section 2 is a brief review of related work in the past. 
Section 3 defines the terms and notations used in the 
proposed algorithm, and introduces the formal 
definitions of the best-case and worst-case line coverage 
problems. The algorithm solving the best-case and 
worst-case line coverage problems are proposed in 
section 4 and section 5. Section 6 presents some 
empirical results of the proposed algorithm. The last 
section concludes this paper with discussion of future 
research directions. 

 

sensor 

Figure 1. An illustration of how missile go through 
the interceptor missile field.  
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2. Related Work 
 

Coverage problems in sensor networks have been 
studied by many researchers. Meguerdichian and et al. 
[1] applied the computational geometry theory, Voronoi 
diagram and Delaunay triangulation, on the proposed 
coverage problems. They presented algorithms using 
computational geometry techniques to solve the 
coverage problems. Because the structures of Voronoi 
diagram and Delaunay triangulation are hard to be 
constructed efficiently in a distributed way, the 
algorithms they proposed were centralized algorithms.  

Li and et al. [2] proved the correctness of the above 
algorithms proposed in [1]. They also proved that there 
exist optimum best support paths in the Gabriel graph 
and the relative neighborhood graph of the sensor nodes. 
Hence, a distributed algorithm for finding a best support 
path is also proposed. In addition, Li and et al. [2] 
presented algorithms for finding best support paths with 
the least energy consumption and smallest total length. 

The topology of the sensor networks changes 
continuously over time, due to the instability of some 
sensors or the insertion of new sensors. Huang and 
Richa [3] studied the problem of how to dynamically 
maintain the measures of the best-case coverage and 
worst-case coverage distance. Their algorithms maintain 
a (1+ ε )-approximation on the best-case coverage 
distance and a )2( ε+ -approximation on the 
worst-case coverage distance of the network, for any 
givenε> 0. 

Meguerdichian and et al. [4] proposed an 
exposure-based formulation analyzing the coverage of 
paths in a sensor network. The exposure is an integral 
measure of how well the sensor network can observe on 
a path over a period of time. A solution for finding 
minimal exposure path is developed in this work. They 
formally define exposure and study its properties, and 
then develop an algorithm for exposure calculations in 
sensor networks for finding minimal exposure path. 

 
 

3. Preliminaries 
 
3.1 Sensor Network Model 

In this paper, we assume that sensors are deployed 
inside a square area of the two-dimensional field and 
belonged to an isotropic class. All sensors have identical 
sensitivity and their ability to sense a phenomenon 
decreases as the distance between a sensor and the 
phenomenon increases. Furthermore, we assume that the 
locations of all the sensors are known which can be found 
by either Global Positioning System (GPS), or any other 
location discovery techniques as described in [5]. 
 
3.2 Computational Geometry 

Since Voronoi diagram and Delaunay triangulation [6, 
7, 8] will be utilized in this paper, we need to describe 
some related computational geometry below. 

Assume a sensor network be represented by a set of n 
sites, S, in a two-dimensional field (or plane). A partition 
of the plane is created by assigning every point on the 
plane to its nearest site. All points assigned to a same site, 
p, form the Voronoi region, V(p), which is always convex. 
The edges shared by two Voronoi regions are called 
Voronoi edges and the end points of a Voronoi edge are 
called Voronoi vertices. 

Voronoi edges and Voronoi vertices form the 
Voronoi diagram, V(S), of a sensor network, S. A distinct 
property of Voronoi diagram is that a Voronoi edge must 
be associated with two nearest sites and a Voronoi vertex 
must be associated with at least three nearest sites. In 
addition, we assume that there exist no four sites of S that 
are co-circular, and every Voronoi vertex is exactly of 
degree three. 

The Delaunay triangulation of the network S, denoted 
as D(S), is the dual structure of a Voronoi diagram, which 
is constructed by connecting the sites in S whose Voronoi 
regions are next to each other. The boundary of D(S) 
forms a convex hull1 of the sites. Figure 2 illustrates the 
properties described here, where the Voronoi diagram is 
plotted in solid lines and Delaunay triangulation in dash 
lines. 

 

Figure 2. The Voronoi Diagram and the Delaunay 
triangulation of a set of sites in a two-dimensional 
plane. 

Site 
Voronoi vertex 
Voronoi edge 
Delaunay edge 

 
 
3.3 Problem Formulation 

We first introduce the notations that will be used for 
developing the proposed solution. The sensors are 
deployed in a two-dimensional field and they are 
represented as a set, S, of n sites. Let |xy| denote the 
Euclidean distance between the two sensors nodes, x 
and y. The distance of a point, x, to a set of points, V, 
denoted as dist(x, V), defines the smallest distance from 
x to any point in V. Given two point sets, U and V, the 
distance between U and V, dist(U, V), is defined as 
minxœU,yœV|xy| and the support-distance of U by V, 
support(U, V), is defined as max xœU dist(x,V). Figures 3 
illustrate the definition of dist(x, V) and support(U, V), 
respectively. 
                                                           
1 The smallest convex polygon enclosing the network S. 
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Given a line path, P, the support of P is defined as 
support(P, S) which specifies the smallest observability 
of 

uare area whose boundary is 
par

est 

mum breach, dist(P, S), is called a 

est support line path and the 
ma

 
thms, we will first 

iscuss some important properties between the line path 
and

of a line path 
Given a line path, Py, and the sensor network, S, the 

ance from the 
pat

the points on the path, and the breach of P is defined 
as dist(P, S) which specifies the biggest obervability of 
the points on the path. 

In this paper, we assume that the sensors are 
deployed inside a sq

allel to x or y axis. Let (Xleft, Ytop) denote the left-top 
point of the square area, and (Xright, Ybot) denote the 
button-right point of the square area. For convenience, 
the line paths are assumed to be parallel to x axis and 
denoted as Py, where y specifies its y coordinate. We 
also assume the path starts at Xleft  and ends at Xright. 
For a wireless sensor network, the best support line path 
and maximal breach line path are defined as follows: 

Definition: Best Support Line Path. A line path P that 
has the minimum support, support(P, S), is called a b
support line path. 

Definition: Maximal Breach Line Path. A Line path P 
that has the maxi
maximal breach line path. 

Thus, the line coverage problem for wireless sensor 
networks is to identify the b

ximal breach line path in the networks. 
 

 
 

4. Worst-case line coverage 

Before we propose our algori
d

 the sensor network. 
 
4.1 Distance function 

distance function of Py describes the dist
h to the network. Let fPy(x) denote the distance 

function of Py, and by the definition of section 3, fPy(x) = 
dist ((x,y), S), where x is in the interval [Xleft, Xright]. If 
there is only one sensor in the network, the distance 
function will be a half part of hyperbolic curve. In this 
case, let (x0, y0) be the coordinate of the sensor node. 
Then, fPy(x)=dist((x,y),(x0,y0))= 2

0
2

0 )()( yyxx −+− , 
which is a hyperbolic curve. 

According to the definition , 
breach(Py) is equal to the min

of breach and support
imal value of the distance 

fun

 has the maximal distance 

several sub-paths as shown in Fighre 4. Each 

The breach of a line path is equal to the minimal 
he 

ma

Line Path Algorithm 
. Sort the sensor nodes according to their y 

, sn. 

 
5. Best-case line coverage 

 to find the horizontal 
ath whose support is minimal. Therefore, all possible x 

and y coordinate values between inside the sensor field 
must be evaluated. Fortunately, by Lemma 1, the 

Figure 4: Distance function of a line path. 

ction, fPy(x), and support(Py) is equal to the maximal 
value of fPy(x). Due to the convexity of the distance 

function, the maximal value always occurs at the 
intersection of the path and some Voronoi edge, as 
shown in Lemma 1 bellow. 

Lemma 1. Given a line path and a set of sensor nodes, 
the point on the path which
(support) to the sensors locates on either the end points of 
the path or the intersection of some Voronoi edge and the 
line path. 

Proof. The line path crosses the Voronoi diagram, and it 
is cut into 
sub-path is inside a Voronoi region. Therefore, the 
distance function of this sub-path is also a part of 
hyperbolic curve. Because of the convexity of the 
distance function, the maximal value happens at one of 
the end of the sub-path. Hence, the overall maximal 
value will occur at the end points of the path or the 
intersection of some Voronoi edge and the path. 
 

sensor 
node 

Voronoi 
edge 

 
 
4.2 Algorithm for Worst-case line coverage 

x

fPy(x) 

path 
 

Figure 3. An illustration of dist(x, V) and 
support(U, V) 

value of the distance function of the path, and t
ximal breach line path is the path whose distance 

function has the maximal minimal value. Therefore we 
have the algorithm for worst-case line coverage as 
described below. 
 
Maximal Breach 
1

coordinates, and let the result be s1, …
2. Find the pair (si, si+1) whose difference of y 

coordinates is maximal, and let yi and yi+1 be the y 
 s ,coordinates of si and i+1  respectively. 

3. The y coordinate of the maximal breach line path is 
(yi+yi+1)/2. 
 

 
The best-case line problem is

p

x u 

v 

V
v

V

u x 

Udist 
support 

y 
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oposed 
alg m, the sensor field is first partitioned into 

ptimal y 
coo

g horizontal lines that pass the Voronoi 
s and the orthogonal intersections of 

dges. (as shown 

2. 

rdinate of the line path. 

hor

li g  
AX. 

′ value, YMIN < y′ < YMAX, such 
Dlj(y′) 
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X)) < max(Dli(YMIN), 

opt 
Dli(YMAX), Dlj(YMAX)) 

li(YMIN), Dlj(YMIN)) 

se 3, as in Figure 6*/  

oordinate found by Find-Strip-Best algorithm crosses
e Voronoi edges, the distance values of the 
tersections of the path and Voronoi edges are smaller 

t a segment lk, and Dlk (Yopt) > 

, as shown 

port of a horizontal path happens at the intersection 
of the path and Voronoi edges. Thus, it doesn’t need to 
evaluate every x coordinate. This section describes the 
algorithm finding the best support line path. 

 
5.1 Best support line path algorithm 

We develop a plane sweep algorithm to solve the 
best-case line coverage problem. In the pr

orith
non-overlapped horizontal strips. The o

rdinate in every strip is then computed from the 
bottom strip to the top strip. The algorithm is described 
bellow. 

 
Best Support Line Path Algorithm 
1. Partition the sensor field into horizontal strips 

usin
vertice
Voronoi edges and Delaunay e
in Figure 5) 
From the bottom strip to the top strip, use 
Find-Strip-Best algorithm to find the optimal y 
coordinate in the strip and update the global 
optimal y coo

 

 
In the first step of the algorithm, Voronoi edges are 

cut into segments by the strips. For a given strip, we 
assume that there are m Voronoi edge segments in this 
strip, and let the segments be l1, …, lm. If there is a 

izontal path, Py, in this strip, the maximal value of its 
distance function occurs at the intersection of the path 
and those segments. Let Dli(y) be the distance from the 
intersection of li and Py to the sensors. Because the 
cutting points of the strips are Voronoi vertices and 
orthogonal intersections of Voronoi edges and Delaunay 
edges , Dli(y) is either monotone increasing or monotone 
decreasing with respect to y. Let YMIN and YMAX be 
the bottom and top y coordinate of the strip. If all the 
Dli(y) functions are increasing, the optimal y coordinate 
is equal to YMIN. On the other hand, if all the Dli(y) 
functions are decreasing, the optimal y coordinate is 
equal to YMAX. The Find-Strip-Best algorithm finds the 
optimal y coordinate of a strip as describe bellow. 
 

Find-Strip-Best 
1. if all the Dli(y) functions are monotone increasing  
2.     return YMIN. 
. if all the D (y) functions are monotone decreasin3

4.     return YM
5. Yopt  0 
6. SUPPORTopt  0 

a7. for each p ir of an increasing Dli(y) and a decreasing 
Dlj(y) 

exist an y8. { if there 
that Dli(y′ ) = 

9.   {  if Dli(y′ ) > SUPPORTopt 
    {  ′

11.         Yopt  y′ }       
12.   } /*Case 1, as in Figure 6*/ 
13.    
14.   else if max(Dli(YMAX), Dlj(YMA

 (Dlj YMIN)) 
15.   {  if Dli(YMAX) > SUPPORT

  {   SUPPORTopt max(16.    
17.          Yopt  YMAX } 
18.   } /*Case 2, as in Figure 6*/ 
19.      
20.   else 

ORTopt 21.   {  if Dli (YMIN) > SUPP
22.      {  SUPPORTopt max(D

   Yopt  YMIN }  23.      
24.   } /*Ca
25.   return SUPPORTopt and Yopt 
 

 
 
 

Lemma 2. Inside a strip, as a line path with the Yopt 
c
th

 

in
than or equal to the support value, SUPPORTopt, found 
by Find-Strip-Best. 

Proof. Assume the Yopt found by the algorithm is 
achieved by Dli(y) and Dlj(y) of case 1. The proofs of 
other cases are similar and are omitted here. 
Suppose there exis
SUPPORTopt = Dli (Yopt) = Dlj (Yopt). If Dlk (y) is 
monotone increasing, we can find a y′ coordinate, y′ < 
Yopt, such that Dlk(y′) = Dlj (y′) > SUPPORTopt
in Figure 7(a). On the other hand, if Dlk (y) is monotone 
decreasing, we can find a y′ coordinate, y′> Yopt, such 
that Dlk(y′) = Dli (y′) > SUPPORTopt, as shown in Figure 

Figure 6. An illustration of an increasing Dli (y) and 
a decreasing Dlj (y) 

Dlj(y) 

Dli(y) 

Dli(y) 

Dlj(y) 

y′ YMAX YMAX YMIN YMIN YMIN YMAX 

Dlj(y) 

Dli(y) 

Case 1 Case 2 Case 3 
strip 

Delaunay  
edge Voronoi edge 

Figure 5. The sensor field is partitioned into strips. 
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7(b). Due to this contradiction, the lemma follows.  
 

Based on Lemma 2, we can proof the correctness of 
Find-Strip-Best algorithm. 
 

The

PYopt, is minimal in the strip. 

We evaluate the proposed best support line coverage 
lgorithm and compare it with a grid method. In our 

ndomly deployed into a 
umbers of sensor nodes 

re

orem 1. Given a strip, the Yopt coordinate found by 
Find-Strip-Best algorithm is the optimal y coordinate 
and the support of the path, 

Proof. Assume Yopt found by the algorithm is achieved 
by Dli(y) and Dlj(y) of case 1. By Lemma 2, for any 
other segment lk, Dlk (Yopt) ≦ Dli (Yopt) = Dlj (Yopt) = 
SUPPORTopt. Therefore, SUPPORTopt is the support 
value for PYopt. If y′ ≠ Yopt  and YMIN < y′ < YMAX, 
either Dli (y′) or Dlj(y′) is larger than SUPPORTopt. Thus, 
the support of Py′ is larger than that of Yopt. The proofs 
of other cases are similar and are omitted. 
 

 
 
 
6. Experimental Results 
 

a
experiments, the sensors are ra

00x100 m2 square area. The n1
a  from 50 to 250. In the grid method, the square area 
is divided into 1000x1000 grids, and the support value 
is then calculated approximately on the grid points. 
Figure 8 shows the result of experiment. From the result, 
the proposed optimal algorithm outperforms the grid 
method. 
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7. Conclusion 
 

In this paper, we present the formulations for 
best-case and worst-case line coverage problems in 
wireless sensor networks. Optimal polynomial time 
algorithms using graph theory and computational 
geometry are proposed to solve the problems. The 
distance function of a line path is introduced. With the 
distance function, the support and breach correspond to 
the maximal and minimal values of the function. 

hermore, we prove that the maximal value of the
f 

V ase on that, a plane sweep 
m is proposed to solve the best-case line 

rage problems may be investigated 
 the future, such as finding the maximal breach path 

and
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Conference on Mobile Computing and Networking 
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istance function always occurs at some intersection o
oronoi edges and the path. B
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coverage problem. 
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 best support path in a three-dimensional space. Due 
to the unreliability of sensor nodes, finding best coverage 
path over the sensor networks might also be useful in 
military applications. 
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Figure 7. An illustration of Lemma 2. 
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Figure 8. The support find by the proposed 
algorithm and grid method. 
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