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ABSTRACT 

In present Microsoft Windows operating system, there 
are unofficial approaches to inject code into other 
running processes. We discuss the methods and 
corresponding potential threats in this paper. Malicious 
software may use these approaches to infect authorized 
processes to launch attacks inside the system even under 
the protection of antivirus and firewall software. After 
analyzing these runtime code injections, we proposed 
the mechanism – Detecting the Code Injection Engine 
(DCIE). DCIE is implemented as a loadable 
kernel-mode driver that is able to detect runtime code 
injections, and the maximal overhead caused by DCIE is 
less than 3.26%. The minor overhead makes DCIE 
suitable to be installed on Windows OS or combine with 
other software to increase system security. 
 
1: INTRODUCTION 
 

With the wild spread of virues, trojans, worms, 
malware, and spyware, most people protect their personal 
computer by antivirus and firewall software. However, 
on October 31, 2005, Mark Russinovich revealed the 
rootkit coming from a Sony music CD in his blog [9]. 
This rootkit will be secretly installed into Microsoft 
Windows operating system after inserting a Sony music 
CD into the computer. In fact, it is a kind of Digital 
Rights Management (DRM) software that provides 
protection against unauthorized copies of the CD, but it 
hides its process information and activity from being 
detected. This informs us that malicious software may 
use similar approaches to avoid the protection of 
antivirus software, and even the detection of firewall 
software. 

Through analyzing present firewall software, most 
firewall software has at least two main components. The 
first component is the packet filter which is typically 
implemented as NDIS (Network Driver Interface 
Specification) drivers in order to inspect all inbound and 
outbound packets. According to the access control policy 
defined by user, it will examine the information in each 
packet such as protocol type, source/destination IP 
address, and port number to allow or deny the 
connections of the computer. The other one is the 
application filter which is also implemented as drivers 
running in kernel mode. It will check the authorized 
application list to perform the action when processes try 
to send or receive data. While an unauthorized process 
tries to request the network action, it will block the 
request and then notify the user of the request. After the 
user defining the rule, the application filter then permits 

or denies the action. The above two main components 
actually accomplish most functions to defense against 
external threats. 

However, there still exist potential threats. In 
Windows operating system, it is considered a legitimate 
behavior that a process creates a remote thread in another 
running process. Thus an unauthorized application may 
inject malicious code into an authorized process and then 
execute it to bypass the application filter without causing 
a warning. This kind of attack seems like buffer overflow, 
but it does not require a bug to trigger the injected 
malicious code in the target process. In other words, 
malware, spyware, and rootkits can launch the attack 
inside the system to send data or open a backdoor silently 
even under the protection of firewall software. 

In this paper, we discuss the methods how to inject 
code into running processes and corresponding potential 
threats. By analyzing these methods, we propose a 
detecting mechanism called Detecting the Code Injection 
Engine (DCIE) on the Microsoft Windows operating 
system. DCIE is implemented as a loadable kernel-mode 
driver that is able to dynamically monitor every process 
in the system and provide users with more precise 
information about the suspected injecting behavior. 

The remainder of the paper is organized as follows. 
Section 2 describes the related research. Section 3 
discusses runtime code injection and potential threats. 
Section 4 presents the DCIE mechanism. Section 5 
presents experimental evaluation results. Section 6 
summarizes the paper and discusses future work. 
 
2: RELATED WORK 
 

Intrusion detection systems developed to detect 
external threats have been quite successful. Although it is 
very little similar work for internal threats, there is still 
less work related to the area of internal threat detection. 
Internal threats represent a higher possibility of 
compromising the system since they are authorized to 
obtain system information and access the file system 
directly. Therefore, system call information is also 
heavily used to detect internal threats. 

The work in [11] built profiles on the system call 
traces by monitoring file access and process activity. 
Then they used these profiles to detect insider 
misbehavior and buffer overflow attacks. There is 
another theory presented by Chinchani [4] et al. First, 
they described a model which records several aspects of 
insider threat, and afterward showed threat assessment to 
reveal possible attack strategies of an insider. In another 
work proposed by Liu [8] et al, they applied techniques 
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from external threat research to insider threats. The goal 
of their research is to empirically test the approaches of 
detecting external threat on malicious insider behavior. 

However, most works about internal threat detection 
focus on Linux OS. We found an approach [14] that is 
implemented as a loadable Windows NT kernel module 
and is capable of selectively intercepting process creation 
requests. They proposed the execution management 
utility which is designed to prevent unknown software 
from executing without the approval of system 
administrator. Weidong et al. proposed another host 
based system, BINDER [16], to detect a large class of 
unknown malware. Their approach handled the problem 
of automated detection of break-ins caused by unknown 
malware by infer user intent. They correlated outbound 
connections with user-driven input at the process level 
under the assumption that user intent is implied by 
user-driven input. 
 
3: RUNTIME CODE INJECTION 
 

In this section, we present two methods how a process 
injects and executes codes in another process, and discuss 
the corresponding potential threats. 
 
3.1: DLL INJECTION 
 

This method is well documented in the article "Load 
Your 32-bit DLL into Another Process's Address Space 
Using INJLIB" by Jeffrey Richter [7]. Due to limited 
space, we only introduce the concept of this method in 
this section. 

The main idea is to write the injected code as a 
Dynamic-Link Library (DLL) and force the target 
process to load the DLL. However, we can not alter the 
execution path of the existing threads in the target 
process. For this reason, we have to create a new thread 
in the target process and set the execution path of the 
thread to load the DLL. 

Figure 1(a) illustrates the flowchart of the DLL 
injection. The first step is optional. We have to enable 
the debug security privilege if we want to inject a DLL 
into system processes. Then we retrieve the process 
handle of the target process for the following steps. In 
the third and fourth steps, we allocate memory in the 
target process and write the full path name of the DLL 
in the allocated memory. Finally, we create a remote 
thread in the target process and pass the address of 
LoadLibrary API as the thread routine. As a result, the 
new thread created in the fifth step will start to map the 
DLL into the address space of the target process. 
3.2: BINARY CODE INJECTION 
 

Another approach is similar to DLL injection. In 
binary code injection, we set the remote address of the 
injected binary code segment as the thread routine and 
create a remote thread to execute the injected binary 

code. Figure 1(b) illustrates the flowchart of binary code 
injection. Notice that this method injects into the target 
process without an additional DLL stored in the system. 
By considering the above steps, this method seems 
easier than DLL injection. However, the key point is the 
construction of the binary code. 

The injected binary code can not be initialized as a 
DLL mapped into the address space of the target process. 
Basically, the binary code can be implemented as a 
function in the malicious process, but there are still 
problems. First of all, the binary code uses absolute 
addresses to reference variables or call functions, but 
these are the actual addresses in the address space of the 
malicious process. That is to say, i.e., the injected binary 
code can not retrieve the same data or call the same 
functions at these addresses in the target process. It 
would be less trouble to combine all subroutines into a 
large function unless you want to inject each subroutine 
and pass their remote addresses to the injected binary 
code. Secondly, the binary code is relocated in the 
malicious process. The target process will not relocate 
again the injected binary code. Mostly, we will crash the 
target process when we create a remote thread to 
execute the injected binary code. There are more 
implementation considerations and coding suggestions 
proposed by Robert Kuster [13]. 

With the exception of Robert Kuster’s method, we 
also can use inline assembly to construct the binary code. 
Although this is much complicated to implement, we do 
not need to concern about the relocation of the injected 
binary code. Furthermore, the binary code can be much 
more under control and reliable if we use assembly 
language to implement the whole malicious process. 
This can refer to the rattle’s document [12]. 

In a nutshell, binary code injection is much more 
complicated and riskier than DLL injection. On the 
other hand, it provides a flexibility to inject without an 
additional DLL. 
 
3.3: POTENTIAL THREATS 
 

Most firewall software for Windows OS allows 
outbound network communication according to the 
authorized application list. However, an unauthorized 
process may runtime inject codes into an authorized 
process to bypass the detection from firewall software. 
We list the potential threats as follows: 

1. After injecting the DLL into an authorized 
process, the unauthorized process creates a 
remote thread to load the injected DLL. When the 
injected DLL initializes, it immediately connects 
to the attacker’s computer. 

2. The injected DLL does not connect out 
immediately. It only hooks the connect API to 
replace the original destination address with the 
IP address of the attacker’s computer. Instead of 

- 863 -



 
me Code Injection 
 
 

relocatable piece of machine co
payload in the exploitation of a software bug. 

hookin
debug
relatio
progra
and th
source
offere
functio
inj
spe

4: DETECTING THE CODE INJECTION 
ENGINE (DCIE) 
 

Having discussing the runtime process injections and 
noticed the corresponding potential threats, we introduce 
our mechanism – Detecting the Code Injection Engine 
(DCIE). 
 
4.1: HOOKING SYSTEM CALLS 
 

According to the analysis of runtime code injections, 
we obtained that the unauthorized processes must call 
several critical APIs to complete the injection. These 
critical APIs are provided by Win32 subsystem. We must 
notice that the APIs provided by subsystem DLLs do not 
perform the functionalities, but validate parameters, 
update subsystem data structures into native data 

finally forward each request to 
corresponding native APIs provided by ntdll.dll. In other 
words, the APIs provided by subsystem DLLs are only 
the w
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Figure 1.  Runti

creating a new network connection, this threat 
only alters the destination address of the 
connecting socket and redirects it to the attacker’s 
computer. 

3. The injected DLL hooks the accept API to hijack 
the connecting socket by checking its source 
address coming from the attacker’s computer 
instead of connecting out. This threat does not try 
to bypass the outbound detection, and it also does 
not listen to any port that would be caught by the 
packet filter of firewall software. In brief, this 
potential threat tries to hide in the injected 
authorized server application and hijack the 
connecting socket. 

4. The last threat use binary code injection to infect 
authorized applications without an external DLL. 
We use assembly language to implement the 
injected code as the shellcode [2] which is a 

de used as the structures, and 

However, in this threat, the authorized process 
does not need a bug to be overflowed. We 
directly create a remote thread to execute the 
injected shellcode. 
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to achieve global system-wide hook just like we 
g Win32 APIs. However, native APIs provided by 
ll are similar to 

nts to lower level system functions and the main job 
of native APIs is to dispatch the requests from 
subsystems to corresponding system calls provided by 
ntoskrnl.exe. Therefore, it is possible that the process 
running in the Win32 subsystem may directly call system 
calls by simulating native APIs, although it is a hard 
work fighting with assembly language. To avoid these 
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Most important of all, once we hook a system call, it is a 
system-wide hook even applies to device drivers. All 
requests to the system call will be intercepted by our 
hook. 

Owing to monitor the entire OS and avoid the 
situation that processes 

e decided to hook sys
may directly invoke system calls, 
tem calls in kernel mode instead 
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w
of APIs in user mode. In Windows OS, System Service 
Table (SST) [15] is an array in kernel mode which stores 
entry points of system calls. In other words, we can 
replace the entry point of system call with the address of 

ur routio
After analyzing runtime code injection

hat the injecting procedure can be divt
st ges. In the first stage, an unauthorized process must 
retrieve the handle of the target process via OpenProcess 
or CreateProcess APIs. Then it calls VirtualAllocex to 
allocate memory in the second stage. In the third stage, it 
subsequently calls WriteProcessMemory to write the full 
DLL name or binary code segment into the allocated 
memory. Finally, in the fourth stage, it calls 
CreateRemoteThread to force the target process to load 
the DLL or execute the injected binary code. As a result, 
we have to hook the corresponding system call of the 
API in each stage, and check its arguments stage by 
stage. 

However, there is an exception in the first stage. An 
unauthorized process may call DuplicateHandle API to 
duplicate the handle of the target process to another 
unauthorized process. Although the first unauthorized 
process will be examined in the following stages, the 
second unauthorized process will not since it does not 
call OpenProcess or CreateProcess APIs. Therefore, we 
decided to hook the corresponding system calls of the 
following three stages. We replaced the entry point 
addresses of ZwAllocateVirtualMemory, 
ZwWriteVirtualMemory, and ZwCreateThread by 
checking the arguments of these three system calls to 
detect the behavior of runtime code injections. 
 
4.2: IMPLEMENTATION 
 

We divide DCIE into two parts. In the first part, we 
check the arguments of ZwAllocateVirtualMemory and 
ZwWriteVirtualMemory. These two system calls are 
used to allocate and write virtual memory in the user 
mode address range. However, it is quite frequent that a 
process calls these two system calls to operate its 
memory. As a result, it will significantly degrade the 
overall system performance if we check each request to 
these two system calls. The important point to note is that 
we only focus the operations between different 
processes. 

In runtime process injections, an unauthorized 
process must allocate memory in the target process to 
write the full DLL path name or the binary code. 
Therefore, we can call PsGetCurrentProcessId, kernel 
API, to retrieve the process handle of the current process 
in the hooked system calls. Then we compare it with the 
process handle of the target process to recognize whether 

the system call request belongs to inter-process operation 
or not. If we find an inter-process operation in 
ZwAllocateVirtualMemory system call, we record the 
handle of the target process and the base address of 
allocated memory in the suspect list for another check. If 
we find an inter-process operation in 
ZwWri

dle of the target process and the writing base address 
in the suspect list. Once these two arguments match the 
record in the suspect list, we move the record into the 
danger list for the second part. 

In the second part, we check the arguments of 
ZwCreateThread. We also only focus the system call 
requests between different processes. DLL injection will 
create a remote thread in the target process to load the 
DLL in the final step. Therefore, it must set the start 
address of the creating thread as the address of 
LoadLibraryA API in kernel32.dll. The same observation 
applies to binary code injection that it will create a 
remote thread with the start address which is all
th
that the system call request b
o

eads. 
In ZwCreateThread system call, the ThreadContext 

parameter stores the initial processor context for the 
thread. The thread has two start addresses. One for kernel 
thread is stored in structure member Eip, and one for 
user-mode thread is stored in structure member Eax. 
Since the addresses of LoadLibraryA API and the 
allocated memory are in user mode, we only have to 
examine ThreadContext->Eax. Once the 
ThreadContext->Eax is set as the address of 
LoadLibrar

the behavior of DLL injection. If it matches the 
records in the danger list, DCIE will immediately inform 
user the behavior of binary code injection. In addition, if 
the target process terminates, the corresponding records 
in the suspect and danger list will be removed. 
 
5: EVALUATION 
 

In this section, we first evaluate the performance of 
DCIE. Then we analyze overhead caused by DCIE. 
Finally, we compare DCIE with other schemes. 
 
5.1: PERFORMANCE 
 

We used PCMark05 [5] to evaluate the performance 
of DCIE installed on Windows XP SP2 and measured 
average benchmarks. The CPU benchmarks were run on 
a desktop PC with an Intel 2.0

MB of RAM. 
Table 1 shows the results of CPU benchmark in 

single thread test and Table 2 shows the results of CPU 
benchmark in multithread test. Compared with the 
benchmarks of the normal desktop PC, the maximal 
overhead caused by DCIE is less than 3.26%. These 
benchmarks show that DCIE is suitable to be installed 
on Windows OS to detect suspected code injections. 
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 Benchmark N Overhead (%)  ormal DCIE
 File Compression (MB/s) 3.029 2.988 1.35  

 File Decompression (MB/s) 7

4

3 0.23  

14.4  

137

5.528 75.25 0.37  

.074 43.152 2.09   File Encryption (MB/s) 
 File Decryption (MB/s) 
 Image Decompression (MPixels/s) 
 Audio Compression (KB/s) 

4

8.634 38.547

66 14.105 2.50 

1.476 1368.955 0.18  

Table 1. Single Thre
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Due to hook different system calls, each scheme 
detects and blocks runtime code injection in the 
different stage. We list the analysis of three schemes as 
the third feature since it deeply affects the fourth feature. 
The fourth feature presents the ability of identifying the 
method of runtime code injection. Since ZoneAlarm 
hoo

s LoadLibrary 
PI of kernel32.dll in user mode to detect DLL 

, we hook the last three stages and 
heck the last system call. Therefore, DCIE can identify 

the
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 Survivability 
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ks system calls in the first stage, it can not 
distinguish the difference between DLL injection and 
binary code injection. Outpost hooks system call in the 
third stage. Once a process writes data into another 
process more than 16 bytes, Outpost will recognizes the 
action as manipulation and immediately terminates the 
injected process. Moreover, Outpost hook
A
injection. As to DCIE
c

 methods of runtime code injections. 
In the last feature, only ZoneAlarm and DCIE can 

detect all potential threats. There is an exception to 
Outpost. It permits the action that a process can creates a 
child process and then writes data into the child process. 
As a result, an unauthorized process can create an 
authorized process as its child process and then inject 
code into it to bypass the detection. In contrast, 
ZoneAlarm and DCIE can detect all potential threats. 
However, ZoneAlarm can not identify the methods of 
runtime code injections as DCIE. 
 
6: CONCLUSIONS AND FUTURE WORK 
 

In this paper, we introduce and discuss the potential 
threats caused by runtime code injections. By analyzing 
runtime code injections, we proposed the mechanism – 
Detecting the Code Injection Engine (DCIE) on 
Microsoft Windows Operation system.  

DCIE is implemented as a loadable kernel-mode 
driver that is able to monitor every process in the system, 
and it does not impose too much overhead (less than 
3.26%) to system. We believe that DCIE is suitable to be 
installed into Windows OS to provide users with more 
precise information about the suspected injecting 
behavior. Furthermore, DCIE also can be used to protect 
the running process in the authorized application list. 

Although we can detect runtime code injections, we 
do not understand the intent of the injected DLL or 
binary code. In the future, we will improve our system 
in two aspects. In the first aspect, we will enhance DCIE 
to recognize the intent of the injected code or directly 
combine DCIE with antivirus scan engine. However, 
there may be conflicting situations when there is more 
than one application that uses the same concept to detect 
runtime code injections. It is another future work to 
develop a coordinate mechanism to handle situations that 
different processes hook the same system calls. 
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