
Detecting the Code Injection by Hooking System Calls
in Windows Kernel Mode

1Hung-Min Sun, 2Yu-Tung Tseng, 3Yue-Hsun Lin

123Dept. of Computer Science, National Tsing Hua University, Taiwan
1hmsun@cs.nthu.edu.tw , 23 {se7en, tenma}@is.cs.nthu.edu.tw

ABSTRACT

In present Microsoft Windows operating system, there
are unofficial approaches to inject code into other
running processes. We discuss the methods and
corresponding potential threats in this paper. Malicious
software may use these approaches to infect authorized
processes to launch attacks inside the system even under
the protection of antivirus and firewall software. After
analyzing these runtime code injections, we proposed
the mechanism – Detecting the Code Injection Engine
(DCIE). DCIE is implemented as a loadable
kernel-mode driver that is able to detect runtime code
injections, and the maximal overhead caused by DCIE is
less than 3.26%. The minor overhead makes DCIE
suitable to be installed on Windows OS or combine with
other software to increase system security.

1: INTRODUCTION

With the wild spread of virues, trojans, worms,
malware, and spyware, most people protect their personal
computer by antivirus and firewall software. However,
on October 31, 2005, Mark Russinovich revealed the
rootkit coming from a Sony music CD in his blog [9].
This rootkit will be secretly installed into Microsoft
Windows operating system after inserting a Sony music
CD into the computer. In fact, it is a kind of Digital
Rights Management (DRM) software that provides
protection against unauthorized copies of the CD, but it
hides its process information and activity from being
detected. This informs us that malicious software may
use similar approaches to avoid the protection of
antivirus software, and even the detection of firewall
software.

Through analyzing present firewall software, most
firewall software has at least two main components. The
first component is the packet filter which is typically
implemented as NDIS (Network Driver Interface
Specification) drivers in order to inspect all inbound and
outbound packets. According to the access control policy
defined by user, it will examine the information in each
packet such as protocol type, source/destination IP
address, and port number to allow or deny the
connections of the computer. The other one is the
application filter which is also implemented as drivers
running in kernel mode. It will check the authorized
application list to perform the action when processes try
to send or receive data. While an unauthorized process
tries to request the network action, it will block the
request and then notify the user of the request. After the
user defining the rule, the application filter then permits

or denies the action. The above two main components
actually accomplish most functions to defense against
external threats.

However, there still exist potential threats. In
Windows operating system, it is considered a legitimate
behavior that a process creates a remote thread in another
running process. Thus an unauthorized application may
inject malicious code into an authorized process and then
execute it to bypass the application filter without causing
a warning. This kind of attack seems like buffer overflow,
but it does not require a bug to trigger the injected
malicious code in the target process. In other words,
malware, spyware, and rootkits can launch the attack
inside the system to send data or open a backdoor silently
even under the protection of firewall software.

In this paper, we discuss the methods how to inject
code into running processes and corresponding potential
threats. By analyzing these methods, we propose a
detecting mechanism called Detecting the Code Injection
Engine (DCIE) on the Microsoft Windows operating
system. DCIE is implemented as a loadable kernel-mode
driver that is able to dynamically monitor every process
in the system and provide users with more precise
information about the suspected injecting behavior.

The remainder of the paper is organized as follows.
Section 2 describes the related research. Section 3
discusses runtime code injection and potential threats.
Section 4 presents the DCIE mechanism. Section 5
presents experimental evaluation results. Section 6
summarizes the paper and discusses future work.

2: RELATED WORK

Intrusion detection systems developed to detect
external threats have been quite successful. Although it is
very little similar work for internal threats, there is still
less work related to the area of internal threat detection.
Internal threats represent a higher possibility of
compromising the system since they are authorized to
obtain system information and access the file system
directly. Therefore, system call information is also
heavily used to detect internal threats.

The work in [11] built profiles on the system call
traces by monitoring file access and process activity.
Then they used these profiles to detect insider
misbehavior and buffer overflow attacks. There is
another theory presented by Chinchani [4] et al. First,
they described a model which records several aspects of
insider threat, and afterward showed threat assessment to
reveal possible attack strategies of an insider. In another
work proposed by Liu [8] et al, they applied techniques

- 862 -

from external threat research to insider threats. The goal
of their research is to empirically test the approaches of
detecting external threat on malicious insider behavior.

However, most works about internal threat detection
focus on Linux OS. We found an approach [14] that is
implemented as a loadable Windows NT kernel module
and is capable of selectively intercepting process creation
requests. They proposed the execution management
utility which is designed to prevent unknown software
from executing without the approval of system
administrator. Weidong et al. proposed another host
based system, BINDER [16], to detect a large class of
unknown malware. Their approach handled the problem
of automated detection of break-ins caused by unknown
malware by infer user intent. They correlated outbound
connections with user-driven input at the process level
under the assumption that user intent is implied by
user-driven input.

3: RUNTIME CODE INJECTION

In this section, we present two methods how a process
injects and executes codes in another process, and discuss
the corresponding potential threats.

3.1: DLL INJECTION

This method is well documented in the article "Load
Your 32-bit DLL into Another Process's Address Space
Using INJLIB" by Jeffrey Richter [7]. Due to limited
space, we only introduce the concept of this method in
this section.

The main idea is to write the injected code as a
Dynamic-Link Library (DLL) and force the target
process to load the DLL. However, we can not alter the
execution path of the existing threads in the target
process. For this reason, we have to create a new thread
in the target process and set the execution path of the
thread to load the DLL.

Figure 1(a) illustrates the flowchart of the DLL
injection. The first step is optional. We have to enable
the debug security privilege if we want to inject a DLL
into system processes. Then we retrieve the process
handle of the target process for the following steps. In
the third and fourth steps, we allocate memory in the
target process and write the full path name of the DLL
in the allocated memory. Finally, we create a remote
thread in the target process and pass the address of
LoadLibrary API as the thread routine. As a result, the
new thread created in the fifth step will start to map the
DLL into the address space of the target process.
3.2: BINARY CODE INJECTION

Another approach is similar to DLL injection. In
binary code injection, we set the remote address of the
injected binary code segment as the thread routine and
create a remote thread to execute the injected binary

code. Figure 1(b) illustrates the flowchart of binary code
injection. Notice that this method injects into the target
process without an additional DLL stored in the system.
By considering the above steps, this method seems
easier than DLL injection. However, the key point is the
construction of the binary code.

The injected binary code can not be initialized as a
DLL mapped into the address space of the target process.
Basically, the binary code can be implemented as a
function in the malicious process, but there are still
problems. First of all, the binary code uses absolute
addresses to reference variables or call functions, but
these are the actual addresses in the address space of the
malicious process. That is to say, i.e., the injected binary
code can not retrieve the same data or call the same
functions at these addresses in the target process. It
would be less trouble to combine all subroutines into a
large function unless you want to inject each subroutine
and pass their remote addresses to the injected binary
code. Secondly, the binary code is relocated in the
malicious process. The target process will not relocate
again the injected binary code. Mostly, we will crash the
target process when we create a remote thread to
execute the injected binary code. There are more
implementation considerations and coding suggestions
proposed by Robert Kuster [13].

With the exception of Robert Kuster’s method, we
also can use inline assembly to construct the binary code.
Although this is much complicated to implement, we do
not need to concern about the relocation of the injected
binary code. Furthermore, the binary code can be much
more under control and reliable if we use assembly
language to implement the whole malicious process.
This can refer to the rattle’s document [12].

In a nutshell, binary code injection is much more
complicated and riskier than DLL injection. On the
other hand, it provides a flexibility to inject without an
additional DLL.

3.3: POTENTIAL THREATS

Most firewall software for Windows OS allows
outbound network communication according to the
authorized application list. However, an unauthorized
process may runtime inject codes into an authorized
process to bypass the detection from firewall software.
We list the potential threats as follows:

1. After injecting the DLL into an authorized
process, the unauthorized process creates a
remote thread to load the injected DLL. When the
injected DLL initializes, it immediately connects
to the attacker’s computer.

2. The injected DLL does not connect out
immediately. It only hooks the connect API to
replace the original destination address with the
IP address of the attacker’s computer. Instead of

- 863 -

me Code Injection

relocatable piece of machine co
payload in the exploitation of a software bug.

hookin
debug
relatio
progra
and th
source
offere
functio
inj
spe

4: DETECTING THE CODE INJECTION
ENGINE (DCIE)

Having discussing the runtime process injections and
noticed the corresponding potential threats, we introduce
our mechanism – Detecting the Code Injection Engine
(DCIE).

4.1: HOOKING SYSTEM CALLS

According to the analysis of runtime code injections,
we obtained that the unauthorized processes must call
several critical APIs to complete the injection. These
critical APIs are provided by Win32 subsystem. We must
notice that the APIs provided by subsystem DLLs do not
perform the functionalities, but validate parameters,
update subsystem data structures into native data

finally forward each request to
corresponding native APIs provided by ntdll.dll. In other
words, the APIs provided by subsystem DLLs are only
the w
Windo

As
APIs,
hooks
APIs
hookin
ntdll.d Win32 APIs provided by
subsystem DLLs. Both they are wrappers of the entry
poi

situations, we have to hook system calls in kernel mode.

Figure 1. Runti

creating a new network connection, this threat
only alters the destination address of the
connecting socket and redirects it to the attacker’s
computer.

3. The injected DLL hooks the accept API to hijack
the connecting socket by checking its source
address coming from the attacker’s computer
instead of connecting out. This threat does not try
to bypass the outbound detection, and it also does
not listen to any port that would be caught by the
packet filter of firewall software. In brief, this
potential threat tries to hide in the injected
authorized server application and hijack the
connecting socket.

4. The last threat use binary code injection to infect
authorized applications without an external DLL.
We use assembly language to implement the
injected code as the shellcode [2] which is a

de used as the structures, and

However, in this threat, the authorized process
does not need a bug to be overflowed. We
directly create a remote thread to execute the
injected shellcode.

In the second and the third threat, we use API

g [10] [6].[6] It was originally developed for the
ging purpose to monitor activities and
nships of API functions in binary executable
ms, especially components of operating system
ird party software that can not access the related
 codes. It also applied to extend the originally
d functionalities by intercept and substitute API
ns. In other words, we can combine runtime code

ection and API hooking to alter program execution for
cific needs.

rappers of native APIs in the lower level of
ws OS.
 a result, the process which directly calls native
running in the Win32 subsystem, can skip the

 to Win32 APIs. Of course, we can hook native
to achieve global system-wide hook just like we
g Win32 APIs. However, native APIs provided by
ll are similar to

nts to lower level system functions and the main job
of native APIs is to dispatch the requests from
subsystems to corresponding system calls provided by
ntoskrnl.exe. Therefore, it is possible that the process
running in the Win32 subsystem may directly call system
calls by simulating native APIs, although it is a hard
work fighting with assembly language. To avoid these

AdjusttokenPrivileges()

OpenProcess() or
CreateProcess()

VirtualAllocEx()

WriteProcessMemory()

CreateRemoteThread()

Unauthorized Process

AdjusttokenPrivileges()

OpenProcess() or
CreateProcess()

VirtualAllocEx()

WriteProcessMemory()

CreateRemoteThread()

Unauthorized Process

Target Process

Inject.dll (in the disk)

“C:\Inject.dll”

LoadLibrary()

Inject.dll

(a) DLL Injection

Target Process

Binary Code
Segment

Binary Code
Segment

(b) Binary Code Injection

- 864 -

Most important of all, once we hook a system call, it is a
system-wide hook even applies to device drivers. All
requests to the system call will be intercepted by our
hook.

Owing to monitor the entire OS and avoid the
situation that processes

e decided to hook sys
may directly invoke system calls,
tem calls in kernel mode instead

ne to hook system call and check its arguments.
s, we obtained
ided into four

a

teVirtualMemory system call, we compare the
han

ocated in
e previous step. In other words, if we have recognized

elongs to inter-process
peration, then we check the start address of the creating

thr

yA API, DCIE will immediately inform users
of

GHz Celeron CPU and
448

w
of APIs in user mode. In Windows OS, System Service
Table (SST) [15] is an array in kernel mode which stores
entry points of system calls. In other words, we can
replace the entry point of system call with the address of

ur routio
After analyzing runtime code injection

hat the injecting procedure can be divt
st ges. In the first stage, an unauthorized process must
retrieve the handle of the target process via OpenProcess
or CreateProcess APIs. Then it calls VirtualAllocex to
allocate memory in the second stage. In the third stage, it
subsequently calls WriteProcessMemory to write the full
DLL name or binary code segment into the allocated
memory. Finally, in the fourth stage, it calls
CreateRemoteThread to force the target process to load
the DLL or execute the injected binary code. As a result,
we have to hook the corresponding system call of the
API in each stage, and check its arguments stage by
stage.

However, there is an exception in the first stage. An
unauthorized process may call DuplicateHandle API to
duplicate the handle of the target process to another
unauthorized process. Although the first unauthorized
process will be examined in the following stages, the
second unauthorized process will not since it does not
call OpenProcess or CreateProcess APIs. Therefore, we
decided to hook the corresponding system calls of the
following three stages. We replaced the entry point
addresses of ZwAllocateVirtualMemory,
ZwWriteVirtualMemory, and ZwCreateThread by
checking the arguments of these three system calls to
detect the behavior of runtime code injections.

4.2: IMPLEMENTATION

We divide DCIE into two parts. In the first part, we
check the arguments of ZwAllocateVirtualMemory and
ZwWriteVirtualMemory. These two system calls are
used to allocate and write virtual memory in the user
mode address range. However, it is quite frequent that a
process calls these two system calls to operate its
memory. As a result, it will significantly degrade the
overall system performance if we check each request to
these two system calls. The important point to note is that
we only focus the operations between different
processes.

In runtime process injections, an unauthorized
process must allocate memory in the target process to
write the full DLL path name or the binary code.
Therefore, we can call PsGetCurrentProcessId, kernel
API, to retrieve the process handle of the current process
in the hooked system calls. Then we compare it with the
process handle of the target process to recognize whether

the system call request belongs to inter-process operation
or not. If we find an inter-process operation in
ZwAllocateVirtualMemory system call, we record the
handle of the target process and the base address of
allocated memory in the suspect list for another check. If
we find an inter-process operation in
ZwWri

dle of the target process and the writing base address
in the suspect list. Once these two arguments match the
record in the suspect list, we move the record into the
danger list for the second part.

In the second part, we check the arguments of
ZwCreateThread. We also only focus the system call
requests between different processes. DLL injection will
create a remote thread in the target process to load the
DLL in the final step. Therefore, it must set the start
address of the creating thread as the address of
LoadLibraryA API in kernel32.dll. The same observation
applies to binary code injection that it will create a
remote thread with the start address which is all
th
that the system call request b
o

eads.
In ZwCreateThread system call, the ThreadContext

parameter stores the initial processor context for the
thread. The thread has two start addresses. One for kernel
thread is stored in structure member Eip, and one for
user-mode thread is stored in structure member Eax.
Since the addresses of LoadLibraryA API and the
allocated memory are in user mode, we only have to
examine ThreadContext->Eax. Once the
ThreadContext->Eax is set as the address of
LoadLibrar

the behavior of DLL injection. If it matches the
records in the danger list, DCIE will immediately inform
user the behavior of binary code injection. In addition, if
the target process terminates, the corresponding records
in the suspect and danger list will be removed.

5: EVALUATION

In this section, we first evaluate the performance of
DCIE. Then we analyze overhead caused by DCIE.
Finally, we compare DCIE with other schemes.

5.1: PERFORMANCE

We used PCMark05 [5] to evaluate the performance
of DCIE installed on Windows XP SP2 and measured
average benchmarks. The CPU benchmarks were run on
a desktop PC with an Intel 2.0

MB of RAM.
Table 1 shows the results of CPU benchmark in

single thread test and Table 2 shows the results of CPU
benchmark in multithread test. Compared with the
benchmarks of the normal desktop PC, the maximal
overhead caused by DCIE is less than 3.26%. These
benchmarks show that DCIE is suitable to be installed
on Windows OS to detect suspected code injections.

- 865 -

 Benchmark N Overhead (%) ormal DCIE
 File Compression (MB/s) 3.029 2.988 1.35

 File Decompression (MB/s) 7

4

3 0.23

14.4

137

5.528 75.25 0.37

.074 43.152 2.09 File Encryption (MB/s)
 File Decryption (MB/s)
 Image Decompression (MPixels/s)
 Audio Compression (KB/s)

4

8.634 38.547

66 14.105 2.50

1.476 1368.955 0.18

Table 1. Single Thre

 Benchmark

ad

N

 Performance Test

ormal DCIE Overhead (%)

 File Compression (MB/s) 1.561 1.544 1.09

 File Encryption (MB/s)
 File Decompression (MB/s)
 File Decryption (MB/s)

2

1

 Image Decompression (MPixels/s) 3.612 3.593 0.53
 Audio Comp 32

1.845 21.781 0.29

9.155 19.061 0.49

9.552 9.241 3.26

ression (KB/s) 331.738 6.962 1.44
Table 2. Multithread P mance T

es st E

erfor est

Featur Outpo ZoneAlarm DCI

Number of hooked system calls 1 2 3

Number of monitoring stages

 threats

Detecting all p s Yes

Ability of identifying injection methods Yes No Yes

1 1 3

The stage of blocking 3rd 1st 4th

otential threats No Ye

Table 3. Comparisons her Syst

5.2: OVERHEAD A

In order o s in the OS,
DCIE hooks t l mode to detect
suspected cod is quite frequent
that a process DCIE
will not inc r erall system
performance a only focuses

e operations between different pro
ost too much CPU time to check parameters of the

hooked system calls.
In addition, it is n o

inject code into a n.
Although there are sit LL
into other processes t the
hooked APIs, it is rar ode
into other processes. ve
many chances to

5.3: Comparisons

ther schemes, we
plemented the proof of concept codes to represent the

potential threats described in the section 3.3. The proof

ncept co i ion and binary code
on to infect authorize cesses s web
er, ftp cl stant m e software and server
ations. W d comm l firewal oftware to
if they tect ru code injections and
e protec or the ing process on the
ized ap list. In xperiments, there are
ewall Outpo and Zone [17],

code injections. We compare DCIE
with these two firewall software and list the results in

erin t and nd feature, it is
obv s that the ecting mechanisms of these three
sch es are quite different. We used SDTrestore [3] to
det ine which sy em calls are hooked by Outpost
and Zone m. Outpost hooks
Zw teVritualM ry which alled in the third
stage of runtime code injecti oneAlarm hooks
Zw nProcess, ZwCreateProcess, and

which are called in the first stage.
These two firewalls only monitor the specific stage of
run

 with Ot ems

NALYSIS

 t monitor all running processe
hree system calls in kerne
e injections. Although it
allocates its memory to store data,

u significant degradation to ov
fter installed it. Since DCIE

th
c

cesses, it will not can detect runtime

ot common that a process has t
nother process for its executio

uations that a process injects D
o extend the functionalities of
e that a process inject binary c
 Therefore, DCIE does not ha

 incur system overhead.

In order to compare with o

im

of co
injecti

des use DLL nject
d pro uch as

brows ients, in essag
applic
check

e teste
can de

ercia
ntime

l s

provid tion f runn
author
two fir

plication
software,

 our e
st [1] Alarm

Table 3.
nsidCo

iou
g th firse

det
 s coe

em
erm st

Alar
Wri emo is c

on. Z
Ope

ZwCreateProcessEx

time code injection. On the contrary, DCIE hooks
ZwAllocateVirtualMemory, ZwWriteVirtualMemory,
and ZwCreateThread to monitor the last three stages.

- 866 -

Due to hook different system calls, each scheme
detects and blocks runtime code injection in the
different stage. We list the analysis of three schemes as
the third feature since it deeply affects the fourth feature.
The fourth feature presents the ability of identifying the
method of runtime code injection. Since ZoneAlarm
hoo

s LoadLibrary
PI of kernel32.dll in user mode to detect DLL

, we hook the last three stages and
heck the last system call. Therefore, DCIE can identify

the

 Taiwan, under

con

Dependable Systems and Networks, 2005. DSN 2005.

Systems,
Man and Cybernetics Society, pp. 45-52, 2003.

Infection to Bypass Windows

s/winspy.asp
4] Schmid, M., Hill, F., Ghosh, A. K., and Bloch, J. T.,

execution of unauthorized Win32
 Survivability

. DISCEX '01.

ton:

[17]

jsp

ks system calls in the first stage, it can not
distinguish the difference between DLL injection and
binary code injection. Outpost hooks system call in the
third stage. Once a process writes data into another
process more than 16 bytes, Outpost will recognizes the
action as manipulation and immediately terminates the
injected process. Moreover, Outpost hook
A
injection. As to DCIE
c

 methods of runtime code injections.
In the last feature, only ZoneAlarm and DCIE can

detect all potential threats. There is an exception to
Outpost. It permits the action that a process can creates a
child process and then writes data into the child process.
As a result, an unauthorized process can create an
authorized process as its child process and then inject
code into it to bypass the detection. In contrast,
ZoneAlarm and DCIE can detect all potential threats.
However, ZoneAlarm can not identify the methods of
runtime code injections as DCIE.

6: CONCLUSIONS AND FUTURE WORK

In this paper, we introduce and discuss the potential
threats caused by runtime code injections. By analyzing
runtime code injections, we proposed the mechanism –
Detecting the Code Injection Engine (DCIE) on
Microsoft Windows Operation system.

DCIE is implemented as a loadable kernel-mode
driver that is able to monitor every process in the system,
and it does not impose too much overhead (less than
3.26%) to system. We believe that DCIE is suitable to be
installed into Windows OS to provide users with more
precise information about the suspected injecting
behavior. Furthermore, DCIE also can be used to protect
the running process in the authorized application list.

Although we can detect runtime code injections, we
do not understand the intent of the injected DLL or
binary code. In the future, we will improve our system
in two aspects. In the first aspect, we will enhance DCIE
to recognize the intent of the injected code or directly
combine DCIE with antivirus scan engine. However,
there may be conflicting situations when there is more
than one application that uses the same concept to detect
runtime code injections. It is another future work to
develop a coordinate mechanism to handle situations that
different processes hook the same system calls.

Acknowledgements
The authors wish to acknowledge the anonymous
reviewers for valuable comments. This research was
supported in part by the project of Water Resource
Agency, Ministry of Economic Affairs,

tract no. MOEAWRA0950070.

REFERENCES
[1] Agnitum. Outpost Firewall Pro & Free.

Available: http://www.agnitum.com/
[2] Aleph One, Smashing The Stack For Fun And Profit

Phrack, vol.7 p49-0x14, Nov, 1996
Available: http://www.phrack.org/phrack/49/P49-14

[3] Chew Keong TAN. Defeating Kernel Native API
Hookers by Direct Service dispatch Table Restoration.
2004.

[4] Chinchani, R., Iyer, A., Ngo, H. Q., and Upadhyaya, S. ,
"Towards a theory of insider threat assessment,"

Proceedings. International Conference on, pp.108-117,
2005.

[5] FutureMark. PCMark05.
Available: http://futuremark.com/products/pcmark05/

[6] Holy_Father. Techniqs of hooking API functions on
Windows. 2002.
Available: http://www.hxdef.org

[7] Jeffrey Richter, Load Your 32-bit DLL into Another
Process's Address Space Using INJLIB Microsoft
Systems Journal, vol.9 Number 5, May, 1994.

[8] Liu, A., Martin, C., Hetherington, T., and Matzner, S., "A
comparison of system call feature representations for
insider threat detection," Systems, Man and Cybernetics
(SMC) Information Assurance Workshop, 2005.
Proceedings from the Sixth Annual IEEE, pp. 340-347,
2005.

[9] Mark Russinovich. Sony, Rootkits and Digital Rights
Management Gone Too Far. 2005.
Available:
http://www.sysinternals.com/blog/2005/10/sony-rootkits-
and-digital-rights.html

[10] Matt Pietrek, Learn System-Level Win32 Coding
Techniques by Writing and API Spy Program Microsoft
Systems Journal, vol.9 Number 12, Dec, 1994.

[11] Nguyen, N., Reiher, P., and Kuenning, G. H., "Detecting
insider threats by monitoring system call activity,"
Information Assurance Workshop, 2003. IEEE

[12] rattle, Using Process
Software Firewalls Phrack, vol. 11 p62-0x0d, Jul,
2004.

[13] Robert Kuster. Three Ways to Inject Your Code into
Another Process. 2003.
Available:
http://www.codeproject.com/thread

[1
"Preventing the
applications," DARPA Information
Conference & Exposition II, 2001
Proceedings, pp. 175-183 vol.2, 2001.

[15] Sven B. Schreiber. Undocumented Windows 2000
secrets : a programmer's cookbook , Bos
Addison-Wesley, 2001.

[16] Weidong Cui., Randy H. Katz, and Wai-tian Tan,
"Design and Implementation of an Extrusion-based
Break-In Detector for Personal Computers," 21st Annual
Computer Security Applications Conference (ACSAC'05),
pp. 361-370, 2005.
Zone Labs. Zone Alarm Firewall Pro & Free.
Available:
http://www.zonelabs.com/store/content/home.

- 867 -

