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ABSTARCT 
This paper discusses how an ontology-supported 

website model helps Web search agents. We advocate the 
use of ontology-supported website models to provide a 
semantic level solution for a search engine so that it can 
provide fast, precise and stable search results. Basically, 
a website model consists of a website profile for a 
website and a set of webpage profiles for the webpages 
contained in the website. Each webpage profile reflecting 
a webpage describes how the webpage is interpreted by 
the domain ontology, while a website profile describes 
how a website is interpreted by the ontology based on the 
semantics of the contained webpages. In short, the 
former contains basic information, statistics information, 
and ontology information for each webpage stored in a 
website model, while the latter contains basic 
information of a website. The website models are closely 
connected to the domain ontology, which supports the 
following functions used in website model construction 
and application: query expansion, webpage annotation, 
webpage/website classification, and focused collection 
and retrieval of domain-related and user-interested Web 
resources with highest satisfaction. 
 

1: INTRODUCTION 
The Web has been drastically changing the availability 

of electronically available information. On the one hand, 
it improves the capability of information sharing among 
humans. On the other hand, the volume of web pages has 
been growing beyond human comprehension. In this 
information-exploding era, the user expects to spend the 
shortest time in retrieving really useful information rather 
than spending plenty of time and ending up with lots of 
garbage information though. Consequently, how to 
explore useful information and knowledge from World 
Wide Web (WWW) is gradually becoming urgent need. 
However, to search or retrieve information and data from 
WWW manually is a difficult and time-consuming job 
because WWW has become a huge database and 
provided abundant information. Thus, how to effectively 
search, extract and filter data and information from 
Internet using intelligent techniques has become 
important research issues. 

We notice that ontology is mostly used in the systems 
that work on information gathering or integration to 
improve their gathering processes or the search results 
from disparate resources [6]. For instance, WebSifter II is 
a semantic taxonomy-based, personalizable meta-search 
agent [10] that tries to capture the semantics of a user’s 
decision-oriented search intent, to transform the semantic 

query into target queries for existing search engines, and 
to rank the resulting page hits according to a user-
specified weighted-rating scheme. Chen and Soo [3] 
describe an ontology-based information gathering agent 
which utilizes the domain ontology and corresponding 
support (e.g., procedure attachments, parsers, wrappers 
and integration rules) to gather the information related to 
users’ queries from disparate information resources in 
order to provide much more coherent results for the users. 
MELISA [1] is an ontology-based information retrieval 
agent with three levels of abstraction, separated 
ontologies and query models, and definitions of some 
aggregation operators for combining results from 
different queries. Intelligent Web search agent [15] 
distills and aggregates information found in HTML 
documents.  By using web page ontology and web search 
agent ontology, it reduces the need for a human being to 
look at each hit to determine its relevance. OntoSeek [7] 
is a system designed for content-based information 
retrieval from online yellow pages and product catalogs.  
It combines a (linguistic) ontology-driven content-
matching mechanism with a moderately expressive 
representation formalism. Finally, Swoogle [5] is a 
crawler-based system that discovers, retrieves, analyzes 
and indexes knowledge encoded in semantic web 
documents on the Web, which can use either character N-
Gram or URIrefs as keywords to find relevant documents 
and to compute the similarity among a set of documents. 

In this paper, we advocate the use of ontology-
supported website models to provide a semantic level 
solution for a search engine so that it can provide fast, 
precise and stable search results. Basically, a website 
model consists of a website profile for a website and a set 
of webpage profiles for the webpages contained in the 
website. Each webpage profile reflecting a webpage 
describes how the webpage is interpreted by the domain 
ontology, while a website profile describes how a website 
is interpreted by the ontology based on the semantics of 
the contained webpages. In short, the former contains 
basic information, statistics information, and ontology 
information for each webpage stored in a website model, 
while the latter contains basic information of a website. 
The website models are closely connected to the domain 
ontology, which supports the following functions used in 
website model construction and application: query 
expansion, webpage annotation, webpage/website 
classification, and focused collection and retrieval of 
domain-related and user-interested Web resources. The 
Personal Computer (PC) domain is chosen as the target 
application of our approach and will be used for 
explanation in the remaining sections. 
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2: DOMAIN OTOLOGY AS THE DOWN-
TO-THE-EARTH SEMANTICS 

Ontology is a method of conceptualization on a 
specific domain [13]. It plays diverse roles in developing 
intelligent systems, for example, knowledge sharing and 
reusing [4,8], semantic analysis of languages [12], etc. 
Development of an ontology for a specific domain is not 
yet an engineering process, but it is clear that an ontology 
must include descriptions of explicit concepts and their 
relationships of a specific domain [2]. We have outlined 
a principle construction procedure in [19]; following the 
procedure we have developed an ontology for the PC 
domain. Fig. 1 shows part of the PC ontology taxonomy. 
Although the domain ontology was developed in Chinese, 
corresponding English names are treated as Synonyms 
and can be processed by our system too. The taxonomy 
represents relevant PC concepts as classes and their 
parent-child relationships as isa links, which allow 
inheritance of features from parent classes to child 
classes. We then carefully selected those properties of 
each concept that are most related to our application and 
defined them as the detailed ontology of the 
corresponding class. Fig. 2 exemplifies the detailed 
ontology for the concept of “CPU.” In the figure, the 
uppermost node uses various fields to define the 
semantics of the CPU class, each field representing an 
attribute of “CPU”, e.g., interface, provider, synonym, etc. 
The nodes at the bottom level represent various CPU 
instances that capture real world data. The arrow line 
with term “io” means the instance of relationship. Our 
ontology construction tool is Protégé 2000 [13] and the 
complete PC ontology can be referenced from the Protég
é  Ontology Library at Stanford Website 
(http://protege.stanford.edu/download/ontologies.html). 
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Fig. 1 Part of PC ontology taxonomy 

CPU
Synonym= Central Processing Unit

D-Frequency String
Interface CPU SlotInstance*
L1 Cache Volume Spec.Instance

Abbr. CPU Spec.Instance
...

THUNDERBIRD 1.33G
Synonym= Athlon 1.33G
Interface= Socket A
L1 Cache= 128KB

Abbr.= Athlon
Factory= AMD

...

XEON
Factory= Intel

CELERON 1.0G

Clock= 1GHZ

Interface= Socket 370
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Abbr.= Celeron
Factory= Intel

...
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...
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Fig. 2 Ontology for the concept of “CPU” 

In order to facilitate Web search, the domain ontology 
was carefully pre-analyzed with respect to how concept 
attributes are related to class identification and then re-
organized into Fig. 3. Each square node in the figure 
contains a set of representative ontology features for a 
specific concept, while each oval node contains related 
ontology features between two concepts. Thus, the latter 
represents a new node type called “related concept” to 
relate specific concept nodes. We select representative 

ontology features for a specific concept by first deriving 
a set of candidate terms from a set of pre-selected 
training webpages of the concept. We then compare them 
with the attributes of the corresponding ontology class; 
those candidate terms that also appear in the ontology are 
singled out as the representative ontology features for the 
specific concept and removed from the set of candidate 
terms. Finally, we compare the rest of candidate terms 
with the attributes of other ontology classes. For any 
other ontology class that contains some of these 
candidate terms, we add a related concept node to relate it 
to the above specific concept. Fig. 4 takes CPU and 
motherboard as two specific concepts and show how 
their related concept node looks like. The figure only 
shows a related concept node between two concepts; in 
fact, we may have related concept nodes for three or 
more concepts too. For instance in Fig. 3, we have a 
related concept node that relates CPU, motherboard and 
SCSI Card together. Table 1 illustrates related concept 
nodes of different levels, where level n means the related 
concept node relates n concepts together. (Under this 
definition, level 1 refers to a specific concept.) Thus, 
term “graphi” in level 3 means it appears in 3 classes: 
Graphic Card, Monitor, and Motherboard. This design 
clearly structures semantics between ontology classes and 
their relationships; our experiments indeed show that it 
performs well in building semantics-directed website 
models to support Web search. 

PC Hardware

Graphic Card Optical Drive

Sound Card

Network Card

SCSI Card

Hard Drive

Monitor

Modem

Motherboard

CPU

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
ConceptRelated

Concept

Reference class

Superclass  
Fig. 3 Part of re-organized PC ontology 

CPU Motherboard

3dnow
Sse

Sse2
Mmx2

L1
Ondie
Pipline

Superscalar
Fcpga

0.13
64k

CPU
Intel
AMD
Cyrix

Socket
Slot
L2

Secc
Secc2
Petium
Celeron
Athlon
Duron

Morgan
Northwood

Tualatin
Fsb
K7

478pin
423pin

Motherboard
Onboard

Atx
Amr
Cnr

Bank
Com1
Raid
Bios

Northbridge
Southbridge

(representative)

(related concept node)

(representative)

 
Fig. 4 Re-organized detailed ontology 

Table 1 Example of related concept nodes of different 
levels (after stemming) 

LEVEL 3 LEVEL 4 LEVEL 9 LEVEL 10 
ddr 
dvi 

graphi 
inch 
kbp 
khz 
raid 

bandwidth 
microphone

network 
scsi 

channel 
connector 

extern 
mhz 
plug 
usb 

intern 
memoir 
output 

pin 

3: WEBSITE MODEL AND 
CONSTRUCTION 

3.1: WEBSITE MODEL 
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A website model contains a website profile and a set of 
webpage profiles. Fig. 5(a) illustrates the format of a 
website model. The webpage profile contains three 
sections, namely, basic information, statistics information, 
and ontology information. The first two sections profile a 
webpage and the last annotates domain semantics to the 
webpage. DocNo is automatically generated by the 
system for identifying a webpage in the structure index. 
Location remembers the path of the stored version of the 
Web page in the website model; we can use it to answer 
user queries. URL is the path of the webpage on the 
Internet, same as the returned URL index in the user 
query result; it helps hyperlinks analysis. WebType 
identifies one of the following six Web types: com (1), 
net (2), edu (3), gov (4), org (5), and other (0), each 
encoded as an integer in the parentheses. WebNo 
identifies the website that contains this webpage. It is set 
to zero if we cannot decide what website the webpage 
comes from. Update_Time/Date remembers when the 
webpage was modified last time. The statistics 
information section stores statistics about HTML tag 
properties, e.g., #Frame for the number of frames, #Tag 
for the number of different tags, and various texts 
enclosed in tags. Specifically, we remember the texts 
associated with Titles, Anchors, and Headings for 
webpage analysis; we also record Outbound_URLs for 
user-oriented webpage expansion. Finally, the ontology 
information section remembers how the webpage is 
interpreted by the domain ontology. It shows that a 
webpage can be classified into several classes with 
different scores of belief according to the ontology. It 
also remembers the ontology features of each class that 
appear in the webpage along with their term frequencies 
(i.e., number of appearance in the webpage). 
Domain_Mark is used to remember whether the webpage 
belongs to a specific domain; it is set to “true” if the 
webpage belongs to the domain, and “false” otherwise. 
This section annotates how a webpage is related to the 
domain and can serve as its semantics, which helps a lot 
in correct retrieval of webpages. 

Let’s turn to the website profile. WebNo identifies a 
website, the same as used in the webpage profile. 
Through this number, we can access those webpage 
profiles describing the webpages that belong to this 
website. Website_Title remembers the text between tags 
<TITLE> of the homepage of the website. Start_URL 
stores the starting address of the website. It may be a 
domain name or a directory URL under the domain 
address. WebType identifies one of the six Web types as 
used in the webpage profile. Tree_Level_Limit 
remembers how the website is structured, which can keep 
the search agent from exploring too deeply, e.g., 5 means 
it just explores down to level 5 of the website structure. 
Update_Time/Date remembers when the website was 
modified last time. Fig. 5(b) illustrates an example 
website model. This model structure helps interpret the 
semantics of a website through the gathered information; 
it also helps fast retrieval of webpage information and 
autonomous Web resources search. The last point will 

become clearer later. Fig. 5(c) illustrates how website 
profiles and webpage profiles are structured. 

W ebsite Profile:
W ebNo::Integer
W ebsite_Title::String
Start_URL::String
W ebType::Integer
Tree_Level_Limit::Integer
Update_Time/Date::Date/Time
.....

W ebpage Profile:
Basic Information:

DocNo::Integer
Location::String
URL::String
W ebType::Integer
W ebNo::Integer
Update_Time/Date::Date/Time
.....

Statistics Information:
#Tag
#Frame
.....
Title Text
Anchor Text
Heading Text
Outbound_URLs
.....

Ontology Information:
Domain_Mark::Boolean
class1: belief1; term11(frequency); ...
class2: belief2; term21(frequency); ...
.....  

(a) Format of a website model 
W ebsite Profile:

W ebNo::920916001
W ebsite_Title::Advanced Micro Devices, AMD - Homepage
Start_URL::http://www.amd.com/us-en/
W ebType::1
Tree_Level_Limit::5
Update_Time/Date::04:37:59/AUG-26-2003
.....

W ebpage Profile:
Basic Information:

DocNo::9209160011
Location::H:\DocPool\920916001\1
URL::http://www.amd.com/us-en/
WebType::1
WebNo::920916001
Update_Time/Date::10:30:00/JAN-17-2003
.....

Statistics Information:
#Tag::251
#Frame::3
.....
Title::Advanced Micro Devices, AMD - Homepage
Anchor::Home
Heading::Processors
Outbound_URLs::http://www.amd.com/home/prodinfo01;

http://www.amd.com/home/compsol01; ...
.....

Ontology Information:
Domain_Mark::True
CPU: 0.8; L1(2); Ondie(2); AMD(5); ...
Motherboard: 0.5; AGP(1); PCI(1); ...
.....  

(b) An example website model 
WebNo#1

DocNo#11 DocNo#12 DocNo#189 DocNo#190
.....

(webpage profile)

(website profile)

WebNo#2

DocNo#21 DocNo#22 DocNo#290 DocNo#291
.....

(webpage profile)

(website profile)

 
(c) Conceptual structure of a website model 

Fig. 5 Website model format, example and structure 

3.2: WEBSITE MODELING 
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Fig. 6 Architecture of DocExtractor 

Website modeling involves three modules. We use 
DocExtractor to extract basic webpage information and 
perform statistics. We then use OntoAnnotator to 
annotate ontology information. Since the ontology 
information contains webpage classes, OntoAnnotator 
needs to call OntoClassifier to perform webpage 
classification. Fig. 6 illustrates the architecture of 
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DocExtractor. DocExtractor receives a webpage from 
DocPool and produces information for both basic 
information and statistics information sections of a 
webpage profile. It also transforms the webpage into a 
list of words (pure text) for further processing by 
OntoAnnotator. Specifically, DocPool contains webpages 
retrieved from the Web. HTML Analyzer analyzes the 
HTML structure to extract URL, Title texts, anchor texts 
and heading texts, and to calculate tag-related statistics 
for website models. HTML TAG Filter removes HTML 
tags from the webpage, deletes stop words using five 
hundred stop words we developed from [11], and 
performs word stemming and standardization. Document 
Parser transforms the stemmed, tag-free webpage into a 
list of words for further processing by OntoAnnotator. 

Fig. 7 illustrates the architecture of OntoAnnotator. 
Inside the architecture, OntoClassifier uses the ontology 
to classify a webpage, and Annotator uses the ontology to 
annotate ontology features with their term frequencies for 
each class according to how often they appear in the 
webpage. Domain Marker uses Table 2 to determine 
whether the webpage is relevant to the domain according 
to the Joachims’ concept [9]. The Condition column in 
the table means the number of concept classes appearing 
in the webpage and the Limit column specifies a minimal 
threshold on the average number of terms of the class 
which must appear in the webpage. For example, row 2 
means if a webpage contains only one concept of a 
domain, then the terms of the class appearing in the 
webpage must be greater than or equal to three in order 
for it to be considered to belong to the domain. In 
addition to classification of webpages, OntoClassifier is 
used to annotate each ontology class by generating a 
classification score for each ontology class, e.g., CPU: 
0.8, Motherboard: 0.5, etc. 

Ontology

OntoAnnotator

Processed
Webpages

from
DocExtractor

Annotator

ontology
information

Domain
Marker

OntoClassifier website
model

Domain_Mark

 
Fig. 7 Architecture of OntoAnnotator 

Table 2 Domain-relevance threshold for webpages 
CONDITION 

(CLASS COUNT) LIMIT 

0  None 
1 Average >= 3 

2~6 Average >= 2 
7~10 Average >= 1 

OntoClassifier is a two-step classifier based on the 
deliberately organized ontology structure (as illustrated in 
Figs. 3 and 4) and can do very accurate and stable 
classification on web pages to support Web search agents 
[18,22,23]. Briefly, the first stage uses a set of 
representative ontology features for measuring how 
strong a webpage/website is related to a specific class by 
calculated the number of ontological features of a class 
that appears in a webpage/website. We employ the level 
threshold, THW to limit the number of ontology features 
to be involved in this stage. If for any reason the first 

stage cannot return a class for a webpage/website, we 
move to the second stage of classification. It employs 
another set of related ontology features with a level-
related weighting mechanism for webpage/website 
classification. 

4: WEBSITE MODELS APPLICATION 
The basic goal of the website models is to help Web 

search in both a user-oriented and a domain-directed 
manner. Specifically, we use domain ontology to expand 
user query, e.g., adding synonyms of terms contained in 
the user query into the same query. We then employ an 
implicit webpage expansion mechanism which consults 
the user models [19] for user interests and use that 
information to add more webpages into the website 
models by, for example, checking on how the anchor 
texts of the outbound hyperlinks of the webpages in the 
website models are strongly related to the user interests 
[18]. We also employ a 4-phase progressive strategy to 
do website expansion, i.e., to add more domain-
dependant webpages into the website models [18]. The 
expansion strategy starts with the first phase, which 
expands the websites that are well profiled in the website 
models but have less coverage of domain concepts; the 
second phase then searches for those webpages that can 
help bring in more information to complete the 
specification of indefinite website profiles; the third 
phase collects every webpage that is referred to by the 
webpages in the website models; and finally the last 
phase resorts to general website information to refresh 
and expand website profiles. 

Webpage retrieval concerns the way of providing 
most-wanted documents for users. Traditional ranking 
methods employ an inverted full-text index database 
along with a ranking algorithm to calculate the ranking 
sequence of relevant documents. The problems with this 
method are clear: too many entries in returned results and 
too slow response time. A simplified approach emerged, 
which employs various ad-hoc mechanisms to reduce 
query space [16,17]. Two major problems are behind 
these mechanisms: 1) They need a specific, labor-
intensive and time-consuming pre-process and; 2) They 
cannot respond to the changes of the real environment in 
time due to the off-line pre-process. Another new method 
called PageRank [14] was employed in Google to rank 
webpages by their link information. Google spends lots 
of offline time pre-analyzing the link relationships among 
a huge number of webpages and calculating proper 
ranking scores for them before storing them in a special 
database for answering user query. Google’s high speed 
of response stems from a huge local webpage database 
along with a time-consuming, offline detailed link 
structure analysis. 

Instead, our solution ranking method takes advantage 
of the semantics in the website models. The major index 
structure uses ontology features to index webpages in the 
website models. The ontology index contains terms that 
are stored in the webpage profiles. The second index 
structure is a partial full-text inverted index since it 
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contains no ontology features. Fig. 8 shows this two-
layered index structure. Since we require each query 
contain at least one ontology feature, we always can use 
the ontology index to locate a set of webpages. The 
partial full-text index is then used to further reduce them 
into a subset of webpages for users. 

DocNo 1

DocNo 2

DocNo 3

DocNo 4

...

...

...

Term 1

Term 2

Term 3

...

...

Term 11

Term 21

Term 31

...

...

Ontology Index
(Inverted Index of Ontology

Feature Terms)

Partial Full-Text Index
(Inverted Index of Partial

Terms)

Document numbers of
webpages in website

models

 
Fig. 8 Index structures in Website Models 

This design of separating ontology indices from a 
traditional full-text is interesting. Since we then know 
what ontology features are contained in a user query. 
Based on this information, we can apply OntoClassifier 
to analyze what domain concepts the user are really 
interested in and use the information to fast locate user 
interested webpages. Let’s explain how this is done in 
our system. First, we use the second stage of 
OntoClassifier along with a threshold, say THU, to limit 
the best classes (concepts) a query is associated with. For 
example, if we set THU to three, we select the best three 
ontology classes from a query and use them as indices to 
fast locate user-interested webpages. 

As a matter of fact, we can leverage the identified 
ontology features in a user query to properly rank the 
webpages for the user using the ranking method defined 
by Eq. (1). In the first term of the equation, MQU(P) is the 
number of user terms appearing in webpages P, which 
can be obtained from Fig. 8, and WQU is its weighting 
value. PS,D(T) is defined by Eq. (2), which measures, for 
each term T in the user term part of query Q (i.e., QU(Q)), 
the ratio of the number of webpages that contain T (i.e., 
NS,T), and the total number of webpages related to D (i.e., 
NS,D), on website S. Multiplying these factors together 
represents how strong the to-be-retrieved webpages are 
user terms-oriented. The second term of Eq. (1) does a 
similar analysis on ontology features appearing in the 
user query. Basically, WQO is a weighing value for the 
ontology term part of query Q, and MQO(P) is the number 
of ontology features appearing in webpage P, which can 
be obtained from Fig. 8 too. As to the factor of PS,D(T), 
we have a slightly different treatment here. It is used to 
calculate the ratio of the number of webpages containing 
ontology feature T, but we restrict T to appear only in the 
top THU concepts, as we have set a threshold number of 
domain concepts for each user query. We thus need to 
add a factor PTH(Q,P) to reflect the fact that we also 
apply a threshold number of domain concepts, THW, for 
each webpage (see Section 3.2). PTH(Q,P) is defined by 
Eq. (3) measuring the ratio of the number of domain 
concepts that appear both in the top THU concepts of 
query Q and the top THW concepts of domain D (i.e., 
MTH(Q,P)) to the number of domain concepts that appear 

only in the top THU concepts of Q (i.e., MTH(Q)). This 
second term thus represents how strong the to-be-
retrieved webpages are related to user-interested domain 
concepts. Note that the two weighting factors are 
correlated as defined by Eq. (4). The user is allowed to 
change the ratio between them to reflect his emphasis on 
either user terms or ontology features in retrieving 
webpages. 
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5: USER-SATISFACTION EVALUATION 
Table 3 User satisfaction evaluation 

K_WORD
METHOD 

CPU 
(SE / ST)

MOTHERBOARD 
(SE / ST) 

MEMORY 
(SE / ST) 

AVERAGE
(SE / ST) 

Alta Vista 63% / 61% 77% / 78% 30% / 21% 57% / 53%
Excite 66% / 62% 81% / 81% 50% / 24% 66% / 56%
Google 66% / 64% 81% / 80% 38% / 21% 62% / 55%
HotBot 69% / 63% 78% / 76% 62% / 31% 70% / 57%

InfoSeek 69% / 70% 71% / 70% 49% / 28% 63% / 56%
Lycos 64% / 67% 77% / 76% 36% / 20% 59% / 54%
Yahoo 67% / 61% 77% / 78% 38% / 17% 61% / 52%
Our 

approach 78% / 69% 84% / 78% 45% / 32% 69% / 60%

Table 3 shows the comparison of user satisfaction of 
our systemic prototype against other search engines. In 
the table, ST, for Satisfaction of testers, represents the 
average of satisfaction responses from 10 ordinary users, 
while SE, for Satisfaction of experts, represents that of 
satisfaction responses from 10 experts.  Basically, each 
search engine receives 100 queries and returns the first 
100 webpages for evaluation of satisfaction by both 
experts and non-experts. The table shows that our 
systemic prototype supported with ontology-supported 
website model, the last row, enjoys the highest 
satisfaction in all classes. From the evaluation, we 
conclude that, unless the comparing search engines are 
specifically tailored to this specific domain, such as 
HotBot and Excite, our systemic prototype, in general, 
retrieves more correct webpages in almost all classes. 

6: CONCLUSIONS 
We have described how ontology-supported website 

models can effectively support Web search systems, 
which is different from website model content, 
construction, and application over our previous works 
[20,21]. A website model contains webpage profiles, each 
recording basic information, statistics information, and 
ontology information of a webpage. The ontology 
information is an annotation of how the webpage is 
interpreted by the domain ontology. The website model 
also contains a website profile that remembers how a 
website is related to the webpages and how it is 
interpreted by the domain ontology. The website models 
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are closely connected to the domain ontology, which 
supports the following functions used in website model 
construction and application: query expansion, webpage 
annotation, webpage/website classification, and focused 
collection and retrieval of domain-related and user-
interested Web resources with highest satisfaction. This 
approach features the following interesting characteristics. 
1) Ontology-supported construction of website models. 
By this, we attribute domain semantics into the Web 
resources collected and stored in the local data base, 
which can do very accurate and stable classification on 
webpages to support more correct annotation of domain 
semantics. 2) Website models-supported Web search. By 
this, we take into account both user interests and domain 
specificity, which employs progressive strategies to help 
Web search in both a user-oriented and a domain-
directed manner. 3) Website models-supported Webpage 
Retrieval. By this, we leverage the power of ontology 
features as a fast index structure to locate most-wanted 
webpages for the user. In addition, our ontology 
construction is based on a set of pre-collected webpages 
on a specific domain; it is hard to evaluate how critical 
this collection process is to the nature of different 
domains. We are planning to employ the technique of 
automatic ontology evolution to help study the robustness 
of our ontology. 
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