

An Ontology-Supported Website Model for Web Search Agents

Sheng-Yuan Yang
Dept. of Computer and Communication Engineering, St. John’s University

ysy@mail.sju.edu.tw

ABSTARCT
This paper discusses how an ontology-supported

website model helps Web search agents. We advocate the
use of ontology-supported website models to provide a
semantic level solution for a search engine so that it can
provide fast, precise and stable search results. Basically,
a website model consists of a website profile for a
website and a set of webpage profiles for the webpages
contained in the website. Each webpage profile reflecting
a webpage describes how the webpage is interpreted by
the domain ontology, while a website profile describes
how a website is interpreted by the ontology based on the
semantics of the contained webpages. In short, the
former contains basic information, statistics information,
and ontology information for each webpage stored in a
website model, while the latter contains basic
information of a website. The website models are closely
connected to the domain ontology, which supports the
following functions used in website model construction
and application: query expansion, webpage annotation,
webpage/website classification, and focused collection
and retrieval of domain-related and user-interested Web
resources with highest satisfaction.

1: INTRODUCTION
The Web has been drastically changing the availability

of electronically available information. On the one hand,
it improves the capability of information sharing among
humans. On the other hand, the volume of web pages has
been growing beyond human comprehension. In this
information-exploding era, the user expects to spend the
shortest time in retrieving really useful information rather
than spending plenty of time and ending up with lots of
garbage information though. Consequently, how to
explore useful information and knowledge from World
Wide Web (WWW) is gradually becoming urgent need.
However, to search or retrieve information and data from
WWW manually is a difficult and time-consuming job
because WWW has become a huge database and
provided abundant information. Thus, how to effectively
search, extract and filter data and information from
Internet using intelligent techniques has become
important research issues.

We notice that ontology is mostly used in the systems
that work on information gathering or integration to
improve their gathering processes or the search results
from disparate resources [6]. For instance, WebSifter II is
a semantic taxonomy-based, personalizable meta-search
agent [10] that tries to capture the semantics of a user’s
decision-oriented search intent, to transform the semantic

query into target queries for existing search engines, and
to rank the resulting page hits according to a user-
specified weighted-rating scheme. Chen and Soo [3]
describe an ontology-based information gathering agent
which utilizes the domain ontology and corresponding
support (e.g., procedure attachments, parsers, wrappers
and integration rules) to gather the information related to
users’ queries from disparate information resources in
order to provide much more coherent results for the users.
MELISA [1] is an ontology-based information retrieval
agent with three levels of abstraction, separated
ontologies and query models, and definitions of some
aggregation operators for combining results from
different queries. Intelligent Web search agent [15]
distills and aggregates information found in HTML
documents. By using web page ontology and web search
agent ontology, it reduces the need for a human being to
look at each hit to determine its relevance. OntoSeek [7]
is a system designed for content-based information
retrieval from online yellow pages and product catalogs.
It combines a (linguistic) ontology-driven content-
matching mechanism with a moderately expressive
representation formalism. Finally, Swoogle [5] is a
crawler-based system that discovers, retrieves, analyzes
and indexes knowledge encoded in semantic web
documents on the Web, which can use either character N-
Gram or URIrefs as keywords to find relevant documents
and to compute the similarity among a set of documents.

In this paper, we advocate the use of ontology-
supported website models to provide a semantic level
solution for a search engine so that it can provide fast,
precise and stable search results. Basically, a website
model consists of a website profile for a website and a set
of webpage profiles for the webpages contained in the
website. Each webpage profile reflecting a webpage
describes how the webpage is interpreted by the domain
ontology, while a website profile describes how a website
is interpreted by the ontology based on the semantics of
the contained webpages. In short, the former contains
basic information, statistics information, and ontology
information for each webpage stored in a website model,
while the latter contains basic information of a website.
The website models are closely connected to the domain
ontology, which supports the following functions used in
website model construction and application: query
expansion, webpage annotation, webpage/website
classification, and focused collection and retrieval of
domain-related and user-interested Web resources. The
Personal Computer (PC) domain is chosen as the target
application of our approach and will be used for
explanation in the remaining sections.

 - 874 -

2: DOMAIN OTOLOGY AS THE DOWN-
TO-THE-EARTH SEMANTICS

Ontology is a method of conceptualization on a
specific domain [13]. It plays diverse roles in developing
intelligent systems, for example, knowledge sharing and
reusing [4,8], semantic analysis of languages [12], etc.
Development of an ontology for a specific domain is not
yet an engineering process, but it is clear that an ontology
must include descriptions of explicit concepts and their
relationships of a specific domain [2]. We have outlined
a principle construction procedure in [19]; following the
procedure we have developed an ontology for the PC
domain. Fig. 1 shows part of the PC ontology taxonomy.
Although the domain ontology was developed in Chinese,
corresponding English names are treated as Synonyms
and can be processed by our system too. The taxonomy
represents relevant PC concepts as classes and their
parent-child relationships as isa links, which allow
inheritance of features from parent classes to child
classes. We then carefully selected those properties of
each concept that are most related to our application and
defined them as the detailed ontology of the
corresponding class. Fig. 2 exemplifies the detailed
ontology for the concept of “CPU.” In the figure, the
uppermost node uses various fields to define the
semantics of the CPU class, each field representing an
attribute of “CPU”, e.g., interface, provider, synonym, etc.
The nodes at the bottom level represent various CPU
instances that capture real world data. The arrow line
with term “io” means the instance of relationship. Our
ontology construction tool is Protégé 2000 [13] and the
complete PC ontology can be referenced from the Protég
é Ontology Library at Stanford Website
(http://protege.stanford.edu/download/ontologies.html).

Hardware

Interface
Card

Sound
Card

Display
Card

SCSI
Card

Power
Supply UPS ROM Main

Memory Optical ZIP

CDR/WDVDCD

Storage
MediaCaseMemoryPower

Equipment

Network
Chip

Network
Card

CDR

isa
isa isa isa isa isa isa isa

isa isa isa isa

isa

isa isa

isaisaisaisa

isa

isa

isa

isa
isa

isa

Fig. 1 Part of PC ontology taxonomy

CPU
Synonym= Central Processing Unit

D-Frequency String
Interface CPU SlotInstance*
L1 Cache Volume Spec.Instance

Abbr. CPU Spec.Instance
...

THUNDERBIRD 1.33G
Synonym= Athlon 1.33G
Interface= Socket A
L1 Cache= 128KB

Abbr.= Athlon
Factory= AMD

...

XEON
Factory= Intel

CELERON 1.0G

Clock= 1GHZ

Interface= Socket 370
L1 Cache= 32KB

Abbr.= Celeron
Factory= Intel

...

PENTIUM 4 2.0AGHZ

L1 Cache= 8KB

D-Frequency= 20
Synonym= P4 2.0GHZ

Abbr.= P4

Interface= Socket 478

...

PENTIUM 4 1.8AGHZ

L1 Cache= 8KB

D-Frequency= 18
Synonym= P4 1.8GHZ

Abbr.= P4

Interface= Socket 478

...

DURON 1.2G

Clock= 1.2GHZ

Interface= Socket A
L1 Cache= 64KB

Abbr.= Duron
Factory= AMD

...

PENTIUM 4 2.53AGHZ
Synonym= P4
Interface= Socket 478
L1 Cache= 8KB

Abbr.= P4
Factory= Intel

...

io io io io io io io

Fig. 2 Ontology for the concept of “CPU”

In order to facilitate Web search, the domain ontology
was carefully pre-analyzed with respect to how concept
attributes are related to class identification and then re-
organized into Fig. 3. Each square node in the figure
contains a set of representative ontology features for a
specific concept, while each oval node contains related
ontology features between two concepts. Thus, the latter
represents a new node type called “related concept” to
relate specific concept nodes. We select representative

ontology features for a specific concept by first deriving
a set of candidate terms from a set of pre-selected
training webpages of the concept. We then compare them
with the attributes of the corresponding ontology class;
those candidate terms that also appear in the ontology are
singled out as the representative ontology features for the
specific concept and removed from the set of candidate
terms. Finally, we compare the rest of candidate terms
with the attributes of other ontology classes. For any
other ontology class that contains some of these
candidate terms, we add a related concept node to relate it
to the above specific concept. Fig. 4 takes CPU and
motherboard as two specific concepts and show how
their related concept node looks like. The figure only
shows a related concept node between two concepts; in
fact, we may have related concept nodes for three or
more concepts too. For instance in Fig. 3, we have a
related concept node that relates CPU, motherboard and
SCSI Card together. Table 1 illustrates related concept
nodes of different levels, where level n means the related
concept node relates n concepts together. (Under this
definition, level 1 refers to a specific concept.) Thus,
term “graphi” in level 3 means it appears in 3 classes:
Graphic Card, Monitor, and Motherboard. This design
clearly structures semantics between ontology classes and
their relationships; our experiments indeed show that it
performs well in building semantics-directed website
models to support Web search.

PC Hardware

Graphic Card Optical Drive

Sound Card

Network Card

SCSI Card

Hard Drive

Monitor

Modem

Motherboard

CPU

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
Concept

Related
ConceptRelated

Concept

Reference class

Superclass
Fig. 3 Part of re-organized PC ontology

CPU Motherboard

3dnow
Sse

Sse2
Mmx2

L1
Ondie
Pipline

Superscalar
Fcpga

0.13
64k

CPU
Intel
AMD
Cyrix

Socket
Slot
L2

Secc
Secc2
Petium
Celeron
Athlon
Duron

Morgan
Northwood

Tualatin
Fsb
K7

478pin
423pin

Motherboard
Onboard

Atx
Amr
Cnr

Bank
Com1
Raid
Bios

Northbridge
Southbridge

(representative)

(related concept node)

(representative)

Fig. 4 Re-organized detailed ontology

Table 1 Example of related concept nodes of different
levels (after stemming)

LEVEL 3 LEVEL 4 LEVEL 9 LEVEL 10
ddr
dvi

graphi
inch
kbp
khz
raid

bandwidth
microphone

network
scsi

channel
connector

extern
mhz
plug
usb

intern
memoir
output

pin

3: WEBSITE MODEL AND
CONSTRUCTION

3.1: WEBSITE MODEL

 - 875 -

A website model contains a website profile and a set of
webpage profiles. Fig. 5(a) illustrates the format of a
website model. The webpage profile contains three
sections, namely, basic information, statistics information,
and ontology information. The first two sections profile a
webpage and the last annotates domain semantics to the
webpage. DocNo is automatically generated by the
system for identifying a webpage in the structure index.
Location remembers the path of the stored version of the
Web page in the website model; we can use it to answer
user queries. URL is the path of the webpage on the
Internet, same as the returned URL index in the user
query result; it helps hyperlinks analysis. WebType
identifies one of the following six Web types: com (1),
net (2), edu (3), gov (4), org (5), and other (0), each
encoded as an integer in the parentheses. WebNo
identifies the website that contains this webpage. It is set
to zero if we cannot decide what website the webpage
comes from. Update_Time/Date remembers when the
webpage was modified last time. The statistics
information section stores statistics about HTML tag
properties, e.g., #Frame for the number of frames, #Tag
for the number of different tags, and various texts
enclosed in tags. Specifically, we remember the texts
associated with Titles, Anchors, and Headings for
webpage analysis; we also record Outbound_URLs for
user-oriented webpage expansion. Finally, the ontology
information section remembers how the webpage is
interpreted by the domain ontology. It shows that a
webpage can be classified into several classes with
different scores of belief according to the ontology. It
also remembers the ontology features of each class that
appear in the webpage along with their term frequencies
(i.e., number of appearance in the webpage).
Domain_Mark is used to remember whether the webpage
belongs to a specific domain; it is set to “true” if the
webpage belongs to the domain, and “false” otherwise.
This section annotates how a webpage is related to the
domain and can serve as its semantics, which helps a lot
in correct retrieval of webpages.

Let’s turn to the website profile. WebNo identifies a
website, the same as used in the webpage profile.
Through this number, we can access those webpage
profiles describing the webpages that belong to this
website. Website_Title remembers the text between tags
<TITLE> of the homepage of the website. Start_URL
stores the starting address of the website. It may be a
domain name or a directory URL under the domain
address. WebType identifies one of the six Web types as
used in the webpage profile. Tree_Level_Limit
remembers how the website is structured, which can keep
the search agent from exploring too deeply, e.g., 5 means
it just explores down to level 5 of the website structure.
Update_Time/Date remembers when the website was
modified last time. Fig. 5(b) illustrates an example
website model. This model structure helps interpret the
semantics of a website through the gathered information;
it also helps fast retrieval of webpage information and
autonomous Web resources search. The last point will

become clearer later. Fig. 5(c) illustrates how website
profiles and webpage profiles are structured.

W ebsite Profile:
W ebNo::Integer
W ebsite_Title::String
Start_URL::String
W ebType::Integer
Tree_Level_Limit::Integer
Update_Time/Date::Date/Time
.....

W ebpage Profile:
Basic Information:

DocNo::Integer
Location::String
URL::String
W ebType::Integer
W ebNo::Integer
Update_Time/Date::Date/Time
.....

Statistics Information:
#Tag
#Frame
.....
Title Text
Anchor Text
Heading Text
Outbound_URLs
.....

Ontology Information:
Domain_Mark::Boolean
class1: belief1; term11(frequency); ...
class2: belief2; term21(frequency); ...
.....

(a) Format of a website model
W ebsite Profile:

W ebNo::920916001
W ebsite_Title::Advanced Micro Devices, AMD - Homepage
Start_URL::http://www.amd.com/us-en/
W ebType::1
Tree_Level_Limit::5
Update_Time/Date::04:37:59/AUG-26-2003
.....

W ebpage Profile:
Basic Information:

DocNo::9209160011
Location::H:\DocPool\920916001\1
URL::http://www.amd.com/us-en/
WebType::1
WebNo::920916001
Update_Time/Date::10:30:00/JAN-17-2003
.....

Statistics Information:
#Tag::251
#Frame::3
.....
Title::Advanced Micro Devices, AMD - Homepage
Anchor::Home
Heading::Processors
Outbound_URLs::http://www.amd.com/home/prodinfo01;

http://www.amd.com/home/compsol01; ...
.....

Ontology Information:
Domain_Mark::True
CPU: 0.8; L1(2); Ondie(2); AMD(5); ...
Motherboard: 0.5; AGP(1); PCI(1); ...
.....

(b) An example website model
WebNo#1

DocNo#11 DocNo#12 DocNo#189 DocNo#190
.....

(webpage profile)

(website profile)

WebNo#2

DocNo#21 DocNo#22 DocNo#290 DocNo#291
.....

(webpage profile)

(website profile)

(c) Conceptual structure of a website model

Fig. 5 Website model format, example and structure

3.2: WEBSITE MODELING

HTML TAG
Filter

DocExtractor

HTML
Analyzer

Document
Parser

Webpage

Ontology

DocPool
website
models

basic and
statistics

information

stemmed,
tag-free

webpage in
plain text

To
OntoAnnotator

Fig. 6 Architecture of DocExtractor

Website modeling involves three modules. We use
DocExtractor to extract basic webpage information and
perform statistics. We then use OntoAnnotator to
annotate ontology information. Since the ontology
information contains webpage classes, OntoAnnotator
needs to call OntoClassifier to perform webpage
classification. Fig. 6 illustrates the architecture of

 - 876 -

DocExtractor. DocExtractor receives a webpage from
DocPool and produces information for both basic
information and statistics information sections of a
webpage profile. It also transforms the webpage into a
list of words (pure text) for further processing by
OntoAnnotator. Specifically, DocPool contains webpages
retrieved from the Web. HTML Analyzer analyzes the
HTML structure to extract URL, Title texts, anchor texts
and heading texts, and to calculate tag-related statistics
for website models. HTML TAG Filter removes HTML
tags from the webpage, deletes stop words using five
hundred stop words we developed from [11], and
performs word stemming and standardization. Document
Parser transforms the stemmed, tag-free webpage into a
list of words for further processing by OntoAnnotator.

Fig. 7 illustrates the architecture of OntoAnnotator.
Inside the architecture, OntoClassifier uses the ontology
to classify a webpage, and Annotator uses the ontology to
annotate ontology features with their term frequencies for
each class according to how often they appear in the
webpage. Domain Marker uses Table 2 to determine
whether the webpage is relevant to the domain according
to the Joachims’ concept [9]. The Condition column in
the table means the number of concept classes appearing
in the webpage and the Limit column specifies a minimal
threshold on the average number of terms of the class
which must appear in the webpage. For example, row 2
means if a webpage contains only one concept of a
domain, then the terms of the class appearing in the
webpage must be greater than or equal to three in order
for it to be considered to belong to the domain. In
addition to classification of webpages, OntoClassifier is
used to annotate each ontology class by generating a
classification score for each ontology class, e.g., CPU:
0.8, Motherboard: 0.5, etc.

Ontology

OntoAnnotator

Processed
Webpages

from
DocExtractor

Annotator

ontology
information

Domain
Marker

OntoClassifier website
model

Domain_Mark

Fig. 7 Architecture of OntoAnnotator

Table 2 Domain-relevance threshold for webpages
CONDITION

(CLASS COUNT) LIMIT

0 None
1 Average >= 3

2~6 Average >= 2
7~10 Average >= 1

OntoClassifier is a two-step classifier based on the
deliberately organized ontology structure (as illustrated in
Figs. 3 and 4) and can do very accurate and stable
classification on web pages to support Web search agents
[18,22,23]. Briefly, the first stage uses a set of
representative ontology features for measuring how
strong a webpage/website is related to a specific class by
calculated the number of ontological features of a class
that appears in a webpage/website. We employ the level
threshold, THW to limit the number of ontology features
to be involved in this stage. If for any reason the first

stage cannot return a class for a webpage/website, we
move to the second stage of classification. It employs
another set of related ontology features with a level-
related weighting mechanism for webpage/website
classification.

4: WEBSITE MODELS APPLICATION
The basic goal of the website models is to help Web

search in both a user-oriented and a domain-directed
manner. Specifically, we use domain ontology to expand
user query, e.g., adding synonyms of terms contained in
the user query into the same query. We then employ an
implicit webpage expansion mechanism which consults
the user models [19] for user interests and use that
information to add more webpages into the website
models by, for example, checking on how the anchor
texts of the outbound hyperlinks of the webpages in the
website models are strongly related to the user interests
[18]. We also employ a 4-phase progressive strategy to
do website expansion, i.e., to add more domain-
dependant webpages into the website models [18]. The
expansion strategy starts with the first phase, which
expands the websites that are well profiled in the website
models but have less coverage of domain concepts; the
second phase then searches for those webpages that can
help bring in more information to complete the
specification of indefinite website profiles; the third
phase collects every webpage that is referred to by the
webpages in the website models; and finally the last
phase resorts to general website information to refresh
and expand website profiles.

Webpage retrieval concerns the way of providing
most-wanted documents for users. Traditional ranking
methods employ an inverted full-text index database
along with a ranking algorithm to calculate the ranking
sequence of relevant documents. The problems with this
method are clear: too many entries in returned results and
too slow response time. A simplified approach emerged,
which employs various ad-hoc mechanisms to reduce
query space [16,17]. Two major problems are behind
these mechanisms: 1) They need a specific, labor-
intensive and time-consuming pre-process and; 2) They
cannot respond to the changes of the real environment in
time due to the off-line pre-process. Another new method
called PageRank [14] was employed in Google to rank
webpages by their link information. Google spends lots
of offline time pre-analyzing the link relationships among
a huge number of webpages and calculating proper
ranking scores for them before storing them in a special
database for answering user query. Google’s high speed
of response stems from a huge local webpage database
along with a time-consuming, offline detailed link
structure analysis.

Instead, our solution ranking method takes advantage
of the semantics in the website models. The major index
structure uses ontology features to index webpages in the
website models. The ontology index contains terms that
are stored in the webpage profiles. The second index
structure is a partial full-text inverted index since it

 - 877 -

contains no ontology features. Fig. 8 shows this two-
layered index structure. Since we require each query
contain at least one ontology feature, we always can use
the ontology index to locate a set of webpages. The
partial full-text index is then used to further reduce them
into a subset of webpages for users.

DocNo 1

DocNo 2

DocNo 3

DocNo 4

...

...

...

Term 1

Term 2

Term 3

...

...

Term 11

Term 21

Term 31

...

...

Ontology Index
(Inverted Index of Ontology

Feature Terms)

Partial Full-Text Index
(Inverted Index of Partial

Terms)

Document numbers of
webpages in website

models

Fig. 8 Index structures in Website Models

This design of separating ontology indices from a
traditional full-text is interesting. Since we then know
what ontology features are contained in a user query.
Based on this information, we can apply OntoClassifier
to analyze what domain concepts the user are really
interested in and use the information to fast locate user
interested webpages. Let’s explain how this is done in
our system. First, we use the second stage of
OntoClassifier along with a threshold, say THU, to limit
the best classes (concepts) a query is associated with. For
example, if we set THU to three, we select the best three
ontology classes from a query and use them as indices to
fast locate user-interested webpages.

As a matter of fact, we can leverage the identified
ontology features in a user query to properly rank the
webpages for the user using the ranking method defined
by Eq. (1). In the first term of the equation, MQU(P) is the
number of user terms appearing in webpages P, which
can be obtained from Fig. 8, and WQU is its weighting
value. PS,D(T) is defined by Eq. (2), which measures, for
each term T in the user term part of query Q (i.e., QU(Q)),
the ratio of the number of webpages that contain T (i.e.,
NS,T), and the total number of webpages related to D (i.e.,
NS,D), on website S. Multiplying these factors together
represents how strong the to-be-retrieved webpages are
user terms-oriented. The second term of Eq. (1) does a
similar analysis on ontology features appearing in the
user query. Basically, WQO is a weighing value for the
ontology term part of query Q, and MQO(P) is the number
of ontology features appearing in webpage P, which can
be obtained from Fig. 8 too. As to the factor of PS,D(T),
we have a slightly different treatment here. It is used to
calculate the ratio of the number of webpages containing
ontology feature T, but we restrict T to appear only in the
top THU concepts, as we have set a threshold number of
domain concepts for each user query. We thus need to
add a factor PTH(Q,P) to reflect the fact that we also
apply a threshold number of domain concepts, THW, for
each webpage (see Section 3.2). PTH(Q,P) is defined by
Eq. (3) measuring the ratio of the number of domain
concepts that appear both in the top THU concepts of
query Q and the top THW concepts of domain D (i.e.,
MTH(Q,P)) to the number of domain concepts that appear

only in the top THU concepts of Q (i.e., MTH(Q)). This
second term thus represents how strong the to-be-
retrieved webpages are related to user-interested domain
concepts. Note that the two weighting factors are
correlated as defined by Eq. (4). The user is allowed to
change the ratio between them to reflect his emphasis on
either user terms or ontology features in retrieving
webpages.

∑
∈

⋅⋅=
)(

,)()(),(
QQUT

DSQUQU TPPMWPQRA

∑
∈

⋅⋅⋅+
),(

,)(),()(
QTHUOntoT

DSTHQOQO TPPQPPMW
 (1)

DS

TS
DS N

N
TP

,

,
,)(=

 (2)

)(
),(),(

QM
PQMPQP

TH

TH
TH =

 (3)
1=+ QOQU WW (4)

5: USER-SATISFACTION EVALUATION
Table 3 User satisfaction evaluation

K_WORD
METHOD

CPU
(SE / ST)

MOTHERBOARD
(SE / ST)

MEMORY
(SE / ST)

AVERAGE
(SE / ST)

Alta Vista 63% / 61% 77% / 78% 30% / 21% 57% / 53%
Excite 66% / 62% 81% / 81% 50% / 24% 66% / 56%
Google 66% / 64% 81% / 80% 38% / 21% 62% / 55%
HotBot 69% / 63% 78% / 76% 62% / 31% 70% / 57%

InfoSeek 69% / 70% 71% / 70% 49% / 28% 63% / 56%
Lycos 64% / 67% 77% / 76% 36% / 20% 59% / 54%
Yahoo 67% / 61% 77% / 78% 38% / 17% 61% / 52%
Our

approach 78% / 69% 84% / 78% 45% / 32% 69% / 60%

Table 3 shows the comparison of user satisfaction of
our systemic prototype against other search engines. In
the table, ST, for Satisfaction of testers, represents the
average of satisfaction responses from 10 ordinary users,
while SE, for Satisfaction of experts, represents that of
satisfaction responses from 10 experts. Basically, each
search engine receives 100 queries and returns the first
100 webpages for evaluation of satisfaction by both
experts and non-experts. The table shows that our
systemic prototype supported with ontology-supported
website model, the last row, enjoys the highest
satisfaction in all classes. From the evaluation, we
conclude that, unless the comparing search engines are
specifically tailored to this specific domain, such as
HotBot and Excite, our systemic prototype, in general,
retrieves more correct webpages in almost all classes.

6: CONCLUSIONS
We have described how ontology-supported website

models can effectively support Web search systems,
which is different from website model content,
construction, and application over our previous works
[20,21]. A website model contains webpage profiles, each
recording basic information, statistics information, and
ontology information of a webpage. The ontology
information is an annotation of how the webpage is
interpreted by the domain ontology. The website model
also contains a website profile that remembers how a
website is related to the webpages and how it is
interpreted by the domain ontology. The website models

 - 878 -

are closely connected to the domain ontology, which
supports the following functions used in website model
construction and application: query expansion, webpage
annotation, webpage/website classification, and focused
collection and retrieval of domain-related and user-
interested Web resources with highest satisfaction. This
approach features the following interesting characteristics.
1) Ontology-supported construction of website models.
By this, we attribute domain semantics into the Web
resources collected and stored in the local data base,
which can do very accurate and stable classification on
webpages to support more correct annotation of domain
semantics. 2) Website models-supported Web search. By
this, we take into account both user interests and domain
specificity, which employs progressive strategies to help
Web search in both a user-oriented and a domain-
directed manner. 3) Website models-supported Webpage
Retrieval. By this, we leverage the power of ontology
features as a fast index structure to locate most-wanted
webpages for the user. In addition, our ontology
construction is based on a set of pre-collected webpages
on a specific domain; it is hard to evaluate how critical
this collection process is to the nature of different
domains. We are planning to employ the technique of
automatic ontology evolution to help study the robustness
of our ontology.

ACKNOWLEDGEMENTS
The author would like to thank Yu-Ming Chung, Zing-

Tung Chou, Chung-Min Wang, and Yai-Hui Chang for
their assistance in system implementation. This work was
supported by the National Science Council, R.O.C.,
under Grants NSC-95-2221-E-129-019.

REFRENCES
[1] J.M. Abasolo and M. Gómez, “MELISA: An Ontology-

Based Agent for Information Retrieval in Medicine,” Proc.
of the First International Workshop on the Semantic Web,
Lisbon, Portugal, 2000, pp. 73-82.

[2] N. Ashish and C.A. Knoblock, “Wrapper generation for
semi-structured internet sources,” ACM SIGMOD Record,
26(4), 1997, pp. 8-15.

[3] Y.J. Chen and V.W. Soo, “Ontology-Based Information
Gathering Agents,” The 2001 International Conference on
Web Intelligence, Maebashi TERRSA, Japan, 2001, pp.
423-427.

[4] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M.
Klein, J. Broekstra, M. Erdmann and I. Horrocks, “The
Semantic Web: the Roles of XML and RDF,” IEEE
Internet Computing, 4(5), 2000, pp. 63-74.

[5] L. Ding, T. Finin, A. Joshi, R. Pan, R.S. Cost, Y. Peng, P.
Reddivari, V. Doshi, and J. Sachs, “Swoogle: A Search
and Metadata Engine for the Semantic Web,” Proc. of the
13th ACM International Conference on Information and
Knowledge Management, Washington D.C., USA, 2004,
pp. 652-659.

[6] D. Eichmann, “Automated Categorization of Web
Resources,” Available at
http://www.public.iastate.edu/~CYBERSTACKS/Aristotle
.htm, 1998.

[7] N. Guarino, C. Masolo and G. Vetere, “OntoSeek:
Content-Based Access to the Web,” IEEE Intelligent
Systems, 1999, pp. 70-80.

[8] R. Al-Halami, R. Berwick, et. al. Christiane Fellbaum Ed.,
WordNet: an electronic lexical database, ISBN 0-262-
06197-X, May 1998.

[9] T. Joachims, “A Probabilistic Analysis of the Rocchio
Algorithm with TFIDF for Text Categorization,” Proc. of
the 14th International Conference on Machine Learning,
1996, pp. 143-151.

[10] L. Kerschberg, W. Kim and A. Scime, “WebSifter II: A
Personalizable Meta-Search Agent Based on Weighted
Semantic Taxonomy Tree,” Proc. of the International
Conference on Internet Computing, Las Vegas, Nevada,
2001, pp. 14-20.

[11] A.K. McCallum, “Bow: A Toolkit for Statistical Language
Modeling, text retrieval, classification and clustering,”
Available at http://www.cs.cmu.edu/~mccallum/bow,
1996

[12] D.I. Moldovan and R. Mihalcea, “Using WordNet and
Lexical Operators to Improve Internet Searches,” IEEE
Internet Computing, 4(1), 2000, pp. 34-43.

[13] N.F. Noy and C.D. Hafner, “The State of the Art in
Ontology Design,” AI Magazine, 18(3), 1997, pp. 53-74.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd, “The
PageRank Citation Ranking: Bringing Order to the Web,”
SIDL-WP-1999-0120, Department of Computer Science,
University of Stanford, CA, USA, 1999.

[15] T.K. Plunkett and D. Thompson, “Intelligent Web Search
Agents,” Encyclopedia of Library and Information
Science, 67(30), 2000, pp. 261-262.

[16] G. Salton and C. Buckley, “Term Weighting Approaches
in Automatic Text Retrieval,” Information Processing and
Management, 24(5), 1988, pp. 513-523.

[17] G. Salton and M.J. McGill, Introduction to Modern
Information Retrieval, McGraw-Hill, 1983.

[18] C.M. Wang, Web Search with Ontology-Supported
Technology, Master thesis, Department of Computer
Science and Information Engineering, National Taiwan
University of Science and Technology, Taipei, Taiwan,
2003.

[19] S.Y. Yang and C.S. Ho, “Ontology-Supported User
Models for Interface Agents,” Proc. of the 4th Conference
on Artificial Intelligence and Applications, Chang-Hua,
Taiwan, 1999, pp. 248-253.

[20] S.Y. Yang and C.S. Ho, "A Website-Model-Supported
New Generation Search Agent," Journal of St. John's and
St. Mary's Institute of Technology, 20, Sep. 2003, pp. 42-
62.

[21] S.Y. Yang and C.S. Ho, "A Website-Model-Supported
New Search Agent," Proc. of 2nd International Workshop
on Mobile Systems, E-Commerce, and Agent Technology,
Miami, FL, USA, Sep. 2003, pp. 563-568.

[22] S.Y. Yang and C.S. Ho, “An Intelligent Web Information
Aggregation System Based upon Intelligent Retrieval,
Filtering and Integration,” The 2004 International
Workshop on Distance Education Technologies, Hotel
Sofitel, CA, USA, 2004, pp. 451-456.

[23] S.Y. Yang, “FAQ-master: A New Intelligent Web
Information Aggregation System,” International
Academic Conference 2006 Special Session on Artificial
Intelligence Theory and Application, Tao-Yuan, Taiwan,
2006, pp. 2-12.

 - 879 -

