
Analyses of QoS-Aware Web Services

Stephen J. H. Yang Blue C. W. Lan Jen-Yao Chung
Dept. of Computer Science and

Information Engineering,
National Central University,

Taiwan

Dept. of Computer Science and
Information Engineering,

National Central University,
Taiwan

IBM T. J. Watson Research
Center, USA

jhyang@csie.ncu.edu.tw lancw@csie.ncu.edu.tw jychung@us.ibm.com

Abstract
 Quality-of-Service (QoS) in Web services considers a
service’s non-functional characteristics during service
advertisement, discovery and composition. In this paper,
we analyze the requirements of QoS-aware Web services
and present the corresponding findings as well. We firstly
propose a common set of QoS attributes with formal
definitions to encourage the creation of a general QoS
model for Web services. Based on the attributes, we define
the process of QoS-aware service discovery and two
alternative matching criteria namely absolute and relative
matchmaking are discussed to enable flexible service
selection. Finally, we present the aggregative effects of
QoS attributes according to the formal semantics of
different workflow patterns to help service consumer
perform QoS-aware service composition.

Keyword: QoS, Web services, non-functional

1. Introductions

The widespread Internet accessibility and World Wide

Web popularity make today’s e-commerce more
complicated than it was before. How to deliver application
functionality in a timely, flexible and trustworthy manner
has become a great challenge now. Web services emerged
along with XML technologies to help IT developers deal
with the heterogeneity among software applications. By
utilizing standards-based Web services model, it is able to
rapidly design, implement and deliver desired
functionality. Due to the characteristics of low entry cost,
low barriers and standard approaches derived from Web,
XML and Internet technologies, Web services are viewed
as an important enabling technology for the
next-generation e-commerce and Gartner Inc. [1] predicts
that there are more than 60% of businesses will adopt Web
services by 2008. The growing popularity of Web services
has resulted in an ever-evolving specification stack as

illustrated in Figure 1. Numerous specifications are
proposed for different purposes and the abundance of
overlapping specifications has led Web services
developments to an acronym hell where specifications
appear without clear added-value. Besides, the majority of
specifications highlight the way of delivering
functionalities and few are dedicated to Quality-of-Service
(QoS) concerns of Web services.
 QoS concerns of Web services concentrate the attention
on the fulfillment of non-functional attributes such as
reliability, availability, security and response time.
Because of the loosely-coupled and dynamic natures, the
adoption of Web services may suffer from several
uncertainties, for example, how to ensure that the service
will perform reliably? Is the found service available while
it is needed? How to keep confidentiality of transmitted
data? And how long the service takes for the execution? In
order to advance the prevalence of Web services without
uncertainties, it is critical to develop Web services in a
QoS-aware or trustworthy manner [2]. In this paper, we
propose developing QoS-aware Web services through
three stages including (1) creation of a general QoS model
of Web services: QoS concern in Web services should be
an end-to-end issue. Service provider and consumer
should get a consensus of the definitions of non-functional
attributes. Then it is possible for service provider and
consumer to describe the QoS characteristics and
requirements without ambiguities. (2) QoS-aware service
discovery: In additional to functional matchmaking,
another estimation algorithms or methods are required to
determine whether services are satisfied with consumer’s
QoS requirements. (3) QoS-aware service composition: In
contrast to individual QoS-aware service discovery,
service consumer needs to select constituent services in a
service composition with a global view of QoS
requirements. Based on different workflow patterns, the
overall QoS performance of a composite service will be
evaluated aggregately. The contributions of this paper
focus on analyzing the requirements of developing

- 880 -

QoS-aware Web services through proposed three stages.
Both researchers and practitioners can benefit from the
providing guidelines as well. The remaining of the paper
is organized as follows. Requirements of creating a

general QoS model of Web services are presented in
section 2. Analyses of QoS-aware service discovery and
composition are specified in section 3 and 4 respectively.
Finally, concluding remarks are described in section 5.

Figure 1. The ever-evolving stack of Web services specifications

2. QoS model of Web services

The concept of quality or Quality-of-Service (QoS)
usually has different definitions from divergent
perspectives. For example, “Quality of Service refers to
the probability of the telecommunication network meeting
a given traffic contract” [3], “The degree to which a
system, component or process meets specified
requirements” and “The degree to which a system,
component or process meets customer or user needs or
expectations” [4]. Based on the definitions, we define
QoS-aware Web services in this paper as the services
which are aware of service consumer’s functional and
non-functional requirements during service advertisement,
discovery and composition.
 In order to describe QoS-aware Web services
universally, a general service description model is
required for service advertisement. For functional
description, Web services description language (WSDL)
[5] has provided a standard model to describe service’s
functionality by separating the abstract representations of
service’s input and output messages from the concrete
descriptions of end point’s bindings. However, there is no
general QoS model to capture service’s non-functional
characteristics until now. In [6], multiple dimensions of
quality are discussed including performance, features,
reliability, conformance, durability, serviceability,
aesthetics and perceived quality. Both subjective concerns
such as the image of brand name and objectively
measurable attributes such as mean time to first failure
(MTFF) are involved. By considering the features of Web

services, various QoS attributes including availability,
security, response time, throughput, cost, reliability,
fidelity and trust etc. have been defined [7; 8; 9]. But the
definitions of the attributes are informal such that service
consumer and provider may interpret the attributes
ambiguously. In order to help in creating a general QoS
description model, we synthesize fore-mentioned works to
propose a common set of QoS attributes as illustrated in
Table 1 and the formal definitions of each QoS attribute
are specified in the following.

Table 1. A common set of QoS attributes
Dimensions Attributes

Response time Performance Throughput
Reliability Dependability Availability

Cost Price
Authentication
Confidentiality
Integrity Security

Non-repudiation

(1) Response time: Temporal issue is a basic

performance concern in Web services and response
time is a typical performance attribute that refers to
the elapsed time between the end of issuing a request
to a service and the beginning of the service’s
response. The evaluation of a service’s response time
for a request R can be represented as shown below.
Response time(R) = Execution time(R) + Waiting time(R)

- 881 -

The execution time is the duration of performing the
service functionality and the waiting time is the
amount of time for all possible mediate events such as
message transmissions between service consumer and
provider. However, the evaluation of response time is
controversial due to the uncertain network
fluctuations. From service consumer perspective, it is
meaningful to take response time as the duration
starting at issuing the request and ending with the
receipt of service’s response. But from service
provider perspective, response time is taken as same
as execution time and it does not include all possible
mediate events, which are seen as incontrollable
variables during service execution. The gap comes
from the fact that service provider has no way to
precisely describe the response time of offered service
if waiting time is considered. In order to minimize the
gap, a flexible description method is required to
balance the two viewpoints.

(2) Throughput: It is critical for service consumer to
know the amount of work that a service can perform
in a given period of time, for example, number of
requests per second. In some scenarios, e.g. airline
booking, intensive inquiries are often dumped in a
short time so it is important for service consumer to
ensure whether service’s throughput can fulfill the
volume of anticipated requests. The throughput of a
service S can be represented as follows.

Throughput(S) = Number of requests / per unit-of-time
According to service’s granularity, the unit-of-time
may vary from mini-second to minute. Similarly, a
flexible description method is required to deal with
different granularity.

(3) Reliability: One of the most significant QoS
concerns of Web services is service’s reliability which
refers to the ability of successfully performing
functions for a specified period of time. The ability is
able to be quantitatively defined by the probability of
if a service can deliver the functionality successfully.
Reliability of a service S can be represented by the
failure rate as shown below.

Reliability(S) = 1 – Failure rate(S)
The failure rate of a service could be measured by the
ratio of execution time and mean time between
failures (MTBF). Service provider may need to carry
out plenty of simulations to obtain accurate
probabilistic value of offered service’s reliability.

(4) Availability: The degree to which a service is
operational and accessible when it is required for use
determines the service’s availability. The availability
of a service S can be defined by the proportion of the
service’s uptime to downtime as follows.

Availability(S) = Uptime(S) / Uptime(S) + Downtime(S)
The uptime and downtime of a service can be
measured by the mean time between failures (MTBF)

and mean time to recovery (MTTR) respectively.
(5) Price: The expense for a service execution is always

associated with the value of service’s functionality.
The higher rates a service takes the more complicated
functions the service provides. The price for
executing a service S can be represented as follows.

Price(S) = Execution fee(S) / per request
Generally, both functional and non-functional
performance fulfillment of services with charge
should be guaranteed to service consumer by service
level agreements (SLA), which legally bind contracts
to reach the promises during service execution.

(6) Authentication: As Web services emerge
progressively on the horizon, how to benefit from the
adoption of this new technology without
compromising security concerns is crucial to its
extensive use in the near future. In terms of Web
services, authentication is the capability of
distinguishing a man from a fraud remotely. In order
to stop an intruder from masquerading as service
provider, it should be able for service consumer to
identify service provider’s identity of. The
authentication capability of a service S and the
corresponding service provider P can be represented
as shown below.

Authentication(S, P) = Security token(S, P)
The security token is a collection of claims that are
declarations made by service provider to specify his
name, identity and his supportive authentication
methods.

(7) Confidentiality: How to keep eavesdropper from
reading transmitted data is another important security
concern in Web services. Enterprises may utilize Web
services to carry out business transactions and
sensitive business data may be exposed to anyone
who can access Internet. Enterprises as service
consumer will not adopt Web services until the
confidentiality of transmitted data is promised. The
capability of confidentiality guarantee offered by a
service S can be represented as follows.

Confidentiality(S) = Security token(S)
The security token encompasses all supportive
encryption and decryption methods.

(8) Integrity: Considering that many significant data
may be carried by Web services, it should be able for
the receiver of a message to verify that the message
has not been modified in transit. In other words, an
intruder should not be able to substitute a fake
message for a legitimate one. The integrity promise of
a service S can be represented as follows.

Integrity(S) = Security token(S)
The security token specifies a collection of claims
that demonstrate the service’s capability of integrity
promise.

(9) Non-repudiation: Since Web services are seen as an

- 882 -

important enabling technology for next-generation
e-business, all exchanged messages between service
consumer and provider are a kind of agreement. A
sender should not be able to falsely deny later that he
sent a message. The capability of non-repudiation
warranty provided by a service S can be represented
as follows.

Non-repudiation(S) = Security token(S)
The security token includes all supportive methods
for non-repudiation warranty.

 The fore-mentioned attributes present a common QoS
view in Web services and they are helpful to the creation
of a general QoS description model. However, there are
still some controversies over the definitions of QoS
attributes, e.g. the calculation of response time and
different charge styles for a service execution etc. How to
design a general, flexible and extensible QoS description
model has become a pressing issue toward the
developments of QoS-aware Web services.

3. QoS-aware service discovery

For matching Web services with service consumer’s

functional requirements, UDDI [10] offers consumer a
systematical way to find out desired services through
centralized service registry. There are three kinds of
information about a registered Web service, i.e. white
pages include information of name and contact details,
yellow pages provide a categorization upon business and
service types and green pages specify technical data of the
services. Based on these three encoding information,
UDDI can support keyword or directory-based service
discovery. However, such service selection process is
suitable for text based attributes e.g. service name and
provider name. It is insufficient to handling numeric QoS
attributes, for example, response time and reliability etc.
 According to different data types of service attributes,
the service selection process of QoS-aware service
discovery is carried out within 3 steps as illustrated in
Figure 2.

Figure 2. Process of QoS-aware service discovery

(1) Functional matchmaking: Based on service
consumer’s functional requirements, a set of services is

selected through UDDI mechanism. (2) Text based QoS
matchmaking: The set of services from step 1 is further
matched with text based QoS attributes by UDDI
mechanism. (3) Numeric based QoS matchmaking: By
comparing the numeric values of service attribute and
QoS requirement, a set of services which fulfill the
request is selected finally. Based on the process, we
propose two alternative matching criteria namely absolute
and relative matching for service consumer as shown in
Table 2.

Table 2. Two alternative matching criteria

Criterion
Data type

Absolute
matching

Relative
matching

Text UDDI Enhanced UDDI

Numeric Arithmetic
subtraction

multiple criteria
decision making
(MCDM) with
weighted sum
model (WSM)

(1) Absolute matching for text: We apply keyword or

directory-based service discovery as UDDI to
perform exact match against text based attributes
including functional characteristics and authentication,
confidentiality, integrity and non-repudiation.

(2) Absolute matching for numeric: In terms of
numeric attribute, we define a service is satisfied with
a request under absolute matching if the value of
service’s positive/negative attribute is greater/lower
or equal to the request value as shown below.

q.value >= r.value for positive QoS attributes
q.value <= r.value for negative QoS attributes

Positive attribute indicates that the higher the attribute
value is the better the quality is, e.g. throughput,
reliability and availability. Inversely, negative
attributes including response time and price signify
that the higher the attribute value is the worse the
quality is.

(3) Relative matching for text: In contrast to the
absolute matching, the relative matchmaking provides
a flexible keyword or directory-based service
discovery with wild character to carry out partial
match. Wild characters can be put in any places to
express more general queries.

(4) Relative matching for numeric: Instead of exactly
specifying required performance of attributes, relative
matching allows service consumer allocating
weighted values for each attribute and setting a
threshold score to issue a loose request. By using the
multiple criteria decision making (MCDM) technique
with weighted sum model (WSM), the relative
matching for numeric is performed within 2 steps as
shown below [11].
(i) Normalization of attribute value: The value of

- 883 -

each numeric attribute q of a candidate service is
normalized with the following equations.

)1(
0min.max.1

0min.max.
min.max.
min..

. Eq
qqif

qqif
qq
qvalueq

valueq
⎪⎩

⎪
⎨

⎧

=−

≠−
−
−

=

)2(
0min.max.1

0min.max.
min.max.

.max.
. Eq

qqif

qqif
qq
valueqq

valueq
⎪⎩

⎪
⎨

⎧

=−

≠−
−
−

=

Positive and negative attributes are normalized
by Eq(1) and Eq(2) respectively. Besides, q.max
and q.min are the maximal and minimum value
of the attribute among all candidate services.

(ii) Weighting and sum of each numeric attributes:
Each normalized numeric attributes q of a
candidate service s multiplies the corresponding
weight w given by service consumer will
generate an overall evaluation score of the
service as shown below.

∑ ∗= wvalueqsScore .)(
Services whose evaluation scores are greater or
equal to the threshold score given by service
consumer will be selected.

The current UDDI standard has offered the partial
match functionality with wild characters but it still focuses
on functional matchmaking only. A QoS-aware service
discovery solution should not only take care of various
data types of QoS attributes but also be able to provide
flexible service selection methods accordingly.

4. QoS-aware service composition

 Service composition is the process of creating new
functionalities by aggregating several independent
services. In the process, a lot of workflow patterns are
applied to shape these services into a new composite
service with added value functionalities. From service
consumer’s perspective, the QoS performance of a
composite service is perceived aggregately from the
performance of its constituent service. Thus service
selection for a QoS-aware service composition should be
carried out with a global view of QoS attributes [12]. In
general, the service selection for QoS-aware service
composition depends on numeric attribute only and there
is no aggregative effect of text based attribute. For
example, the performance of two interrelated services’

authentication capability is always perceived consistently
regardless of their composing patterns. The process of
QoS-aware service composition is carried out through 3
steps as illustrated in Figure 3.

Figure 3. Process of QoS-aware service
composition

(1) Candidates selection: Numerous candidate services

for a service composition are retrieved by functional
and text based QoS matchmaking as specified
previously.

(2) Performance aggregation: Based on the formal
semantics of workflow patterns and the definitions of
QoS attributes, the aggregative performance of a
composite service can be derived from the
performance of its constituent services. Figure 4
illustrates some useful workflow patterns with Petri
nets [13] and the corresponding aggregative effect of
numeric attributes is shown in Table 3.

(3) Composite service matchmaking: According to the
performance aggregation, a set of services for a
service composition can be taken as an atomic service
and service consumer can apply numeric based QoS
matchmaking as specified in Section 3 to determine
the best set of services.

Figure 4. Workflow patterns with Petri nets

Table 3. Aggregative effect of numeric QoS attributes

Attributes
Patterns Response time Throughput Reliability Availability Price

Sequence x1 + x2 min{x1, x2} x1 * x2 x1 * x2 x1 + x2

Split x1 + max{x2,…xn} min{x1, …xn} x1 * …* xn x1 * …* xn x1 +…+ xn

Split-Join x1 + max{x2,…xn-1}+ xn min{x1, …xn} x1 * …* xn x1 * …* xn x1 +…+ xn

Unordered max{x1,…xn} min{x1, …xn} x1 * …* xn x1 * …* xn x1 +…+ xn

- 884 -

Choice x1 x1 x1 x1 x1

If-Then-Else x1 + max{x2, x3} min{x1, x2, x3} x1 * min{x2, x3} x1 * min{x2, x3} x1 + max{x2, x3}
Iterate n * (x1 + x2) min{x1, x2} (x1 * x2)n (x1 * x2)n n * (x1 + x2)
Repeat-Until n * x1 + x2 min{x1, x2} x1

 n * x2 x1
 n * x2 n * x1 + x2

Jaeger et al [14] also identify the aggregation of numerical
QoS dimensions for some workflow patterns but their
aggregation may be arguable due to the missing formal
semantics of the workflow patterns. On the other hand,
Zeng et al [15] discussed the computational complexity
problem of choosing the best set of services. The volume
of candidate sets of services for a service composition is
proportional to the amount of available candidate services
and thus the computational complexity of a brute-force
estimation method will be exponential. Hence, a solution
of QoS-aware service composition should define formal
semantics of different workflow patterns and provide the
corresponding aggregative effects as well. Besides, how to
help service consumer select the best set of services for a
service composition with low computational complexity
should also be considered.

5. Conclusions

 The development of QoS-aware Web services is a
popular research issue as it is seen as the foundation
toward trustworthy Web services. The promise of
providing services with certain QoS performance will
make service consumer be more confident of adopting
Web services for critical tasks. In order to benefit both
service provider and service consumer, a general QoS
model of Web services is required. The model should
balance different viewpoints from the two parties and
provide formal definitions of each QoS attribute such that
there is no ambiguity in interpreting attributes. Based on
the model, QoS-aware service discovery should provide
flexible service selection methods. According to the
characteristics of different attributes, distinct
matchmakings can be applied to service consumer’s
requirements correspondingly. For complicated composite
services, QoS-aware service composition should take care
of various workflow patterns. Based on the formal
semantics of different patterns, the corresponding
aggregative effects of each QoS attribute can be derived
from constituent services and the selection of candidate
sets of services for a service composition can be done by
QoS-aware service discovery mechanisms. In the near
future, we will focus on verifying the promise of
providing QoS-aware Web services. The guarantee of QoS
performance should be proved during service execution.
The challenges of service monitoring and failure recovery
will be worth studying.

Acknowledgement

This work is supported by National Science Council, Taiwan
under grants NSC 94-2524-S-008-001.

References
[1] M. Pezzini. (2003, Oct.). Composite Applications Head

Toward the Mainstream. Gartner, Inc. Stamford, U.S.A.
[Online]. Available: http://www.gartner.com

[2] J. Zhang, “Trustworthy Web Services: Actions for Now,”
IEEE IT Professional, vol. 7, issue 1, Jan. / Feb. 2005, pp.
32-36.

[3] Wikipedia. (2006, Aug.). Quality of Service. [Online].
Available : http://en.wikipedia.org/wiki/Quality of_service

[4] F. Jay and R. Mayer, “IEEE Standard Glossary of
Software Engineering Terminology,” IEEE Std
610.12-1990, Sep. 28, 1990.

[5] R. Chinnici et al. (ed.) (2006, Mar.). Web Services
Description Language (WSDL) Version 2.0 Part 1: Core
Language. WWW Consortium. [Online]. Available:
http://www.w3.org/TR/wsdl20/

[6] D. A. Garvin, “Managing quality: The strategic and
competitive edge,” New York: Free Press, 1988, pp.49-68.

[7] D. A. Menasce, “QoS Issues in Web Services,” IEEE
Internet Computing, vol. 6, issue 6, Nov. / Dec. 2002, pp.
72-75.

[8] J. Cardoso, J. Miller, A. Sheth and J. Arnold, “Modeling
Quality of Service for Workflows and Web Service
Processes,” LSDIS lab, Computer Science, University of
Georgia, Tech. Rep. #02-002, Dec. 2002.

[9] J. O’sullivan, D. Edmond and A. T. Hofstede, “What’s in a
service? Towards Accurate Description of Non-Functional
Service Properties,” Kluwer Academic Distributed and
Parallel Databases, vol. 12, 2002, pp. 117-133.

[10] L. Clement et al. (2004, Oct.). UDDI Version 3.0.2. OASIS.
[Online]. Available: http://uddi.org/pubs/uddi_v3.htm.

[11] C.L. Hwang and K. Yoon, “Multiple attribute decision
making: Methods and applications,” Springer-Verlag,
1981.

[12] D. A. Menasce, “Composing Web Services: A QoS View,”
IEEE Internet Computing, vol. 8, issue 6, Nov. / Dec.
2004, pp. 88-90.

[13] S.J.H. Yang, B.C.W. Lan and J.Y. Chung, “A New
Approach for Context Aware SOA,” in Proc. of IEEE
International conference on e-Technology, e-Commerce
and e-Service (EEE), 2005, pp. 438-443.

[14] M.C. Jaeger, G. Rojec-Goldmann and G. Muhl, “QoS
aggregation for Web service composition using workflow
patterns,” in Proc. of IEEE International conference on
Enterprise Distributed Object Computing (EDOC), 2004,
pp. 149-159.

[15] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J.
Kalagnanam and H. Chang, “QoS-Aware Middleware for
Web Services Composition,” IEEE Transaction on
Software Engineering, vol. 30, no. 5, May 2004, pp.
311-327.

- 885 -

