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Abstract� In 1999, Wiener took advantage of continued fraction
technique to attack short secret-exponent RSA, which is called the
Wiener attack. This attack is the �rst proof to show that we can not
choose too short secret-exponent d when using RSA. The secret-
exponent d should be chosen larger than N0:25. After then, in
1997, Verheul and Tilborg proposed an extension of the Wiener
attack which can work well over Wiener's boundary. Suppose r =
log(d=N0:25), their technique costs an exhaustive search for 2r+8
bits in order to attack d which is smaller than N0:252r . In this
paper, we provide a simpler method to demonstrate a result which
is similar to Verheul and Tilborg's . With our method it only costs
an exhaustive search for 2r + 2 bits, which is 6-bit fewer than
Verheul and Tilborg's 2r + 8 bits

1: INTRODUCTIONS
Since 1978, RSA [8] is the most popular cryptosystem in

the world. It is not only built into several operating systems,
like Microsoft, Apple, Sun, and Novell, but is also used for
securing web traf�c, E-mail, smart cards or IC cards. The
security of RSA is based on the hardness of factoring problem.
Generally we apply 1024-bit RSA modulus to archive the goal
of factoring-infeasible, but such large modulus also causes
the inef�cient in encryption and decryption of RSA. The
encryption and decryption in RSA require taking heavy ex-
ponential multiplications modulus of a large integer N which
is the product of two large primes p and q. Without loss of
generality, we assume N is of 1024 bits, and p and q are
of 512 bits. Since the RSA encryption and decryption time
are roughly proportional to the number of bits in public and
secret exponents respectively, many practical issues have been
considered when implementing RSA such as how to reduce the
encryption time (or signature-veri�cation time), how to reduce
the decryption time (or signature-generation time) [9][10].
To reduce the encryption time (or the signature-veri�cation

time), one may wish to use a small public-exponent e. The
smallest possible value for e is 3, however, it has been proven
to be insecure against some small public-exponent attacks [6].
A more widely accepted and used public-exponent is e =
216+1 = 65537. On the other hand, to reduce the decryption
time (or the signature-generation time), one may also wish to
use a short secret-exponent d. However, the use of short secret-
exponent encounters a more serious security problem due to
some powerful short secret-exponent attacks [12][11][2][5].
One of the most famous attacks on short secret-exponent
RSA, which is called the Wiener attack, was proposed by
Wiener [12] in 1990. He showed that choosing too short secret-

exponent is insecure by taking advantage of continue fraction
technique. Thus the Wiener attack is also called the continued
fraction attack. Indeed, instances of RSA with secret-exponent
d < N0:25 can be ef�ciently broken by the Wiener attack. This
result had been improved by Boneh & Durfee [2] in 1998.
They took advantage of lattice reduction technique and showed
that instance of RSA with d < N0:292 should be considered
insecure. Although their method is heuristic, the experiments
demonstrate the effectiveness of the attack.
In 1997, Verheul and Tilborg [11] extend the boundary of

the Wiener attack. They showed that there is still some infor-
mation available for larger value of d. Suppose d is larger than
N0:25 and smaller than N0:252r, where r = log(d=N0:25).
Their method requires to do an exhaustive search for about
2r + 8 bits while after applying the Wiener attack. Consider
the currently computational ability, suppose we can process
complexity up to 264. This implies Verheul and Tilborg's
technique can extend Wiener's boundary up to 28 bits.
In this paper, we improve Verheul and Tilborg's result to

the case of doing exhaustive search for about 2r + 2 bits by
a simpler way. With our method, we reduce 6 bits exhaustive
search while compared with Verheul and Tilborg's result, i.e.
2r + 8 bits. Thus our method is more ef�cient in extracting
the secret-exponent d while d < N0:252r.
The remainder of this paper is organized as follows: In

Section 2, we brie�y review some basic results we will use
in this paper, includes continued fraction, the Wiener attack
and so on. In section 3, we introduce the technique of Verheul
and Tilborg's extension. Next, we show our result similar to
Verheul and Tilborg's result in Section 4. Finally, we have a
conclusion and provide some future work.

2: PRELIMINARY
2.1. Continued Fractions
We review the de�nition of the continued fraction and a

theorem we will use later in the paper. The detail of the
theorem can be referenced in [7].

De�nition 1: For any two positive integers a and b, with
a < b and gcd(a; b) = 1, the rational number can be
represented as the following form:

a

b
=

1

a1 +
1

a2+:::+
1
an
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for some index n, where ai's are positive integers. We
write a

b = (a1; a2; :::; an) for simplicity. Besides, we call
(a1; a2; :::; ai) the i'th convergent of the continued fraction
expansion of ab :

Theorem 2: Suppose a
b is a rational number with postive

integers a and b and gcd(a; b) = 1, where a < b. Suppose
there are two unknown co-prime integers x and y satisfying����ab � xy

���� < 1

2y2

, then x
y equals one of the convergents of the contiued fraction

expression of ab .

2.2. The Wiener attack
In 1990, Wiener [12] observed that RSA equation ed =

k'(N) + 1 can be rewritten as the form:���� e

'(N)
� k
d

���� = ���� 1

d'(N)

���� : (1)

He replaced e
'(N) in (1) with

e
N and considered the following

inequality: ���� eN � k
d

���� < 1

2d2
: (2)

Note that if the inequality (2) holds, then k
d equals one of

the convergents of the continued fraction expression of e
N

according to Theorem 2. Since gcd(k; d) = 1, we can actually
extract out the values of d and k. Thus we have to �nd the
suf�cient condition to satisfy (2). Since N1=2 t p t q and
d t k. We have���� eN � k

d

���� = Nk � ed
Nd

=
k (p+ q � 1)� 1

Nd
t

1

N1=2
: (3)

From (3), we have to set 1
N1=2 <

1
2d2 and this leads to the

condition: d < 1
3N

0:25 to achieve the suf�cient condition of
Theorem 1 to satisfy the condition of (2). To summarize,
ignoring the small constant 1

3 we usually set the boundary
of the Wiener attack: d > N0:25 to defend the continued
fraction attack. However, what can we do if the secret-
exponent exceeds N0:25 slightly? In 1997, Verheul and Tilborg
[11] solved this problem. They provide a technique to slightly
extend Wiener's boundary. We will show their technique in
Section 3.

2.3. Weger's idea
Recently, Weger [13] showed that choosing an RSA mod-

ulus with a small difference of its prime factors yields im-
provements on the small private exponent attacks, such as
Wiener [12] and Bobeh-Durfee attack [2]. The main idea is
adding one more variable � = jp� qj into these attacking-
formula deductions. Under his consideration, he use more
suitable estimate of '(N), that is N + 1� 2N1=2 rather than
N . Thus the smaller the � is, the closer between '(N) and
N + 1� 2N1=2 are. In thie paper, we follow Weger's idea to
take N + 1� 2N1=2 to estimate '(N) rather than N .

3: VERHEUL AND TILBORG'S EXTENSION ON THE
WIENER ATTACK

The extension of the Wiener attack was proposed by Verheul
and Van Tilborg [11]. When d > N0:25, their attack needs
to do an exhaustive search of about 2r + 8 bits, where
r = log

�
d=N0:25

�
. We simply describe their technique in the

following.
From RSA equation: ed = 1 + k(p � 1)(q � 1), we know

ed � 1 mod (lcm (p� 1; q � 1)). Thus there exists an integer
K such that ed = 1 + K (lcm (p� 1; q � 1)). Now we set
G = gcd (p� 1; q � 1), then ed = 1 + K (p�1)(q�1)

G . After
dividing two sides by dpq we get

e
pq = 1

dpq +K
(p�1)(q�1)

Gdpq

= 1
dpq +

K
dG

pq�p�q+1
pq

= K
dG (1� �)

, where � = p+q�1�G
K

pq .
Let kg =

K
G and gcd(k; g) = 1 then e

pq =
k
dg (1� �).

We brie�y review some properties of continued fractions
as a result of the extension is established on them. First we
de�ne the following notations:
Notation 3:

x = ha0; a1; : : : ; am�1; ami
xi = pi

qi
= ha0; a1; : : : ; aii

y = hb0; b1; : : : ; bn�1; bni
yi = ui

vi
= hb0; b1; : : : ; bii

The basic property of continued fractoin satis�es the fol-
lowing relations. It is not hard to prove these relations by
induction [7].

(�1)i = pi�1qi � piqi�1,
p0 = a0; q0 = 1,
p1 = a1a0 + 1; q1 = a1,
pi = aipi�1 + pi�2, where i � 2,
qi = aiqi�1 + qi�2, wherei � 2.

Proposition 4: De�ne A hi+ 1i = hai+1; ai+2; : : : ; ami.
For all i such that 2 � i < m, we have the following property

x = pm
qm
=
(ai+ 1

A(i+1) )pi�1+pi�2
(ai+ 1

A(i+1) )qi�1+qi�2
Theorem 5: Let x < y and u be an upper bound of jy � xj.

Suppose j is the largest odd number in f1; : : : ;mg satisfying
the inequality jy � xj � u � jxj � xj. Then either xj = y
or all partial quotients and convergents of x and y coincide
up to j. Moreover, if qj denotes the denominator of the j-th
convergent of x, then the largest odd number j in f1; : : : ;mg,
such that qj � 1

uj
is a lower bound of j.

Lemma 6: Suppose 0 < x < y, and let � be a number
such that x = (1 � �)y. Let �max(�min) be an upper bound
(non-negative lower bound) of �, then jy � xj � �max

1��minx.
Also, if y � 1 , then jy � xj � �max.
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Afterward we want to estimate �max and �min. Without loss
of generality we assume that p < q. Then

� = p+q�1�G=K
pq

�= p+q
n

�
p
2pq
n =

p
2p
n

and

� = p+q�1�G=K
pq

� 2q
pq =

2
p t

4p
n

By above lemma we can estimate the boundary of u. Note
that u satis�es jy � xj � u � jxj � xj.
Writing x = e=pq with CF-representation

< a0; a1; : : : ; am > and successive convergents xi = pi=qi
and y = k=dg with CF-representation < b0; b1; : : : ; bn >.
Suppose the index j has the same meaning mentioned above,
that is the largest odd number in f1; : : : ;mg satisfying the
inequality jy � xj � u � jxj � xj. Since x < y, it follows
that aj+1 � bj+1. We suppose bj+1 = aj+1 +�. Further, let
B (j + 2) denote hbj+2; : : : ; bni and write B (j + 2) = U=V
with gcd (U; V ) = 1. Note that U � V . Combining above
notations we have

bj+1 +
1

B (j + 2)
= aj+1 +�+

V

U
:

>From Proposition 4 and the equalities of the convergents up
to j, we have the following proposition:

k
dg =

(aj+1+�+V
U )pj+pj�1

(aj+1+�+V
U )qj+qj�1

=
(aj+1pj+pj�1)+(�+V

U )pj
(aj+1qj+qj�1)+(�+V

U )qj

=
pj+1+(�+V

U )pj
qj+1+(�+V

U )qj

=
pj+1U+(U�+V )pj
qj+1U+(U�+V )qj

We claim that the numerator, denoted by N , and the de-
nominator, denoted by D, of the right hand side of this
equality are relatively prime, so N = k and D = dg.
Using the estimate u = 4p

n
be upper bound of jy � xj. By

de�nition of j, we know jxj+2 � xj < 4p
n
. On the other

hand, writing A (j + 3) = haj+3; : : : ; ani, and thus having
aj+3 � A (j + 3) � aj+3 + 1. Thus we have

jx� xj+2j =
���A(j+3)pj+2+pj+1A(j+3)qj+2+qj+1

� pj+2
qj+2

���
=

��� pj+1qj+2�pj+2qj+1
qj+2(A(j+3)qj+2+qj+1)

���
=

��� 1
qj+2(A(j+3)qj+2+qj+1)

���
�

��� 1
qj+2((aj+3+1)qj+2+qj+1)

��� :
In [4], the distribution of the partial quotients ai of a random
real x = ha0; a1; : : : ; ani is given. Approximately ai will be 1
with probability 41:5%, ai will be 2 with probability 17%, etc.
Since qj+2 = aj+2qj+1 + qj we can estimate qj+2 = 2qj+1:
And from

jx� xj+2j �
���� 1

qj+2 ((aj+3 + 1) qj+2 + qj+1)

����

, we get 4p
n
> jx� xj+2j � 1

10q2j+1
: Then we conclude that

qj+1 >
1

7
N0:25 >

1

23
N0:25.

Finally, since g is small and very likely be 1 or 2, the number
of bits of dg is that of d plus one. To estimate the complexity
of our method for d > N0:25, we de�ne log d = logN0:25+r .
Now we can derive ln2N0:25� 3+ logU � logN0:25+ r+1
from taking log to two side of qj+1U � dg. And then logU �
r + 4. Since V � U , the same inequality applies to V , that
is log V � r + 4. Now because the value of � is small in
general, from

k

dg
=
pj+1U + (U�+ V ) pj
qj+1U + (U�+ V ) qj

we conclude the uncertainty of k
dg is about 2r + 8 bits. So

we just need to do an exhaustive search for about 2r+ 8 bits
to �nd the correct value of k

dg .
In this paper, we proposed another look of Verheul and

Tilborg's improvement. In our method we only need to do
an exhaustive search of about 2r + 2 bits, where r =
log
�
d=N0:25

�
.

4: ANOTHER LOOK ON VERHEUL AND TILBORG'S
IMPROVEMENT

4.1. Improvement of the Wiener attack

Take the idea of estimate of p+q proposed by Weger [13],
in the remainder of this paper we use N+1�2N1=2 to denote
our estimate of '(N). That is

'(N) � N + 1� 2N1=2:

First, we prove if we use N + 1 � 2N1=2 instead of N
to estimate '(N) on the Wiener attack, then the range of
vulnerable secret-exponent d will be more widespread. Note
that the suf�cient condition that the Wiener attack can work
is ���� eN � k

d

���� < 1

2d2
. (4)

Besides, from RSA equation: ed = k(p � 1)(q � 1) + 1 we
have ���� e

'(N)
� k
d

���� = 1

'(N)d
.

It is not dif�cult to prove that
��� e
'(N) �

k
d

��� < 1
2d2 , thus

the Wiener attack can succeed if we know the exact value
of '(N). This observation also point out if we use more
suitable estimation of '(N) instead of original N , then the
range of vulnerable secret-exponent will be more widespread.
Also, Weger's result [13]provides the same point and thus he
considers the variable � = jp� qj to his attack. Note that the
smaller the � is, the closer between 2N1=2 and p+ q are.
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Now we replace N in (4) by N +1� 2N1=2. The new suf-
�cient condition that Continued-Fraction Theorem (Theorem
1) can work is ���� e

N + 1� 2N1=2
� k
d

���� < 1

2d2
.

Here we show how much extension of vulnerable secret-
exponent if we use the better estimation N + 1 � 2N1=2 to
estimate'(N) rather than N . Our question can be presented
in the following:

Question:
Consider the RSA equation: ed = k(p�1)(q�1)+1, what

range of d does it satisfy the following conditions?���� eN � k
d

���� > 1

2d2
and

���� e

N + 1� 2N1=2
� k
d

���� < 1

2d2
. (5)

The left inequality above is the suf�cient condition that the
Wiener attack fails and the right inequality is the suf�cient
condition that Theorem 1 can apply to work. Now we simplify
two inequalities in (5):
>From

�� e
N �

k
d

�� > 1
2d2 we get

kN�[k(N�p�q+1)+1]
Nd > 1

2d2 ,
which is equivalent to

2dk[(p+ q)� 1]� 2d > N . (6)

Similarly, from the right inequality in (5) we get
k(N+1�2N1=2)�[k(N�p�q+1)+1]

d(N+1�2N1=2)
< 1

2d2 , which is equivalent
to

2dk[(p+ q)� 2N1=2]� 2d < N + 1� 2N1=2. (7)

Combine (6) and (7), we have the following equivalent
conditions of (5):

N +2d < 2dk[(p+q)�1] < N +(2dk�1)(2N1=2�1)+2d.
(8)

From (5) we know the better estimation of '(N) actually
allows the widespared range of vulnerable secret-exponent
d. Even though in the representation of power of N the
boundaries are both N0:25.

4.2 Another Proof for Verheul and Tilborg's Extension
In this section we provide another proof to show Verheul and

Tilborg's result [11]. That is: for r = log
�
d=N0:25

�
, Verheul

and Tilborg's technique has to do an exhaustive search for
2r + 8 bits to extract out the secret-exponent d. Our method
need to do an exhaustive search for 2r+ 2 bits, which is less
6 bits than Verheul and Tilborg's.
In (8), if we replace N1=2 by p+q

2 , the right side of formula
(8) changes to

2dk(p+ q � 1) < 2dk(p+ q � 1) + '(N) + 2d

, which is always hold for any secret-exponent d. Here we
de�ne another variable "�", where � = p+q

2 �N1=2 to denote
the difference between p+q

2 and estimation N1=2. Thus we
have N1=2 = p+q

2 � �. Applying "N1=2 = p+q
2 � �" to the

right side of inequality (8) we get

2dk(p+ q � 1)
< N + (2dk � 1) (2(p+q2 � �)� 1) + 2d
= 2dk(p+ q � 1) + '(N)� 2�(2dk � 1) + 2d

(9)

Therefore, we conclude (9) is equivalent to

2�(2dk � 1)� d < '(N): (10)

Now we have a conclusion that the suf�cient condition
that Continued Fraction Theorem can work is to satisfy the
inquuality (10). Note that we have to take 2N1=2 to replace
p+ q in the case of estimation ' (N) = (N + 1)� (p+ q) t
(N + 1)�2N1=2. However, if we do exhaustive search to �nd
the most signi�cant bits (MSBs) of �, then the estimation of
' (N) will be more correct and the boundary of vulnerable
secret-exponent d can be extended again.
Take 1024-bit RSA modulus N for example. Suppose we

do exhaustive search to �nd s MSBs (most signi�cant bit)
of � de�ned in (10). Write � = (2512�s)�1 + �2, where
�1 2

�
2s�1; 2s

�
, and �2 2

�
2511�s; 2512�s

�
. With high

probability � is about 512 bits due to � = p+q
2 � N1=2,

which is a difference of two 512-bit numbers. Note that �1 is
known by exhaustive search and �2 is still an unknown item.
However, with such information �1, ' (N) can be estimated
more correctly since p+q

2 t N1=2+(2512�s)�1, which is also
closer to p+q

2 than the original estimation N1=2. Conclusively,
we have the new estimation of '(N), that is

'(N) t (N + 1)� 2[N1=2 + (2512�s)�1]. (11)

Now we take the new estimation of '(N) into (4) to replace
N . That is,���� e

(N + 1)� 2[N1=2 + (2512�s)�1]
� k
d

���� < 1

2d2
(12)

Similar simpli�cation of (12) like above, we have��� e
(N+1)�2[N1=2+(2512�s)�1]

� k
d

���
=

���� ed�k((N+1)�2[N1=2+(2512�s)�1])
d((N+1)�2[N1=2+(2512�s)�1])

����
=

k(p+q)�k(2[N1=2+(2512�s)�1])�1
d((N+1)�2[N1=2+(2512�s)�1])

= k(2�2)�1
d('(N)+2�2)

< 1
2d2

(13)

Thus the inequality in (10) is equivalent to

2d (k (2�2)� 1) < '(N) + 2�2 (14)

Rearranging (14) to the form of (10) we get

2�2(2dk � 1)� 2d < '(N): (15)
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Now, the quantity of �2 is about (512� s) bits. In order
to satisfy the inequality in (15), we know the bit-length of
2�2(2dk � 1) in the left side of (15) is

1 + (512� s) + 1 + jldj+ jlkj

which is mainly determined by 2�2�2dk, where jldj and jlkj
means the bit-length of d and k respectively. Furthermore,the
bit-length of '(N) is 1024. We have to set

1 + (512� s) + 1 + jldj+ jlkj < 1024: (16)

Note that we can assume jldj = jlkj because the bit-length
of d and k are almost the same with high probability in the
key-generation algorithm of RSA. Thus we suppose jldj =
jlkj = 256 + r. i.e., the secret-exponent d exceeds 256 bits
(N0:25) more r bits. Applying to (15) we have

1 + (512� s) + (1 + 2(256 + t)) < 1024

, which is equivalent to

2r + 2 < s. (17)

With the above inequality of (17) we get a result that to extend
the Wiener's boundary r bits, we only have to do an exhaustive
search for about 2r + 2 bits, where r = log

�
d=N0:25

�
.

Compared with Verheul and Tilborg's result [11], which costs
an exhaustive search for 2r + 8 bits, our result is 6 bits
fewer than Verheul and Tilborg's. Thus it is more ef�cient
to applying our method on the extension of the Wiener attack
to extract the secret-exponent.
Take the current computational ability for example, we

suppose the complexity that the current computer can work is
264, that means we can brute search for any number whose bit-
length less than 64. Apply 2r+8 = 64 to Verheul and Tilborg's
result, we get r = 64�8

2 = 28 bits.This means the secret-
exponent should be chosen larger than

�
logN0:25

�
+ 28 bits.

But with our result: 2r + 2 = 64, we extend r = 64�2
2 = 31

bits, which is more 3 bits than the 28 bits. Therefore we claim
our extension method is better than Verheul and Tilborg's.

5: CONCLUSION AND FUTURE WORK
In this paper we propose a method to mutually prove

Verheul and Tilborg's improvement on the extension of the
Wiener attack. Our method costs only an exhaustive search
for about 2r+2 bits , which is 6 bits fewer than Verheul and
Tilborg's result, i.e., 2r + 8 bits.
An open problem has been mentioned many times in the

past research. Whether exists a better method to estimate the
value of '(N)? Currently we usually use N + 1 � 2N1=2

to estimate '(N) roughly. If we can estimate '(N) more
correctly, then the boundary of the Wiener attack will be raised
again.
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