
CONTENT-AWARE FAST MOTION ESTIMATION ALGORITHM

Yi-Wen Chen, Ming-Ho Hsiao, Hua-Tsung Chen, Chi-Yu Liu, Suh-Yin Lee
College of Computer Science, National Chiao Tung University

E-Mail: {ewchen, mhhsiao huatsung, liucy, sylee}@csie.nctu.edu.tw

ABSTRACT
In this paper, we propose the Content-Aware Fast

Motion Estimation Algorithm (CAFME) that reduces
computation of motion estimation (ME) while maintains
almost the same coding efficiency. Motion estimation
can be divided into two phases, searching phase and
matching phase. In searching phase, we propose the
Simple Dynamic Search Range algorithm (SDSR) based
on video characteristics to reduce the number of search
points (SP). In matching phase, we integrate the
Successive Elimination Algorithm (SEA) and the
integral frame to develop a new SEA for H.264/AVC
video compression standard, called Successive
Elimination Algorithm with Integral Frame (SEAIF).
Besides, based on sum of absolute difference (SAD), we
also propose the Early Termination Algorithm (ETA) to
terminate motion estimation of current block early.

We implement in H.264/AVC reference software
JM9.4 and the experimental results show that our
proposed algorithm can reduce the number of search
points about 93.1%, encoding time about 42%, while
maintains almost the same bitrate and PSNR

1. Introduction

Block matching based motion estimation (ME) and
compensation is a fundamental process in international
video compression standards, such as MPEG-1,
MPEG-2, MPEG-4, ITU-T H.263, and H.264, which
can efficiently remove temporal redundancy. Since a
ME module is usually the most computational intensive
part in a typical video encoder (about 50%~90% of the
entire system), the efficient ME module is needed.

In recent years, many fast motion estimation
algorithms have been proposed. We divide these
algorithms into three categories. The first one is to
follow some search patterns, the second one is to reduce
matching complexity, and the last one is to adjust search
window size. The traditional fast motion estimation
algorithms, like Three-Step Search (TSS) [1] and
Diamond Search (DS) [2], are classified into the first
category. They usually cannot perform well for all kinds
of motion activity. The pixel decimation algorithm must
determine the tradeoff between accuracy and
computational cost in block matching. The Successive
Elimination Algorithm (SEA) [3] is a lossless approach.
It can avoid unnecessary SAD computation. However, it
may suffer from substantial overhead, complex
hardware design and coding efficiency degradation. The
Window Follower Algorithm (WFA) [7] is classified

into the third category algorithm which can reduce the
number of search points but it needs thresholds and is
not suitable for sudden motion change.

Because the drawbacks of previous works, we
propose the Content-Aware Fast Motion Estimation
(CAFME) algorithm to overcome these drawbacks. The
CAFME consists of the Simple Dynamic Search Range
algorithm (SDSR), Successive Elimination Algorithm
with Integral Frame (SEAIF), and Early Termination
algorithm (ETA). The SDSR adjusts search range
adaptively according to motion activity and performs
well regardless of low or high motion. The SEAIF is
designed for H.264/AVC visual compression standard
and the ETA terminates the search process if the
up-to-date block is good enough. Although the CAFME
consists of the SDSR, SEAIF, and ETA, these three
algorithms can be used independently. The experimental
result shows that the proposed SDSR can find a very
good search range for each block and maintain almost
the same coding efficiency compared with Full Search.

The paper is organized as follows. We present the
details of the there parts, SDSR, SEAIF and ETA of the
proposed Content-Aware Fast Motion Estimation
Algorithm in section2, section3 and section4,
respectively. Section 5 reports the significant
experimental results. Finally, the conclusions are given
in section 6

2. Simple Dynamic Search Range (SDSR)

Due to the variation of coded video type, we can
adjust the best suitable SR for a frame or a block in
motion estimation such that the true MVs can be found,
the local minimum problem can be avoided and the
computational cost of motion estimation can be reduced
dramatically.

In order to adjust search range for motion estimation,
some approaches have already been implemented in
DSWA [5], AFSBM [6], MWFA [8], and MAS [9].
These approaches may be classified into block matching
error based and motion vector based. The block
matching error is usually measured in MSD, MAD or
SAD. The block matching error represents the degree of
matching between current block and candidate block.
The value of block matching error is determined by
many factors including motion activity, texture, and
quantization parameter. See figure1, for example. From
frame 220, the values of SAD are much higher than the
rest. The reason is the complicated video texture, not the
motion activity. However, from frame 150 to 170, the
values of SAD are raised sharply due to the sudden
motion change instead of video texture. Consequently,

- 1001 -

mailto:@csie.nctu.edu.tw

Table 1. Simple Dynamic Search Range Algorithm

the approaches based on block matching error are
usually unsuitable to evaluate the motion activity.

On the contrary, motion vector represents the motion
activity more precisely [9]. For this reason, the
proposed SDSR algorithm is based on motion vector
information. Due to the wide variations of motion
activity in video sequences and different motion activity
in various areas within a single frame, we would like to
adjust search range on both frame level and block level.
The adjustments of SR in frame level and block level
are based on temporal correlation and spatial correlation
of motion field, respectively.

The proposed Simple Dynamic Search Range
algorithm is described as table 1 shows. Because the
prediction of MV may not be zero MV in motion
estimation, the displacement of MV may be larger than

the SR. Hence the SR in frame level may increase more
than one unit between frames. The adjustment of SR in
block level ensures that the SR is large enough to find
the true MV.

3. Successive Elimination Algorithm with
Integral Frame (SEAIF)

To eliminate the unnecessary matching in matching

phase in motion estimation of H.264/ACV standard, we
propose Successive Elimination Algorithm with Integral
Frame (SEAIF) which integrates SEA and integral
frame. SEA and integral frame are described in the
following subsections.

3.1 Successive Elimination Algorithm (SEA)

In order to reduce the computation of SAD in the
process of motion estimation, Successive Elimination
Algorithm (SEA) [3] was proposed. The SEA is a
lossless fast motion estimation algorithm based on
mathematical inequality. The main idea of SEA can be
shown in the following equation.

SAD f f m n f i j f i m j n

f i j f i m j n

BS BS m n

sea f f m n

c r c r
j

N

i

M

c
j

N

i

M

r
j

N

i

M

c r

c r

(, (,)) (,) (,)

(,) (,)

(,)

= − + +

≥ − + +

≡ −

≡

=

−

=

−

=

−

=

−

=

−

=

−

∑∑

∑∑ ∑∑

0

1

0

1

0

1

0

1

0

1

0

1

 (, (,)) (1)

, in which BSc and BSr are the block sums in the current
block and candidate block, respectively. Because SAD(fc,
fr(m, n)) is equal to or larger than sea(fc, fr(m, n)), if
sea(fc, fr(m, n)) is larger than the current minimum SAD,
SAD(fc, fr(m, n)) must be larger than the current
minimum SAD. Therefore, computation of SAD(fc, fr(m,
n)) can be skipped.

To compute sea value is easier than to compute SAD,
because BSc has to be calculated only once and BSr(m, n)
can be derived from the previous value of BSr(m－1, n).
Hence, SEA can reduce the computation of SAD
efficiently.

Step 1. the search range in frame level
SR_FRAMEk is determined by

SR FRAME MV MVk xt yt_ max[,]= +

∈

1

t all blocks in (k -1)th framel q

Step 2. Adjust the search range in macroblock
level.
s ∈﹛The left, above left, above, above right

blocks of tth block﹜
If any of neighbor blocks is not available
MV MAX MV MV SR FRAMEt xs ys k_ max[max[,], _]=

 Else
MV MAX MV MVt xs ys_ max[,]=

Step 3. Determine the final search range for tth
block SR_BLOCK

If (_ _)
 _ = _

 _

MV MAX SR FRAME
SR BLOCK MV MAX

Else
SR BLOCK MV MAX SR FRAME MV MAX

t k

t t

t t k t

≥
+

= + −

1

2_ (_ _) /

If (R_ BLOCK 1)
 _ =

 if (R_ BLOCK max search range)
 _ max search range

t

t

S
SR BLOCK

Else S
SR BLOCK

t

t

≤

≥
=

1

Foreman C IF SR32 S ADavg=1350

0

500

1000

1500

2000

2500

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

16
9

18
2

19
5

20
8

22
1

23
4

24
7

26
0

27
3

28
6

29
9

F rame

S
A

D

SAD

Figure 1. SAD of foreman CIF frame by frame

- 1002 -

X

Y

p (0, 0)

f (p, q)

If (p, q)

q

Figure 2 Integral frame

3.2 Integral Frame

Viola et al. [13] proposed the integral frame
technique for sum of pixel values within any rectangular
area in a frame. Given a video frame f, the value of its
integral frame at pixel (p, q) is denoted as If (p, q), as
defined in the equation (2.5).

I p q f i jf
j

q

i

p

(,) (,)=
==

∑∑
00

 (2)

The integral frame is shown in figure 2. The
computational cost for an integral frame is described as
follows. Let Rf (p, q) be the cumulative row sum of pixel
values in frame f. The definitions are:

R p q f i q

R q

I p

R p q R p q f p q

I p q I p q R p q

f
i

p

f

f

f f

f f f

(,) (,)

(,)

(,)

(,) (,) (,)

(,) (,) (,)

=

− =

− =

= − +

= − +

=
∑

0

1 0

1 0

1

1

 (3)

 (4)

 (5)

 (6)

 (7)

By using equation (6) and (7) recursively, one can
compute the integral frame If in one pass. For a frame
with W x H pixels, 2WH additions are required to
compute an integral frame. The sum of pixel values in
any rectangular block in a frame can be computed by
three arithmetic operations. For example, as illustrated
in figure 3, the BS of block D can be computed by
equation (8).

BS D f i j

I p q I r q I p s I r s
j s

q

i r

p

f f f f

() (,)

(,) (,) (,) (,)

=

− − +
= += +
∑∑

11

 = (8)

In H.264/AVC standard, rate-distortion optimization
(RDO) is recommended for mode selection. The modes
include nine intra modes and seven inter mode. In
inter-coding, 41 motion estimations is required for a
16x16 macroblock while the RDO is enabled. (One for
16x16, two for 16x8, two for 8x16, four for 8x8, eight
for 8x4, eight for 4x8, and sixteen for 4x4) Therefore,
the ME cost increases dramatically.

In order to reduce the intensive computation caused
by RDO. In the H.264/AVC reference software JM

X

Y

p (0, 0)

q

A

B

C

D

r

s

Figure 3 Computation of block sum

9.4[14], a Fast Full Pel Search algorithm is
implemented by reusing SAD values of the smallest 4x4
block. Before a new macroblock is motion estimated, it
computes the SAD values for all 4x4 block at all search
points within the search window. After that, it merges
the SAD values to get the SAD values of larger blocks.
In this way, computation of SAD for a macroblock with
all block size enabled is about equal to the computation
of SAD with only a 16x16 block.

We take the concept of reusing SAD and integrate it
into our proposed SEAIF. The main idea of the SEAIF
for H.264/AVC is to reuse sea values and SAD values.

3.3 Reusing of sea value

For each search point, calculate the sea values of
sixteen 4x4 blocks of the current macroblock by using
integral frame technique proposed by Viola et al. [13].
These sea values of 4x4 blocks are the basis for sea
values of larger blocks. Then the sea values of larger
blocks are derived from these sea values of 4x4 blocks,
described as follows.
n For 8x4 or 4x8 block, sum up sea values of two

4x4 blocks.
n For 8x8 block, sum up sea values of two 8x4

blocks.
n For 16x8 or 8x16 block, sum up sea values of two

8x8 blocks.
n For 16x16 block, sum up sea values of two 16x8

blocks.
In this way, we can get all sea values of all blocks.

These sea values of larger blocks are always equal to or
larger than the sea values computed directly from BS of
corresponding blocks. Therefore, the sea values of
larger blocks derived from 4x4 block sea values are
lower bound of SAD and the more computations of
SAD can be skipped.

3.4 Reusing of SAD value

In SEAIF, if the sea value is less than the current
minimum SAD value, complete calculation of SAD will
be preformed. In H.264/AVC, overlapped blocks are
used in motion estimation. In order to reduce the
computations of SAD, we take the 4x4 block SAD
values as the basis of the larger block SAD values. In

- 1003 -

this way, there is no redundant computation of SAD.
The following is the approach

3.5 Analysis of complexity

The reason of adopting SEA is to reduce the
computational cost in block matching measurement.
The overhead of SEA should be considered and
analyzed. The overheads of SEA are mainly the
computations of block sum. In SEA [3], Salari et al.
proposed a fast algorithm to compute the block sums.
We compare three approaches and present the analysis
of overhead as follows.

Let W denote image width, H image height, M block
width, and N block height. Operations required for
block sums of all M x N blocks in a reference frame are:
n Straightforward approach:

Number of block sum in a frame: (W－M + 1)(H
－N + 1)
Operations required for a block sum: MN－1
Total cost: (MN－1) (W－M + 1)(H－N + 1)
Approximate cost: MNWH

n SEA approach in [3]:
Total cost: 4WH－(H－N)(M + 3)－3W(N + 1)
Approximate cost: 4WH

n Integral frame approach:
Operations required for an integral frame: 2WH
Operations required for all block sum: ≈ 2(W－
M + 1)(H－N + 1)
Total cost: 2WH + 2(W－M + 1)(H－N + 1)
Approximate cost: 4WH

Although integral frame approach and the SEA
approach in [3] have approximately the same
complexity, there is an advantage in integral frame
approach. Integral frame approach is flexible to get
block sum of any rectangle block. For example, if we
want to use the multilevel SEA for each block size in
H.264/AVC, the implementation will be easier with
integral frame approach. (Note that our approach uses
the tighter lower bound in SEA, not multilevel SEA.)
Computing msea value of 16x16 block with level L=0
only needs 5 operations (5 = 3 for get BS + 1
subtraction + 1 absolute). Nevertheless, merging 16 4x4
sea values to get the sea value of 16x16 block with level
L=0 needs 15 addition operations while the sea value is
tighter lower bound. Trade-off is between the tighter
lower bound and computational complexity.

4. Early Termination Algorithm (ETA)

The early termination scheme defines a criterion to
early terminate the search processing to help existing the
motion search algorithms by further reducing the amount of
computation. In [10], Siou-Shen Lin et al. introduce the
variance of motion vectors. They show the probability is
about 79% in average when the variance of the current
block and neighbor blocks is smaller than 3. They
consider that it is high probability that the current block
and the neighbor blocks might belong to the same object

when the variance of the motion vectors in the neighbor
blocks is small.

We exploit and modify the variance of motion
vectors proposed in [10] to classify the motion activity
of current block and neighbor blocks into simple motion
and complex motion. The variance of motion vectors is
defined in equation (10).
MV MV MV MV MVmean a b c d= + + +() / 4 (9)

MV MV MV MV MV

MV MV MV MV
a mean b mean

c mean d mean

var = − + −

+ − + − (10)

If any of neighbor blocks is not available, MVvar is
set to a large value (999999). For accuracy, we compare
the MVvar with 5 instead of 3 to classify motion activity,
shown in equation (11).
If(5)

Else (11)

MV
Mactivity simple motion

Mactivity complex motion

var

_

_

≤
=

=

If motion activity is simple motion, we consider the
current block and neighbor blocks are in the same object
for simple. On the contrary, the current block and
neighbor blocks are considered not in the same block.
The SAD values of blocks within the same object
should be similar and the SAD values of blocks not in
the same object should be different largely. Based on
the concept, the lower bound for the condition of
termination is determined in equation (12).

If(activity s)
 SAD_threshold SAD_prediction
Else (12)
 SAD_threshold SAD_prediction SAD_std_dev

M imple motion==
=

= −

_

The SAD_prediction and SAD_std_dev represent the

prediction of SAD of current block and the standard
deviation of SAD of all blocks in the previous frame,
respectively. The definitions are defined in equation (13)
and (15):
SAD_prediction SAD SAD SAD SAD (13)a b c d= + + +() / 4

SAD_ mean (14)=
=

−

∑1

0

1

Number MB
SADt

t

Number MB

_

_

SAD_std_dev (15)=
−

−
F
HG

I
KJ=

−

∑1
1 0

1
2

1 2

M
SAD SAD meant

t

M

(_)
/

The SADt is the SAD value of tth block in a frame.
Number_MB is the total number of MB in a frame. If
there is no any neighbor block near the current block,
SAD_prediction is set to a small value (-999999). Note
that the SAD_prediction and SAD_std_dev are
calculated for 16x16 macroblock. In H.264/AVC
standard, there are seven block sizes used in motion
estimation. We determine the SAD_prediction and
SAD_std_dev for other block size according to the area
occupied by the block.

Finally, the condition of termination is tested when a
new up-to-date best-matched block is found. If the SAD

- 1004 -

value of the up-to-date block is equal to or smaller than
SAD_threshold, the motion estimation is terminated.

5. EXPERIMENTAL RESULTS AND

DISSCUSIONS

In this chapter, we present the experimental results of
the proposed approaches. We modify the H.264/AVC
reference software JM 9.4 and add the proposed
algorithms in it. In the experiments, we observe the
number of search points for each block to measure the
performance of the proposed algorithms. We also
measure the coding efficiency. In order to measure the
coding efficiency, we compare the bitrates of encoded
sequences with the same quantization parameter and
disabling rate control. Besides, we exploit the SAD
value as a criterion to measure whether the determined
search range is large enough. Finally, we compare the
total encoding time to measure the improvement in
practical situation.

The descriptions of test video sequences are listed in
table 2. Except specifically described parameters, the
following parameters are applied to all experiments.
Note that the maximum search range is set to 24.
n Platform: H.264/AVC reference software JM 9.4

[14]
n Machine: Athlon XP 1700+ with 512 MB

memory
n Profile: baseline
n Level: 3.0
n Block match algorithm (BMA): Full Search
n Group of picture (GOP): 15
n Quantization parameter (QP): 36
n Frame rate (FPS): 30
n Max search range: 24
n Frame structure: IPPP
n Number of reference frame: 1
n Hadamard transform: enable
n All block size (16x16, 16x8, 8x16, 8x8, 8x4, 4x8,

and 4x4): enable
n Rate-distortion optimized (RDO): enable
n Fast ME (UMHexagonS) [15]: disable
n Fast mode selection [16]: disable
n Rate control (RC): disable

In the experiments, we compare our proposed
algorithms with Fast Full Pel Search which is
implemented by reusing SAD values of the smallest 4x4
block. Before a new macroblock is motion estimated, it
computes the SAD values for all 4x4 block at all search
points within the search window. After that, it merges
the SAD values to get the SAD values of larger blocks.
In this way, computation of SAD for a macroblock with
all block size enabled is about equal to the computation
of SAD with only a 16x16 block.

Note that the performances of the Fast Full Pel
Search and a conventional Full Search are the same but
the Fast Full Pel Search is faster than a conventional
Full Search in H.264/AVC. In the following
experiments, we denote the Fast Full Pel Search as FFS.

ID Name Resolution # of
Frames

Motion
activity

A Foreman QCIF 150 Medium

B Mobile QCIF 150 Slow

C Coastguard QCIF 150 Medium

D Foreman CIF 150 Medium

E Tempete CIF 150 Slow,
Zooming

F Flower CIF 90 Slow

G Stefan SIF 150 High

H Football CIF 90 Very High

I Table
tennis SIF 90

Medium,
Scene

change,
Zooming

Table 2 Descriptions of test video sequences

In the table 3, 4 and 5, the number of search points
can be reduced more than 90% in most of the sequences.
Especially, for the slow and median motion, the reduced
rates of search points are about 99%. For high motion,
the reduced rates of search points should be lower. The
reduced rate of search points is 73.8% for football
sequence. In average, the increment of bit rate in
CAFME is very small, about 0.26%. The total encoding
time is reduced about 41.9%, and the number of SP is
reduced about 93.1%.

Number of Search Points Sequence

ID FFS CAFME
Improvement

A 2401 37 － 98.5%

B 2401 12 － 99.5%

C 2401 29 － 98.8%

D 2401 100 － 95.8%

E 2401 69 － 97.1%

F 2401 199 － 91.7%

G 2401 184 － 92.3%

H 2401 628 － 73.8%

I 2401 224 － 90.7%

Average － 93.1%

Table 3 Search Points of FFS and CAFME

- 1005 -

Bitrates (Kbps) Sequence
ID FFS CAFME

Improvement

A 69.203 69.118 － 0.12%

B 173.016 173.285 ＋ 0.16%

C 76.134 75.862 － 0.36%

D 188.773 188.784 ＋ 0.005%

E 425.392 425.955 ＋ 0.13%

F 669.312 670.211 ＋ 0.13%

G 505.450 504.782 － 0.13%

H 413.301 419.357 ＋ 1.5%

I 256.259 258.939 ＋ 1.04%

Average ＋ 0.26%

Table 4 Bitrates of FFS and CAFME

Total Encoding Time
(Second) Sequence

Name
FFS CAFME

Improvement

A 156 69 － 56%

B 151 77 － 49%

C 151 68 － 55%

D 602 314 － 48%

E 583 318 － 45%

F 374 224 － 40%

G 508 324 － 36%

H 363 325 － 10%

I 298 184 － 38%

Table 5 Total Encoding Time of FFS and CAFME

6. Conclusion

The motion estimation plays an important role in the
video compression. However, motion estimation
module is usually the most computational intensive part
in a typical video encoder. Hence, the efficient motion
estimation algorithm is needed. We proposed a fast
algorithm called Content-Aware Fast Motion Estimation
Algorithm (CAFME). CAFME consists of the Simple
Dynamic Search Range (SDSR), Successive
Elimination Algorithm with Integral Frame (SEAIF),
and Early Termination Algorithm (ETA). The SDSR
adjusts the search range for every block adaptively. The
SEAIF reduces the number of computation of SAD
without loss. The ETA terminates the search process
early when finding a good candidate block.

CAFME outperforms the FFS in the experiments and
the overall encoding time is reduced about 41.9%.

REFERENCES
[1] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T.

Ishiguro, “Motion Compensated Interframe Coding for
Video Conferencing” Proc. Nat. Telecommun. Conf.,
pp. G5.3.1–5.3.5, New Orleans, LA, Nov. 29–Dec. 3
1981.

[2] S. Zhu and K.-K. Ma, “A New Diamond Search
Algorithm for Fast Block-Matching Motion
Estimation”, IEEE Trans. on Image Processing,
Volume 9, Issue 2, pp. 287–290, Feb. 2000.

[3] W. Li and E. Salari, “Successive Elimination
Algorithm for Motion Estimation” IEEE Trans. on
Image Processing, Volume 4, Issue 1, pp. 105–107,
Jan. 1995.

[4] X.Q. Gao, C.J. Duanmu, and C.R. Zou, “A Multilevel
Successive Elimination Algorithm for Block Matching
Motion Estimation” IEEE Trans. on Image Processing ,
Volume 9, Issue 3, pp. 501–504, Mar. 2000.

[5] L.-W. Lee, J.-F. Wang, J.-Y. Lee, and J.-D.
Shie, ”Dynamic Search-Window Adjustment and
Interlaced Search for Block-Matching Algorithm”
IEEE Trans. on Circuits and Systems for Video
Technology, Volume 3, Issue 1, pp. 85–87, Feb. 1993.

[6] J. Feng, K.-T. Lo, H. Mehrpour, and A.E. Karbowiak,
“Adaptive Block Matching Motion Estimation
Algorithm for Video Coding” IEE Electronics Letters,
Volume 31, Issue 18, pp. 1542–1543, Aug. 31 1995.

[7] J. Minocha and N.-R. Shanbhag, “A Low Power
Data-Adaptive Motion Estimation Algorithm” IEEE
3rd Workshop on Multimedia Signal Processing, pp.
685–690, Sep. 13-15 1999.

[8] S. Saponara and L. Fanucci, ”Data-Adaptive Motion
Estimation Algorithm and VLSI Architecture Design
for Low-Power Video Systems” IEE Proc. on
Computers and Digital Techniques, Volume 151,
Issue 1, pp. 51–59, Jan. 15 2004.

[9] P.-I. Hosur, “Motion Adaptive Search for Fast Motion
Estimation” IEEE Trans. on Consumer Electronics,
Volume 49, Issue 4, pp. 1330–1340, Nov. 2003.

[10] S.-S. Lin, P.-C. Tseng, C.-P. Lin, and L.-G. Chen,
“Multi-Mode Content-Aware Motion Estimation
Algorithm for Power-Aware Video Coding Systems”
IEEE Workshop on Signal Processing Systems, pp.
239–244, 13-15 Oct. 2004.

[11] V.-A. Nguyen and Y.-P. Tan, “Fast Block-Based
Motion Estimation Using Integral Frames”, IEEE
Signal Processing Letters, Volume 11, Issue 9, pp.
744–747, Sep. 2004.

[12] K.-P. Lim, G. Sullivan, and T. Wiegand, “Text
Description of Joint Model Reference Encoding
Methods and Decoding Concealment Methods” ITU-T,
Doc. #JVT-N046, Jan. 2005.

[13] P. Viola and M.-J. Jones, “Robust Real-Time Object
Detection” Cambridge Res. Lab., Tech. Rep. CRL
2001/01, Feb. 2001.

[14] H.264/AVC reference software,
http://ftp3.itu.ch/av-arch/jvt-site/reference_software/
and http://iphome.hhi.de/suehring/tml/

[15] Z. Chen, P. Zhou, Y. He, and Y. Chen, “Fast Integer
Pel and Fractional Pel Motion Estimation for JVT”
ITU-T, Doc. #JVT-F017, Dec. 2002.

[16] B. Jeon and J. Lee, “Fast Mode Decision for
H.264“ ITU-T, Doc. #JVT-J033, Dec. 2003.

- 1006 -

http://ftp3.itu.ch/av-arch/jvt-site/reference_software/
http://iphome.hhi.de/suehring/tml/

