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ABSTRACT 
 

In this paper, we present a novel neural network 
called Support Vector Clustering Neural Network 
(SVCNN). The theoretical foundation of the network is 
based on Support Vector Clustering (SVC). The training 
method of SVC is in a batch learning mode which has a 
drawback that the solution of the Lagrange multipliers 
is difficult to find when the training data become large. 
To overcome this drawback, we propose a mechanism, 
namely Support Vector Identifying Support Vector 
(SVISV), and develop its associated algorithm whose 
training method adopts an incremental learning mode. 
In each step, only one or few new data attend the SVC 
calculation. Then the data that just act as support 
vectors will remain to continuously attend the 
calculation in the next step. Until all the training data 
have been clustered, the learning process is terminated. 
The clustering result is further to construct a SVCNN. 
Using the mechanism SVISV, the SVCNN can determine 
whether an unknown data belongs to one cluster that 
has been already built in the network. The simulation 
outcomes reveal that our SVISV algorithm is slightly 
faster than the traditional SVC while support vectors 
are the minorities in a data set.  
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1. Introduction 
 

Support Vector Clustering (SVC) is a 
non-parametric clustering algorithm that has been 
proposed in 2001 [1], [2]. Unlike parametric [3] and 
hierarchical [4] clustering algorithms, SVC uses the 
Lagrange multipliers to obtain the support vectors (SVs) 
that can be employed to describe the contour of each 
cluster. Unfortunately, when the data set becomes large, 
solving the Lagrange formulation is more difficult. To 
surmount this, Ban and Abe presented a “Spatially 
Chunking Support Vector Clustering Algorithm” to 
speed up the learning process [5]. They segmented the 

original data set into several sub ones. Each of the sub 
data sets will be trained by SVC and then combined 
with the other individual results to acquire the global 
clustering one. In this paper, our goal is also to solve the 
large data problem arisen from using SVC. Based on the 
inherent property of SVC, we propose a mechanism 
called Support Vector Identifying Support Vector 
(SVISV), and then develop its associated algorithm 
such that we can alter the training method used in SVC 
from the batch learning mode into an incremental one. 
Furthermore, we extend this algorithm to create a novel 
neural network which is called Support Vector 
Clustering Neural Network (SVCNN). Such a network 
can determine whether an unknown data belongs to one 
of the clusters which have been built in the network. 
From the simulation outcomes, we can see that both 
SVC and the SVISV algorithm can obtain the same 
clustering result but only SVs remain in the latter. For a 
large data set, the SVISV algorithm can save much 
training time except that most of the training data are 
SVs. In addition to this, the SVCNN can successfully 
classify an unknown data.  
 
 
2. Support Vector Clustering 
 

The SVC scheme maps the training data from a data 
space into a high dimensional feature space by a 
nonlinear transform .Φ  In the feature space, such 
transform seeks the smallest sphere of radius R which 
encloses all of the mapping data. Of the sphere, some 
mapping data lie on the surface, which play the role of 
SVs. The goal of SVC is to find the SVs that constitute 
the contour of a cluster. The mathematical formulation 
of SVC is briefly described as follows. 

 
Let },...,2,1|{ Nii == xX  be a data set in the data 

space  The smallest sphere that we want to look 
for can be written as the following constraints: 

.dℜ
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where •  represents the Euclidian distance and a is 
the center of the sphere. 
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To solve Equation (1), the Lagrange formulation is 
included below, 
 

∑ = −Φ−−= N
i iiRRL 1

222 ))(( βax          (2) 

where iβ is a Lagrange multiplier.  
Following the SV approaches [6], [7], the SVC 

scheme adopts a kernel function to achieve a nonlinear 
transformation. In order to attain a tight contour of a 
cluster, the Gaussian kernel function is verified to use 
[8], which is expressed as   
 

2

),( jiq
ji eK xxxx −−
=                    (3) 

 

where q is the Gaussian window. 
Figure 1 illustrates a data set in a data space mapped 

into a feature space via a nonlinear transform using the 
Gaussian kernel function. In the feature space, we seek 
the smallest sphere of radius R enclosing all of the 
mapping data. Some of the data lying on the surface of 
the sphere are SVs and they have the same distance from 
their locations to the center of the sphere. These SVs 
inversely mapped into the data space will constitute the 
contour of a cluster. 

 

Φ 

a

 
 

Figure 1  Illustration of a data set in a data space nonlinearly 
mapped into a feature space.  

 
 

3. The Support Vector Clustering Neural 
Network 

 
In this section, we will first introduce the mechanism 

SVISV. According to this, the SVISV algorithm is then 
developed, which can change the training method of the 
SVC from the batch learning mode into an incremental 
one. Moreover, this algorithm is extended to set up a 

novel network, SVCNN, which can determine whether 
an unknown data belongs to one cluster that has been 
built in the network. 

 
 

3.1 The support vector identifying support 
vector 

 
The training method of SVC is typically in a batch 

learning mode; that is, all of the training data are put 
together to solve their corresponding Lagrange 
multipliers simultaneously. However, when the training 
data become large, finding the solution of the Lagrange 
multipliers will be more and more difficult. In this paper, 
we propose an incremental learning mode algorithm to 
improve the above drawback. This algorithm is based 
on the mechanism SVISV which inspires us to further 
develop the SVCNN that can determine whether an 
unknown data belongs to one of the clusters which have 
been already built in the SVCNN. The following states 
the mechanism SVISV. 

Assume a cluster C that has been established by 
SVC and its mapping data in form of a sphere of radius 
R in the feature space. To classify a new data, it is 
together with all the current data of C to perform the 
clustering by SVC and obtains a new radius R' in the 
feature space. According to the absolute difference 
value |R-R'|, we can judge whether the new data belongs 
to C. The principle of the decision rule is described as 
follows. The R' will be very close or equal to R if the 
new data locates inside C or exactly on its contour; that 
is, the new data is within C. In this case, the new data is 
mapped from a data space to a feature space, its 
mapping data then lies inside the sphere or on its 
surface automatically. In theory, the sphere can enclose 
this new data without changing its size. On the contrary, 
the R' will be larger than R when the new data lies 
outside C. In such a case, the new data does not belong 
to C. Therefore, the sphere must extend its size to 
enclose the mapping data. This mechanism is called 
SVISV that we can compare the absolute difference 
value between R and R' to determine whether the new 
data belongs to a given cluster. What follows 
demonstrates the mechanism SVISV. 

A given cluster C is shown in Figure 2(a), which has 
been grouped by SVC. The rectangle and triangle 
represent two distinct existing data and the dashed line 
represents the contour, respectively. We use the cross to 
stand for the new data, which will be categorized into C 
by the SVC calculation in the following four cases. 
Figure 2(b) shows the new data lies inside C and Figure 
2(c) shows the new data exactly lies on its contour. 
Each of these situations means that the new data 
belongs to C. It can be obviously seen that the new 
obtained radius R' is close to the radius R of C. Figure 
2(d) shows the new data lies outside the original C and 
this data becomes a SV. The corresponding radius R' 
will be larger than R since the mapping data is outside 
the sphere. Figure 2(e) also shows the new data does not 
belong to C, but the rectangle is not still a SV since it 
lies inside the new extended cluster. 
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    (a)        (b)       (c)        (d)          (e) 
 

Figure 2  (a) A given cluster C resulting from SVC; (b)~(e) four 
different clustering results after a new data attending the 
SVC calculation. 

 
 
3.2 The SVISV algorithm 
 

We will decompose a data set into some sub sets 
to sequentially perform clustering by SVC. Initially, 
only few data are selected to form a cluster C. 
Subsequently, one new data is retrieved from the 
remainder data in and clustered by the SVC 
calculation in each step. Then only the data that are SVs 
will be kept to attend the clustering in the next step. 
Otherwise, the cross and rectangle that are not SVs will 
be deleted from the cluster C as Figures 2(b) and 2(e) 
respectively show. Until all the data in have been 
selected to perform clustering by SVC, the algorithm 
will be terminated. Figure 3 depicts the SVISV 
algorithm in pseudo codes. 

Χ

Χ

Χ

A critical problem in this SVISV algorithm is how 
to select one data to attend the clustering in each step. 
Actually, the data can be randomly selected without 
affecting the clustering result. But, in our simulation, we 
adopt a criterion that is the distance from a data point to 
the origin. For instance, the data can be selected from 
the farthest location down to the nearest one about the 
origin, and vice versa. Both of these two data input 
sequences will yield the same clustering result.  

 

/* Given a training data set consisting of N data points 
and an empty support vector set , if a data point

becomes a support vector, it will be denoted as  to 
add into . */ 

Χ
S

kx ks
S

Input: },...,2,1|{ Nkk == xΧ  
Output:   XS ⊆
 

Initialize },,{},{ 2121 ssxxS == },...,,{ 43 NxxxΧ =
For i=3 to N 
   Assign  to  kx is
   Put  into S         is
   Cluster the  by the SVC calculation S
 

   For j=1 to the cardinality of  S
      If ( is a support vector) js

         Reserve in the  js S
      Else  
         Remove from the  js S
      End if 
   End for 
End for 

 
Figure 3  The SVISV algorithm. 

 
 
3.3 The architecture of the support vector 

clustering neural network 
 

Figure 4 shows the architecture of the SVCNN. This 
network is made up of four layers: the input layer, SVC 
layer, calculation layer, and output layer. The numbers 
of the input weightings of the output layer depends on 
the number of clusters after the training data have been 
conducted by the SVISV algorithm. 
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Figure 4   The architecture of the SVCNN.
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In the input layer, the neurons labeled with “SVj” 
mean the support vectors of each cluster through the 
execution of the SVISV algorithm. The corresponding 
weighting labeled with “ jβ ” obtained from training is a 
Lagrange multiplier for each SV. And the neurons 
labeled with “data” mean the same new data attending 
the SVC calculation for every cluster in the network. 
The second layer, namely the SVC layer, performs the 
SVC calculation with regard to the new data and the 
original members of a cluster. Such clustering will 
result in a new radius of the sphere, which is recorded in 
the output weighting labeled with “R'i.” Another output 
weighting of this layer is labeled with “Ri” representing 
the radius derived from the original members of each 
cluster after training. The third layer meaning the 
computation layer calculates the absolute difference 
value between Ri and R'i which come from the SVC 
layer. The fourth layer is the output layer which sends 
out a message that whether the new data belongs to one 
of the clusters built in the network. The decision 
criterion is the value of |Ri-R'i| compared to a given 
threshold. If this value is greater than or equal to the 
threshold, it indicates that the sphere in the feature space 
has been extended. According to the mechanism SVISV, 
it implies the new data does not belong to the cluster. 
On the other hand, we can conclude that the new data 
belongs to one of existing clusters if the value of |Ri-R'i| 
is smaller than the threshold T. 
 The following is the training methodology of the 
SVCNN. The SVISV algorithm has grouped the 
original data set into n clusters, each of which only 
consists of SVs. We can regard each cluster as a new 
independent data set, and then adopt the SVC to 
re-cluster it. After clustering, every cluster will acquire 
its own parameters, including the Lagrange multiplier 

jβ  corresponding to each SV and the radius Ri. 
 
 
4. Simulation Results  
 

In this section, we give two examples of simulations 
to demonstrate the effectiveness of the SVISV 
algorithm and its associated SVCNN. The data set 
shown in Figure 5(a) is the input data used in these 
simulations. Figure 5(b) is the clustering result obtained 
from SVC using the Gaussian kernel function with 
window q = 0.1; the dashed line stands for the contour 
of a cluster where the data point enclosed with a 
diamond represents a SV. The same clustering result as 
the above but only composed of SVs shown in Figure 
5(c) can be received from the SVISV algorithm. The 
variations of radius R are shown in Figures 5(d) and 
5(e), which are acquired by different input data 
sequences. In Figure 5(d), the new data is orderly pick 
up to attend the SVC calculation from the nearest 
location to the farthest one about the origin in each step. 
Figure 5(e) shows the result from the reverse order of 
picking up the new data depicted above. As we can see, 
no matter what the sequence is chosen, the final values 

of radius R are the same. In this simulation, both of 
them are 0.7612. 
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Figure 5  (a) A given data set; (b) the clustering result obtained from 

SVC; (c) the clustering result obtained from the SVISV 
algorithm; (d) the variations of R during the new data pick 
up in an increasing order according to the distance of its 
location from the origin; (e) the variations of R during the 
new data pick up in a decreasing order. 
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In the second simulation, we apply the 
aforementioned trained result to set up a SVCNN. Three 
clusters are built in the network and each of SVs is 
represented by one neuron, respectively. Table 1 lists 
the initial values of radius R of the three clusters in the 
SVCNN. After that, we use four test data to verify the 
classification ability of the SVCNN. Table 2 shows the 
classification results, where each row records the 
simulation outcome for one test data. We can observe 
that the test data belongs to which cluster by comparing 
the value of R'i in Table 2 to that of Ri in Table 1. For 
example, say the second test data, (2,2), its absolute 
difference values associated with each cluster are 
|0.2830-0.2830|, |0.4362-0.6294|, and |0.2753-0.5750|, 
respectively. We can see that the value in the first term 
is zero, but the other two exceed zero. The SVCNN can 
classify this test data as Cluster 1 that has been built in 
the network. 

 
 

Table 1   
The Initial Value of Radius Ri for Each Cluster in the SVCNN 

 

      Cluster 
 Radius #1 #2 #3 

Ri 0.2830 0.4362 0.2753 

 
 

Table 2   
The Classification Results of the Four Test Data Using the SVCNN 

 

 

#1 #2 #3 

 
Classification 

result 
 

(6,8) 0.5766 0.4362 0.5482 Cluster 2 
(2,2) 0.2830 0.6294 0.5750 Cluster 1 
(6,5) 0.5348 0.5368 0.4644 New Cluster
(8,3) 0.5663 0.6266 0.2753 Cluster 3 

 
 

All the above simulations are executed on an IBM 
T43 2668 OAV notebook equipped with an Intel 
Pentium IV 1.73GHz processor and 1.00 GB DDR 
DRAM. The development software is MATLAB 7.0, 
which is run in Microsoft Windows XP 2002 with 
Service Pack 2. The execution time resulting in Figure 
5(b) by SVC is 0.112 second and that in Figure 5(c) by 
the SVISV algorithm is 0.087 second. From these 
outcomes, we can see that the SVISV algorithm is 
slightly faster than SVC while SVs are the minorities in 
a data set. 

 
 
 
 
 
 
 
 
 
 
 

5. Conclusions 
 

In this paper, we have presented a SVISV algorithm 
to improve the limitation in SVC; that is, when the 
training data become large, the solution of the Lagrange 
multipliers is difficult to find. Our proposed mechanism 
SVISV changes the training method in SVC from the 
batch learning mode to an incremental one. However, 
one problem is still not overcome that most of the data 
within a cluster are SVs. In this situation, when the last 
data was added to the cluster, the resulting set of the data 
will be almost the original one. It is caused by too many 
data that are just the SVs being reserved during each 
iterative step of the SVISV algorithm. Moreover, we 
extend the mechanism SVISV to develop a novel 
network called SVCNN. It can determine whether an 
unknown data belongs to one of the clusters that have 
been already built in the network. In the future, our goal 
is to make the SVCNN can recognize an object detected 
in real scene images. 
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