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ABSTRACT 
The quadratic residue (QR) codes whose code rates 

are greater than or equal 1/2 and generally have high 
error-correcting capacity are widely used in 
communication for channel coding. In this paper, a 
new decoding method is proposed for the binary QR 
codes. The key ideal behind the proposed method is to 
apply the properties of remainder decoding and the 
Gao’s algorithm. In the remainder decoding, the main 
feature of efficient compute syndromes is contained in 
our decoding method. And the modified Gao’s 
algorithm is also used in our decoding algorithm. The 
new algorithm has been verified by a software 
simulation using C++ language running through 
possible error patterns. An example of (17, 9, 5) QR 
code using this decoding algorithm is given. 
Keywords: Quadratic residue codes, remainder 
decoding, the Gao’s algorithm, error-correcting code. 
 
1: INTRODUCTIONS 
 

The QR codes which were introduced by Prange [1] 
are cyclic error-correcting codes. (7, 4, 3) and (23, 12, 7) 
QR codes are the well-known Hamming codes [2] and 
Golay code [3-5], respectively. The QR codes with 
length less than or equal to 113 have been decoding via 
varieties of decoding methods expect for the case of 
length 89. Those methods used most often to decoding 
include Sylvester resultant [6-7], GrÖbner bases [8-9] 
or the Berlekamp-Massey (BM) algorithm [10-11]. The 
first two methods can be used to solve the Newton 
identities that are non-linear multivariate equations of 
higher degrees. As the code length increasing, the first 
two methods become difficult. Furthermore, different 
QR codes use different sets of conditions to determine 
the error-locations. Consequently, it is hard to hardware 
implement. In the past, the BM algorithm was widely 
applied in decoding Reed-Solomon RS codes, 
Bose-Chaudhuri- Hocquenghem (BCH) codes, and 
many other codes. The evaluations of syndromes play 
an important role in decoding procedure. The 
remainder technique proposed by [12] could be applied 
to calculus the values of syndromes. To use BM 

algorithm in decoding QR codes, the enough 
consecutive syndromes is a necessary condition. In 
2001, a new technique to express the unknown 
syndromes as functions of known syndromes was 
developed by He et al [13]. Recently, Gao [14] 
proposed an efficient scheme to decode RS codes 
which is called the Gao’s algorithm by  Fedorenko 
[15]. 

The proposed decoding scheme replaces the 
remainder technique with the directly computing the 
values of known syndromes from the received vector. 
This technique reduces the complexity of syndromes 
calculus. Also, the method developed by He et al [13] 
is used to determine the unknown syndromes of QR 
codes. Finally, the determined syndrome polynomial is 
applied in the key equation of the Gao’s algorithm 
given in [15]. The Gao’s algorithm proposes an 
efficient condition that is suitable for QR codes. Then 
we solve the key equation using the extended Euclidean 
algorithm (EEA) to obtain the error-locator polynomial. 
After Chain search, the error locations are found. In 
order to explain the proposed decoding scheme, an 
example of (17, 9, 5) QR code up to two errors is given. 
 
2: PRELIMINARY 
 

Let n be a prime congruent to +1 or -1 (mod 8), and 
let nQ denote the set of nonzero quadratic residues 
(mod n). Let β be a primitive nth root of unity in an 
extension field of GF(2), and let the polynomial g(x) 
be defined by ∏

∈

−=
nQi

ixxg )()( β . Then g(x) is a 

polynomial with coefficient in GF(2). The binary 
cyclic code of length n with generator polynomial g(x) 
is called the (n, k, d) QR code. 

The received vector R(x) is represented as a 
polynomial is 
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)()()( where the codeword 

C(x) equals to the product of the message polynomial 
m(x) and the generator polynomial g(x), E(x) is the 
error polynomial and ii ec , belong to GF(2). 
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The error locator polynomial is defined by 

∏
=

−=
t

i
i xXxW

1
)1()( , (1)

where t is the correcting-error capacity and iX  is the 
errors location. 

The remainder polynomial r(x) with degree less 
than the degree of g(x) is of the form 

).( mod  )()( xgxrxR ≡  (2)
The syndrome is defined as )( i

i Es β=  
where 10 −≤≤ ni . There is an relation among 
syndromes, namely, 2

2 ii SS = , with subindex modulo 
n, if necessary. If i belong to nQ , the syndromes are 
called the known syndromes and have the property 

10)()( −≤≤== niforrRS ii
i ββ . (3)

Otherwise, the syndromes are called the unknown 
syndromes and are not obtained directly from the 
remainder polynomial r(x). 

In order to get the correctly values of unknown 
syndromes, a method developed by He et al [13] is 
summarized in the following. 

Assume that v errors occur in the received vector. 
Consider the matrix S(I, J) of size )1()1( +×+ vv  as 
follows: 
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where the summation of the subindices of the iS ’s is 
modulo n, and det(S(I, J))=0. If there is only one 
unknown syndrome among the entries of S(I, J), then it 
can be expressed as a function in terms of some known 
syndromes. Hence, during the decoding process, one 
can evaluate the value of the unknown syndrome with 
the information about those known syndromes. The 
relation among syndromes is used to determinate all 
values of syndromes. 

After getting all syndromes, the syndrome 
polynomial is defined to have the following forms: 

1
121)( −
−+++= n

n xSxSxSxS L . (5)
The key equation of the Gao’s algorithm [15] is as 

follows: 

⎪
⎪
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⎪
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where the interpolation polynomial T(x) is connection 
with the remainder polynomial r(x) and all the roots of 

1−nx , i. e., },,,{ 110 −nβββ L . Applying the EEA 

to 1−nx  and T(x), we obtain unique pair of 
polynomials W(x) and P(x). In the fact, the polynomial 
W(x) is the error locator polynomial. 
 

3:THE SYNDROME POLYNOMIAL 
AND THE MODIFIED KEY 
EQUATION OF THE GAO’S 
ALGORITHM 

 
This section contains the main theorem about 

syndrome polynomial and the modified key equation of 
the Gao’s algorithm which are the foundation of our 
algorithm. 

Theorem 1: Consider a binary (n, k, d) QR code. 
Let 1

1
2

21)( −
−+++= n

n xSxSxSxS L be the syndrome 
polynomial for the received vector R(x). If the weight 
v of a correctable error pattern E(x) is odd (resp., even), 
then S(x) (resp., 1+S(x)) has v distinct linear factors, 

)1( xiβ−  where β  is a primitive root of 1−nx . 
Proof: Assume that the number of errors is odd, 

i.e., 12 += uv . By the definition of syndromes 
mentioned in Section (3), we have 

ilil
iS )()( 21 ββ +=  il u )( 12 +++ βL , where  

10 −≤≤ ni . Then the evaluation of S(x) at i−β  
yields the following: 
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Since each i−β is a root of the AOP, 

01)()( 21 =+++ −−−− Lnini ββ , i.e., 1)( −− niβ   

1)()( 2 =+++ −−− ini ββ L . In (7), if jli = , 

12uj1 +≤≤ , then the jth summand equals jj ll −β  

01111))(1()(2 ≡−=+++=+++ −−− njjjj llnll
LL ββ

2) (mod . All other summands have the same value 
2))(1()(2 )( wjwjwjwjwj llllllnllll −−−−−− +=+++ βββββ L  

1)( 1 =++ −− nll wjβL , for jw ≠ , because )( wj ll −β  is 
a root of AOP. Therefore, (7) becomes 

2) (mod02110)(  uS i ≡=+++=− Lβ  if ,jli =  
121 +≤≤ uj . On the other hand, if jli ≠ , then (7) 

becomes )2(mod112111)( ≡+=+++=− uS i Lβ  
0≠ . That is, for the case of odd errors, i.e., v is odd, 

S(x) has exactly v roots in Β, i.e., )()1(
1

xSx
v

j

l j∏
=

− β , 

where ∏
=

−
v

j

l xj

1
)1( β is the error-locator polynomial 

)(xW . By a similar argument, when the number of 
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errors is even, i.e., v=2u, 0)12(1)(1 ≡−+=+ − uS iβ  
2) (mod if uj li j 21 , ≤≤= . If jli ≠ , 

then )(1 iS −+ β  02) (mod121 ≠≡+=  u . In other 
words, for the case of even errors, there are precisely v 
roots in },,,{ 110 −nβββ L  such that 1+S(x)=0, i.e., 

))(1()1()(
1

xSxxW
v

j

l j +−=∏
=

β . This completes the 

proof of Theorem 1. 

Additionally, the fact 1)1(
1

0
−=−∏

−

=

n
n

i

i xxβ  implies that 

the greatest common division (g.c.d) of S(x) (resp., 
1+S(x)) and 1−nx  is the error locator polynomial 
W(x) for v odd (resp., v even). 

The EEA is applied to find the g.c.d of two 
nonzero polynomials a, and b over GF(q). Given the 
initial conditions 

,1,0,1,, 10101 ===== −−− vuubrar  ,00 =v it 
proceeds according to the following recursion relation:  

12

1212 ,  ,

−−

−−−−

−=
−=−=

iiii

iiiiiiii

vqvv
uquurqrr

, (8)

where ii rr degdeg 1 <− . For all i, we have the relation 

iii rbvau =+ . The key equation in Equation (6) can 
be rewritten as follows. 

)()1)(()()( xPxxxTxW n =−+θ . (9)
Let polynomial S(x) (resp., 1+S(x)) replace to T(x) 

in Equation (6), when the weight v of E(x) is odd 
(resp., even). If we use the EEA to determine the g.c.d 
of T(x) and 1−nx , we generate sets of solutions 

))(),(),(( xxPxW lll θ . )(xWl  and )(xPl are useful for 
our decoding method. The particular solution )(xWl  
is the error locator polynomial when )(xPl  is degree 
less than (n+k)/2. 
 
4:THE NEW DECODING ALGORITHM 

OF QR CODES 
 

The new decoding algorithm for the QR codes and 
an example of (17, 9, 5) QR code are given in the 
section. 

If the syndromes are all zero calculated by Equation 
(3), there is no error in the received word. When the 
errors occur in received word, the decoding algorithm 
is summarized below by nine steps. 

Step1: Calculate the remainder polynomial r(x) by 
Equation (2). 

Step2: Evaluate the known syndromes by using 
Equation (3) 

Step3: Initialize by letting v=1. 
Step4: Compute the unknown syndromes by 

applying the technique in [13]. 
Step5: Solve congruence in equation (6) by 

applying the EEA to 1−nx  and T(x), and 

the unique pair of polynomials )(xPl  and 
)(xWl  are determined. 

 
Step6: Applying Chien search to find the roots of 

)(xWl . 
Step7: If there are exists v errors, go to Step9. 

Otherwise, set v=v+1. 
Step8: If v>t, stop. If not, go to Step4. 
Step9: The error polynomial is determined and then 

the received word can be corrected. 
An example of decoding (17, 9, 5) QR code is 

shown as follows to explain our proposed decoding 
algorithm in detail.  

Example: 
Let α be a root of the primitive 

polynomial 12348 ++++ xxxx  and let =β  
1517/)12( 8

αα =−  be a primitive 17st root of unity in 
)2( 8GF . The set of quadratic residue modulo 17 is 

{17 =Q 1, 2, 4, 8, 9, 13, 15, 16 } . The generator 
polynomial of binary (17, 9, 5) QR code can be written 
as 

.1)()( 87642
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xxxxxxxxg
Qi

i ++++++=−= ∏
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β  

If the information polynomial )(xm  is 

,1 )( 8642 xxxxxm ++++=  
then the code polynomial C(x) is 
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which is a multiple of g(x). We assume that the error 
polynomial E(x) is 

.)( 141 xxxE +=  
Then the received polynomial is the sum of the code 

polynomial C(x) and the error polynomial E(x), i.e. 

.1         

 )( mod  )( )()()(
632 xxx

xgxrxExCxR

+++=

≡+=
 

The decoding process developed in this paper is 
described as follows. First of all, the known syndrome 

kS  for each k in 17Q  can be calculated from the 
remainder polynomial r(x). That is, 
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0
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=
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For the binary (17, 9, 5) QR code, every known 
syndromes (resp., unknown syndromes) can be 
expressed as some power of primary syndrome 1S  
(resp., 3S ). The relations among syndromes for (17, 9, 
5) QR code is given in following: 

,,,

,,,,
128
19

64
113

32
115

16
116

8
18

4
14

2
12

SSSSSS

SSSSSSSS

===

====
 

.,,

,,,,
128
310

64
35

32
311

16
314

8
37

4
312

2
36

SSSSSS

SSSSSSSS

===

====
 

- 1072 -



By evaluating r(x) at the roots of g(x) mentioned 
above, the primary known syndrome is 087

1 ≠= αS , 
which means that there are errors occurred in the 
received polynomial r(x). 

If the number of errors is one, i.e., v=1, the primary 
unknown syndrome is 63

13 α== SS . After the 
determination of the primary syndromes 1S  and 3S , 
all syndromes can be also determined. Therefore, we 
further obtain the syndrome polynomial 

87 174 2 6 3 93 4 129 5 12 6 48 7

186 8 171 9 3 10 192 11 24 12 213 13

96 14 234 15 117 16

( )
           
           .

S x x x x x x x x
x x x x x x
x x x

α α α α α α α

α α α α α α

α α α

= + + + + + + +

+ + + + + +

+ +
 

The EEA is applied to polynomial T(x)=S(x)+1 and 
1−nx in Equation (9). This is accomplish by the 

recursive formulas Equation (8) illustrated in Table 1, 
where initially 1)(1 −=−

nxxP  and )()(0 xTxP = . 
From Table 1, one observes that 

12)(deg)(deg 4 == xPxP 132/)917( =+< . Thus, 
the computation terminates at this point for i=4, and 

.1)( 41103227
4 xxxW αα ++=  

Using Chien search to find the root of the )(4 xW , there 

is no root }160{ ≤≤ iiβ  in )(4 xW , and thus the 
assumption is not valid. 

If the number of the errors is two, the primary 
unknown syndrome 3S  can be determined by the 
technique developed in [13]. A computer search is used 
to find the following matrix of size 33×  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

01615

321

210

SSS
SSS
SSS

. 

There is only one unknown syndrome 3S  among the 
entries of this matrix. By [13], the determinant of the 
above matrix is zero. The unknown syndrome 3S  for 
the two-error case is thus 

,244

151

15
2
21621

3 α=
+

=
SS

SSSSS
S  

where 00 =S  and 87
1 α=S . Since v=2 is even, the 

polynomial T(x)=1+S(x) is used in the EEA. Similarly, 
the processing of the EEA is illustrated in Table 2. The 
computation terminates at this point for i=4, and 

87 225 2
4( ) 1W x x xα α= + + . 

There exists exactly two roots ,, -141 ββ − in )(4 xW  
via Chien search. In other words, the error polynomial 

141)( xxxe +=  is determined. 
 
5: CONCLUSION 
 

In this paper, a new decoding algorithm of the QR 
codes is proposed. We apply the remainder technique 
and the key equation of the Gao’s algorithm in our 
decoding method. The remainder technique is used in 

calculating known syndromes effectively and the key 
equation of the Gao’s algorithm supplies a successful 
condition to determine the error locator polynomial. It 
would be interesting to see if there exists a generalized 
condition to determine the number of occurred errors. 
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Fig. 1 Flowchart of new QR decoder 

 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1. Applying the EEA to find W(x) as v=1 

 
 
 
 
 
 
 
 

Table 2. Applying the EEA to find W(x) as v=2 
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