
New Quadtree Scheme Using Macro Set

I-Pin Chen

Dept. of CSIE, St. John's University
Taipei, Taiwan, ROC

E-mail: IPinChen@mail.sju.edu.tw

ABSTRACT
In computer applications such as computer–aided

part manufacturing and object collision detection,

quadtree is a popular representation for object

description. However, the space occupied by an object

quadtree is known to be rather sensitive to quadtree

position. The same object may have different shapes at

different positions, and thus different storage sizes. This

study proposes a new quadtree scheme using macro set

to solve the above problem. This scheme requires no

extra memory to store the extra split nodes. Thus the

scheme presented here is better than the quadtree in

terms of node space saving.

1: INTRODUCTION

In computer applications such as computer–aided

part manufacturing and object collision detection,

quadtree [1-3] is a popular representation for object

description because of its ease of set operations, e.g.

intersection operation. The space is partitioned in a

recursive quadtree manner, i.e., the space is divided into

four square regions, each of which is recursively divided

again into four sub-regions.

Linear quadtree [4-5] is usually used to

mathematically represent the quadtree. Four directional

codes {0,1,2,3} are used to represent the path of a

quadtree node in the quadtree. For example, the

directional code 0 indicates the north-west child node of

the parent node. Moreover, the directional codes 1, 2

and 3 indicate the north-east, south-west and south-east

child nodes of the parent node, respectively. Fig. 1

illustrates the linear quadtree representation of each

pixel in an 8x8 space. For example, the artificial object

in Fig. 2(a) contains four square blocks, which are

represented as 0, 30, 330 and 3330. The term quadtree is

used hereafter to describe the linear quadtree.

Besides these four directional codes, the quadtree

also contains a special “don’t care” code ‘-’. Overall, a

quadtree node is expressed as a series of directional

codes, qi, for a 2Nx2N space, such as qN-1…qi…q0, qi

∈{0,1,2,3,-}, N-1≥i≥0. The position of this “don’t care”

code indicates the size of its corresponding block. If qk-1

= ‘-’, then this quadtree node represents a square block

of size 2kx2k. For example, the code 3330 in Fig. 2

indicates a pixel size block; the code 30- indicates a 4x4

pixel size block. The “don’t care” code generally is not

displayed in the quadtree, that is, code 30- is shown as

code 30 only. If qk-1 = ‘-’, and qi ∈{0,1,2,3}, N-1≥i≥k,

then the subsequent directional codes, qk-2…q0, are

meaningless and thus ignored, and thus the

representation of the “don’t care” code shall not be

mixed up with the directional codes {0,1,2,3}. In other

words, five codes (four directional codes and one “don’t

care” code) exist for each qi in the quadtree

representation meaning three bits are required to

represent them.

- 1241 -

000 001 010 011 100 101 110 111

002 003 012 013 102 103 112 113

020 021 030 031 120 121 130 131

022 023 032 033 122 123 132 133

200 201 210 211 300 301 310 311

202 203 212 213 302 303 312 313

220 221 230 231 320 321 330 331

222 223 232 233 322 323 332 333

Fig. 1. The linear quadtree representation of an 8*8

space.

The space occupied by an object quadtree is known

to be rather sensitive to quadtree position (where it is

partitioned). The same object may have different shapes

(that is, results of quadtree partition) at different

positions, and thus different storage sizes. For example,

when the object in Fig. 2(a) is translated even slightly

and becomes the object in Fig. 2(b), the number of

nodes in the quadtree changes significantly, from four to

52. Moreover, the directional code of each new

generated quadtree node is re-assigned.

Since the quadtree is position-sensitive, the object

can be translated within the space to reduce total node

number. For example, assume that a quadtree exists with

52 object nodes, as displayed in Fig. 2(b), this quadtree

can be translated to an optimal position to become a

quadtree of just four nodes, as in Fig. 2(a). The

procedure of identifying the optimal position for a

quadtree can be divided into two parts. The procedure

first determines the optimal grid resolution [6], and then

determines the partition point [7]. The quadtree

generated in this fashion is called the optimal quadtree,

because the number of nodes is minimized. However,

this optimal quadtree remains position-sensitive when

the resulting quadtree is translated to another non-

optimal position.

This study proposes a new quadtree scheme using

macro set to solve the above problem. The proposal is

based on the fact that a square block remains a square

block even after translation. However, the quadtree

representation is inadequate to represent such a

translated block due to its position-sensitivity. Notably,

three bits are required to represent five codes in the

quadtree representation, meaning there are a total of

eight combinations for the three bits rather than five.

This scheme is used to establish a macro set. That is,

eight codes are used to describe quadtree node position

and size, and thus the translated quadtree node can still

be represented as a complete node, rather than as

numerous split nodes, in our scheme. This scheme is

suitable for describing the quadtree node in a dynamic

environment such as the object is frequently translated.

Furthermore, this scheme is suitable for collision

detection in robot path planning.

(a)

0

3330

330

30

- 1242 -

(b)

Fig. 2. The partition (a) before and (b) after

translation.

Since the number of quadtree nodes is minimized

after the process of quadtree normalization [7], and

since the number of nodes remains unchanged after

translation in the scheme presented here. Thus the

scheme presented here is better than the quadtree in

terms of node space saving.

The rest of this paper is organized as follows.

First, Section 2 describes this new scheme. Then the

expansion of a macro code is described, namely, the

generation of all the child nodes of a macro quadtree

node at different levels. This expansion is performed

using a group of tables presented in Section 3.

Subsequently, Section 4 then explains the expansion

process using these tables. Section 5 then describes the

collision detection. Conclusions are finally drawn in

Section 6.

2: NEW SCHEME

This section describes this new quadtree scheme

using macro set (or macro quadtree for short). The set of

macro codes {a,b,c,d} is used to supplement the original

directional code set {0,1,2,3}. Such macro codes not

only indicate the size of the corresponding block, but

also its position. For example, the macro code ‘a’

indicates that the upper-leftmost pixel in the block is the

child 0 of its parent node. Meanwhile, the other macro

codes b, c and d indicate that this pixel is the child 1, 2

and 3 of its parent node, respectively. The position of

the macro code indicates the size of this block. For

example, the macro quadtree representation 03cb

indicates a block of size 4x4 whose upper-leftmost pixel

is pixel 0321.

On the other hand, given the upper-leftmost pixel,

qA
N-1…qA

0, qA
i∈{0,1,2,3}, N-1≥i≥0, of a square block of

size 2kx2k, the macro quadtree representation of this

block can be determined as qN-1…q0. These macro codes

are determined as follows:

(1) if N-1≥i≥k then qi = qA
i;

(2) if k>i≥0 then (qi, qA
i) = (a,0), (b,1), (c,2) and (d,3)

respectively.

For example, for a square block of size 4x4 with upper-

leftmost pixel 3002, the macro quadtree representation

is 30ac.

Therefore, the artificial object in Fig. 2(a) is

represented as 0aaa, 30aa, 330a and 3330 in the new

scheme presented here. Notably, the new scheme does

not require extra memory space. If this object is

translated to become the object in Fig. 2(b), it still

contains four macro quadtree nodes, which are 0aad,

30ad, 330d and 3333 in the new scheme.

3: EXPANSION/ MODIFICATION TABLE

Here in this section we will describe the

expansion/modification tables used in the proposed

scheme. Given a square block of size 2kx2k, qP
N-1…qP

0,

- 1243 -

(1) qP
i ∈{0,1,2,3}, N-1≥i≥k,

(2) qP
i ∈{a,b,c,d}, k>i≥0,

the aim is to generate all child nodes whose macro

quadtree representation is qC
N-1…qC

0.

When the macro quadtree node is split into four

child nodes, say Child0, Child1, Child2 and Child3, the

corresponding macro code of these child nodes, qC
N-

1…qC
0 , is expanded or modified from the macro code of

their parent node qP
N-1…qP

0. First, the

expansion/modification of some examples is considered.

When macro quadtree node 330a is split into four child

nodes 3300, 3301, 3302 and 3303, (qC
3, qC

2, qC
1) of all

these child nodes remains the same as (qP
3, qP

2, qP
1)

which is (3,3,0). Meanwhile, when the macro quadtree

node 330d is split into four child nodes 3303, 3312,

3321 and 3330, the last macro code ‘d’ is expanded to

become {3,2,1,0}, that is, qC
0 of child node Child0 is 3;

qC
0 of child node Child1 is 2; and so on. Then the

preceding directional codes are also modified as

necessary. In this example, qC
1 is modified, while (qC

3,

qC
2) remains the same as (qP

3, qP
2).

Since qP
i+1 ∈{0,1,2,3} and qP

i ∈{a,b,c,d}, 16

possible combinations exist for expansion of qC
i. These

16 combinations are arranged as a table TableM of size

4x4 (see Table 1). The expansion of each macro code of

qC
i is displayed at the top of each column. For example,

macro code ‘c’ is expanded to {2,3,0,1}, which are the

directional codes of each of the four child nodes,

respectively.

The modification of each macro code of qC
i+1 is

shown in each row of the corresponding column. For

example, when qP
i+1 = 3 and qP

i = c then qC
i+1 is

expanded to {3,3,1,1}, which are the directional codes

of each of the child nodes respectively. That is, when

(qP
i+1, qP

i) = (3,c), (qC
i+1, qC

i) will be expanded to be (3,2),

(3,3), (1,0) and (1,1) respectively.

The modification of macro codes qC
i+1 is observed

to affect the preceding directional codes. The

modification of these directional codes qC
k , N-1≥k≥i+2,

is based on the tables TableB, TableC and TableD. After

the expansion according to TableM, the content of

column Action is checked. When the content is TableB

or TableC or TableD, the modification of the preceding

directional codes of each of these child nodes is

continued. The modification resembles the process

above, except that it is performed according to TableB

or TableC or TableD rather than TableM. When the

content of column Action is ‘STOP’, the modification is

completed, and the preceding directional codes, if any,

remain the same.

(a)

(b)

Fig. 3. The derivation of the expansion of (a)

combinational code ‘a’ and (b) combinational code

‘b’.

The derivation of the content of tables TableM,

32

10 1

32

10…00
10…02
10…02

12…20
12…20
12…22
12…22

01…11
01…13
01…13

03…31
03…31
03…33
03…33

23
01

23
01

23
01

23
01

10…0001…11qN-1…qj+1

qN-1…qj+1

… …

30…00
30…02
30…02

32…20
32…20
32…22
32…22

21…11
21…13
21…13

23…31
23…31
23…33
23…33

23
01

23
01

23
01

23
01

30…0021…11

… …

- 1244 -

TableB, TableC and TableD is described below. This

study observes that the directional codes before macro

code ‘a’ remain the same, since the corresponding block

of macro code ‘a’ meets the quadtree partition (see the

small square in Fig. 3(a)). However, regarding the other

macro codes, b, c and d, the preceding directional codes

may be modified. Here the macro code ‘b’ is used as an

example to illustrate the expansion (see Fig. 3(b)). If qP
0

= b and qP
j = 0, for some j, and qi≠0, j>i>0, then the

macro quadtree representation of child node, qC
i, N-

1≥i>j, remains unchanged. A similar situation applies

for the case of qP
j = 2. Consequently, for all qP

i, j>i>0, qi

must not be 0 (or 2), since qP
j already is 0 (or 2), and

thus these qP
i can only be 1 or 3. The relationship

between macro code qC
i , j>i>0, of each child node and

macro code qP
i, j>i>0, of the parent node can be

determined from Fig. 3(b). For example, a macro

quadtree node ‘qN-1…qj+101..13b’ is split to be four child

nodes whose macro codes are ‘qN-1…qj+101…131’, ‘qN-

1…qj+110…020’, ‘qN-1…qj+101…133’ and ‘qN-

1…qj+110…022’. Notably, the directional codes qN-

1…qj+1 are unchanged. TableM and TableB list the

derivation result. The cases of macro codes ‘c’ and ‘d’

are similar.

4: NODE EXPANSION

This section uses the expansion of the macro

quadtree node 03cb as an example. Starting from q3 of

node 03cb, q1 was found to be the first combinational

code in {a,b,c,d}, and (qP
2,qP

1) =(3,c), from TableM, the

directional codes (qC
2, qC

1) of each of the child nodes,

Child0, Child1, Child2 and Child3, are (3,2), (3,3), (1,0)

and (1,1) respectively. Since the content of column

Action is TableC, qC
3 of each of the child nodes can be

further modified using TableC. Since (qP
3 ,qP

2) =(0,3),

from TableC, directional code qC
3 of each of the child

nodes is 0,0,2 and 2, respectively. Accordingly, the

macro codes of the child nodes Child0, Child1, Child2

and Child3 are 032b, 033b, 210b and 211b.

Furthermore, macro quadtree node Child0, for

example, is split into four child nodes, say Child00,

Child01, Child02 and Child03. Since (qP
1,qP

0) =(2,b), the

directional codes qC
0 of each of these child nodes are 1,

0, 3 and 2 respectively; and the directional code qC
1 of

each of these child notes is 2, 3, 2 and 3 respectively,

from TableM. Since the content of column Action is

STOP, (qC
3, qC

2) of each of these child nodes remain the

same as (qP
3,qP

2) of their parent node, which is (0,3).

Consequently, the macro codes of child nodes Child00,

Child01, Child02 and Child03 are 0321, 0330, 0323 and

0332. Since the content of column Action is ‘STOP’, the

expansion process of Child00 is completed. The

expansion results of nodes Child01, Child02 and

Child03 thus are similar.

5: COLLISION DETECTION

Collision detection for two objects can be

implemented by calculating their intersection results.

When an object is represented in a quadtree form, the

intersection operation is easily done by checking

whether a non-empty intersection result exists between

any two constituent macro quadtree nodes of these two

objects. The intersection of two macro quadtree nodes

03cb and 30ac serves as an example here. Node 03cb is

expanded:

03cb→032b,033b,210b,211b.

Moreover, these child nodes are further expanded:

032b→0321,0330,0323,0332,

033b→0331,1220,0333,1222,

210b→2101,2110,2103,2112,

211b→2111,3000,2113,3002.

While node 30ac is expanded:

30ac→300c,301c,302c,303c.

Additionally, these child nodes are further expanded:

300c→3002,3003,3020,3021,

301c→3012,3013,3030,3031,

- 1245 -

302c→3022,3023,3200,3201,

303c→3032,3033,3210,3211.

A collision thus detected between these two quadtree

nodes, since the final result of their intersection is 3002,

which is non-empty.

6: CONCLUSION

Quadtree is a popular representation for object

description. However, this representation suffers the

disadvantage of position-sensitivity. That is, the storage

capacity of an object may vary according to object

position. This study proposes a new quadtree scheme

using macro set to solve this problem.

The proposed scheme does not require extra

memory space. The number of nodes is optimal

(minimum) following the quadtree normalization, and

remains unchanged following translation, making the

presented scheme superior to the quadtree in terms of

space saving. This scheme is easy to apply to the

collision detection in robot path planning. In the future,

we will derive other manipulations of macro quadtree.

REFERENCES
[1] Samet, H., “The quadtrees and related hierarchical data

structures,” ACM Comput. Surveys 16, 187-260, 1984.

[2] Samet, H., “The design and analysis of spatial data

structures,” Addison-Wesley, New York, 1989.

[3] Samet, H., “Applications of spatial data structures,”

Addison-Wesley, New York, 1989.

[4] Atkinson, H.H., Gargantini, I., Walsh, T.R.S., “Filling by

quadrants or octrants,” Computer Vision, Graphics, and

Image Processing 33, 138-155, 1986.

[5] Gargantini, I., Atkinson, H.H., “Linear quadtrees; A

blocking technique for contour filling,” Pattern

Recognition 17, 285-293, 1984.

[6] Grosky, W.I., Jain, R., “Optimal quadtrees for image

segments,” IEEE Transactions on Pattern Analysis and

Machine Intelligence 5, 1, 77-83, 1983.

[7] Li, M., Grosky, W.I., Jain, R., “Normalized quadtrees with

respect to translations,” Computer Graphics and Image

Processing 20, 1, 72-81, 1982.

Table 1 The main table TableM
The i-th macro code, qP

i

a b c dTableM
⇓

(0123) Action
⇓

(1032) Action
⇓

(2301) Action
⇓

(3210) Action
0 0000 STOP 0101 STOP 0022 STOP 0123 STOP
1 1111 STOP 1010 TableB 1133 STOP 1032 TableB
2 2222 STOP 2323 STOP 2200 TableC 2301 TableC

The (i+1)-th
macro code,

qP
i+1 3 3333 STOP 3232 TableB 3311 TableC 3210 TableD

Table 2 The modification table TableB
The i-th macro code, qP

iTableB 1 3 Action
0 0101 0101 STOP
1 1010 1010 TableB
2 2323 2323 STOP

The (i+1)-th
macro code,

qP
i+1 3 3232 3232 TableB

- 1246 -

