
Near-optimal Block Alignments

Kuo-Tsung Tseng, Chang-Biau Yang, Kuo-Si Huang and Yung-Hsing Peng
Department of Computer Science and Engineering

National Sun Yat-sen University, Kaohsiung, Taiwan
cbyang@cse.nsysu.edu.tw

Key words: computational biology, longest common sub-
sequence, biosequence alignment, near-optimal alignments

Abstract—
In this paper, we improve the idea of the near-optimal

alignments. Though the near optimal alignments increase the
possibility to find the correct alignment, too many of them may
confuse the biologists. So we present the filter scheme for the
near-optimal alignments. An easy method to trace the near-
optimal alignments and an algorithm to filter those alignments
are proposed.1 The time complexity of our algorithm is O(dmn)

in the worst case, whered is the maximum distance between the
near-optimal alignments and the optimal alignment, andm, n are
the lengths of the input sequences, respectively.

I. I NTRODUCTION

It has been mysteries about some questions of living things.
What is the difference between human being and animals?
Why can birds fly but cannot dogs? Why do jaguars run so
fast? Because of mature brains, strong wings, and powerful
legs you might answer, then another question rises: why do
human beings have mature brains but do not animals? Why
do dogs have no wings? Similar questions go on and on.

Nowadays biologists find the blueprints of all living things,
biosequences. By studying the biosequences of more than one
species, the difference between them can be revealed. So that
to compare biosequences, how similar they are, where are the
differences between them, or what are common parts of them,
is a foundation stone of modern biology.

Biosequences comparison [1, 7–9, 13] could be seen as
the sequence alignment problem, which is a well studied
problem in the algorithm area [3, 4, 10, 11, 16]. With proper
measuring schemes, it is not difficult to find the optimal
alignment of given sequences. However, there is no completely
suitable measuring scheme in biosequences. Scientists have
presented many scoring functions to measure the similarityof
biosequences [2,6,14]. Most of them failed. There always exist
some biosequences with lower scores but higher similarities
(judged by biologists or experiments) with any kind of scoring
function.

Naor and Brutlag showed that the alignment with optimum
score is not always the most biologically meaningful one [12],
so that the near-optimal alignment was presented in order to

1The program of this paper can be executed in the following website:
http://bio.cse.nsysu.edu.tw/NBA/
This research work was partially supported by the National Science Council
of Taiwan under contract NSC-95-2221-E-110-084.

TABLE I

THE SCORE MATRIX OF{A ,B,C,D}

- a b c d
- −∞ -1 -1 -1 -1
a -1 4 1 0 2
b -1 1 3 0 -2
c -1 0 0 2 1
d -1 2 -2 1 1

provide more possible alignments for biologists to choose.It
is natural that the possibility of finding the correct alignment
will be increased if we provide more alignments, but too
many of them may confuse the biologists. Thus, some other
biologically filtering criteria are needed to help us to choose
the correct alignment.

In this paper, we shall present an easy method to trace the
near-optimal alignments of given biosequences and propose
a novel algorithm to filter the output with some other bio-
logically meaningful criteria. We use the criterion:the most
conserved alignment which was presented by Tseng et al. [15]
as our example in our algorithm and name it thenear-optimal
block alignment. The criteria could be open to discuss. The
time complexity will not be increased if the filter can be done
in linear time.

The rest of this paper is organized as follows. In Section
II, we shall give an easy method to trace the near-optimal
alignments. Next, we shall illustrate the proposed algorithm
to filter out the desired alignment by the most conserved
criterion in Section III. Finally, some conclusions will begiven
in Section IV.

II. T RACINGS IN THE ALIGNMENT LATTICE

In this section, we shall demonstrate the idea of tracings
in the alignment lattice, and show how they help us to find
the optimal and near-optimal alignments. LetS1 and S2 be
two input sequences, where|S1| = m and |S2| = n. We first
use an example to explain our idea. Suppose two sequences
S1= abdcd andS2= bacddb are given to be aligned with the
score matrix shown in Table I. We then have the alignment
lattice AL of sequencesS1 and S2 shown in Figure 1 after
performing the traditional alignment scheme [3,4,10,11,16].

The bold lines in Figure 1 represent the correct alignments
in the corresponding positions. The numbers beside lines are
the costs of alignments. It is well known that the optimal
alignment can be obtained if we trace back the alignment
lattice AL from the lower right corner to the upper left

- 1255 -



56752−1

455630

234341

312322

−101231

−5

−4

−3

−2

−1

−6−5−4−3−2−10

d(5)

c(4)

d(3)

b(2)

a(1)

−(0)

b(6)d(5)d(4)c(3)a(2)b(1)−(0)

−1−1−1−1−1−1

1 4 0 2 2 1

3 1 0 −2−2 3

−2 2 1 1 1 −2

0 0 2 1 1 0

−2 2 1 1 1 −2

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

Fig. 1. The alignment latticeAL of sequencesabdcd andbacddb. with the
score matrix shown in Table I.

corner [10]. In our example, there are two optimal alignments
abdcd--
-bacddb and abdc-d-

-bacddb .
To find the optimal alignment of two given sequences is

easy, but how to find those alignments which are withind score
compared to the optimal alignment needs some tricks. The
optimal alignment means that we choose the correct alignment,
for example bold lines in Figure 1, in each position. What
would it be if we choose the wrong alignment somewhere?
The score of somewhere-wrong-alignment is worse than the
optimal alignment, but how bad will it be?

Let P = (i, j,U) denote the alignment from position(i, j) to
theU direction, where 0≤ i≤m, 0≤ j ≤ n, andU ∈ {H,V,D}.
The U direction of{H,V,D} means theHorizontal, Vertical,
or Diagonal direction. We define theδ function to calculate
the effect when the alignmentP, with respect toAL(i, j), is
chosen as follows.

δ(P) = AL(i, j)+






−AL(i, j−1)−ScoreMatrix(−,S2j) if U = H,

−AL(i−1, j)−ScoreMatrix(S1i,−) if U = V,

−AL(i−1, j−1)−ScoreMatrix(S1i,S2j) if U = D,

whereS1i andS2j represent theith and jth characters ofS1
andS2, respectively.

Traditionally, AL(i, j) is undefined wheni < 0 or j < 0,
so thatδ(P) = ∞ if an undefined value is encountered. We
use examples to illustrate the effect measurement ofδ(P).
For example, supposeP = (5,6,D) which is an incorrect
alignment in Figure 1. Clearly,δ(P) = 2 here. IfP is chosen
and afterward we choose the correct alignments, i.e. bold lines,
from position (4, 5) till position (0, 0). The result score would
be optimal score − δ(P) = 5− 2 = 3. As another example,
we follow the bold lines from position (5, 6) till position (4,
4), P = (4,4,D) is chosen, and afterward we follow the bold
lines from position (3, 3) till position (0, 0). Here,δ(P) = 1. It
will construct an alignment with score= 5−δ(P) = 5−1= 4.
Similarly, δ(4,4,H) = 0 andδ(4,4,V ) = 2.

It is easy to prove that we choose all the ways of correct
alignments from the lower right corner toP, and then choose
all the ways of correct alignments fromP to the upper left
corner, we will construct an alignment with scoreδ(P) less

b(1) a(2) c(3) d(4) d(5)

−(0)

a(1)

b(2)

d(3)

c(4)

d(5)

0 −1 −2 −3 −4 −5 −6

−1

−2

−3

−4

−5

1 3 2 1 0 −1

2 2 3 2 1 3

1 4 3 4 3 2

0 3 6 5 5 4

−1 2 5 7 6 5

b(6)

 L

 L

 L

(optimum − 2)
2Tracings in near−optimal path (L )

(optimum − 1)
1Tracings in near−optimal path (L )

0Tracings in optimal path (L )2

1

0

b(6)

56752−1

455630

234341

312322

−101231

−5

−4

−3

−2

−1

−6−5−4−3−2−10

d(5)

c(4)

d(3)

b(2)

a(1)

−(0)

d(5)d(4)c(3)a(2)b(1)−(0)

b(6)

56752−1

455630

234341

312322

−101231

−5

−4

−3

−2

−1

−6−5−4−3−2−10

d(5)

c(4)

d(3)

b(2)

a(1)

−(0)

d(5)d(4)c(3)a(2)b(1)−(0)

−(0)

Fig. 2. Tracings in optimal and near-optimal alignments of sequencesabdcd
andbacddb.

than the optimal alignment. In other words,δ(P) = 0 if
and only if the alignmentP is the correct alignment in the
corresponding position, i.e. the bold lines in Figure 1. With
this fact, we are able to find the near-optimal alignments within
d score less than the optimal score. Figure 2 shows the near-
optimal alignment example of the sequences given above with
d = 2. The possible partial alignments for constructing the
near-optimal alignments are calledtracings. Hollow arrows
in layer 0 (L0) will construct the optimal alignments, solid
arrows will construct the near-optimal alignments with score
optimum−1 in layer 1 (L1) and simple arrows in layer 2 (L2)
have similar meaning but with scoreoptimum−2.

Our method to mark tracings is shown as follows. These
tracings are recorded from the lower right corner back to the
upper left corner. This method can be regarded as a traditional
back tracing technique ifd is set to 0. It will help us to
process those possible partial alignments that may be used
to construct the near-optimal alignments ifd is greater than
0. The functionEnQ(x,Y ) is used to add elementx into
queueY , and the functionx = DeQ(Y ) is used to remove
the first element of queueY and to store it inx. Elements
in a queue are in the form of[k](i, j), which means the
position (i, j) of layerk. T Rk(i, j,U) = α represents an possible
alignment coming from layerα (0 ≤ α ≤ k ≤ d) in the U
(U ∈ {H,V,D}) direction to position(i, j) of layerk. Note that
TRk(i, j,U) = −1 means that there is no possible alignment
coming from theU direction, For example,T R2(4,5,V ) = 0
represents an alignment going to position (4, 5) of layer 2
in the V direction from layer 0. (Since it comes from the
V direction, we know the position of it is (5, 5).)Q is a
temporary queue in the tracing marking method and queue
R will be used in our near-optimal block alignment algorithm,
which will be demonstrated in Section III. Actually, the tracing
marking method and near-optimal block alignment algorithm
can be done together, so that we can use one queueQ only.
It is for clarity that we explain our idea in this way.

Method: Tracing Marking
Input:

- 1256 -



Alignment latticeAL with thresholdd.
Output:

Tracing queueR and tracings (possible alignments)
T R that construct near-optimal alignments withind
score compared to the optimal alignment.

Step 1:
Initialization: T Rk(i, j,U) = −1, where 0≤ k ≤
d, 0≤ i ≤ m, 0≤ j ≤ n andU ∈ {H,V,D}. Q = /0,
R = /0.

Step 2:
EnQ([0](m,n),Q), EnQ([0](m,n),R).

Step 3:
If Q 6= /0, thenB = DeQ(Q); otherwise, stop.

Step 4:
Let the content ofB be [k](i, j)

and
α = δ((i, j,H))+ k,
β = δ((i, j,V ))+ k,
γ = δ((i, j,D))+ k,

then







EnQ([α](i, j−1),Q),
EnQ([α](i, j−1),R),
T Rα(i, j−1,H) = k,

if α ≤ d,







EnQ([β](i−1, j),Q),
EnQ([β](i−1, j),R),
T Rβ(i−1, j,V ) = k,

if β ≤ d,







EnQ([γ](i−1, j−1),Q),
EnQ([γ](i−1, j−1),R),
T Rγ(i−1, j−1,D) = k,

if γ ≤ d.

Step 5:
Go to Step 3.

In the above tracing marking method, we do our tracing
starting from the lower right corner, so Step 2 adds[0](m,n)
on layer 0 as the first (source) element of our queue. At Step
4, we process the extracted elementB and then calculate the
effect of each direction. Since elementB is at layerk, B will
go to layerα if P = (i, j,H) is chosen. Ifα > d, we ignore it.
Otherwise we add the next position into our queue and record
that it comes from layerk. For example in Figure 2, element
[0](4,4).{α,β,γ}= {0,2,1} represents that it goes to layers 0,
2 and 1 in theH,V andD directions, respectively.

III. A N ALGORITHM FOR NEAR-OPTIMAL BLOCK

ALIGNMENT

In Section II, we gave the method to trace back all near-
optimal alignments. Actually, there are numerous near-optimal
alignments even whend is small. All near-optimal alignments
of Figure 2 are listed in Table II. As we can see, there are
2 alignments in layer 0, (Position (5, 5) in layer 0 branches
two ways), 3 alignments in layer 1, (Position (3, 3) branches
two ways and one of them branches three ways again at
position (2, 2), but only two ways go to layer 1, so 1+2=3.)
and 8 alignments in layer 2. It is not so useful if we just
list all of the near-optimal alignments. Some filtering schemes
should be invoked to help us to choose the most meaningful
alignment. The filtering scheme could be various in many
aspects. Here we use themost conserved alignment which was

defined by Tseng et al. [15] as our filtering scheme. The idea
of the near-optimal block alignment is similar to finding motifs
between two sequences. When two biosequences are aligned,
the common parts of them are more meaningful. Those parts
may be some functional genes or help us to select the better
templates when predicting the 3D structure of proteins based
on the homology modeling technique [5]. Sometimes we need
to focus our attention on their different parts to cast the junk
of biosequences. Concluding the above, we have to divide
the sequences into either common/meaningful or different/junk
parts, and we call these parts asblocks in this paper. The longer
blocks are the better since the longer common/different parts
are more significant than the shorter ones.

In this section, we shall propose an algorithm to solve the
near-optimal block alignment problem. Givenτ ∈ R, a τ+

i -
block, τ=

i -block, or τ−i -block is a maximum area with score
continuously greater than, equal to, or less than the threshold
τ, respectively, wherei represents the length of that block.τ is
a threshold used to judge if an alignment of two characters is
similar enough or not. For example, supposeτ = 0, the align-
ment -abdcd-bacdd-b can be divided intoτ−1 |τ

+
1 |τ

=
1 |τ

+
2 |τ

−
2 , which is

−1 | 4 | 0 | 1 1 | −1 −1
− | a | b | d c | d −
b | a | c | d d | − b

, where the score

of each character pair is shown upon it. As another example,
supposeτ = 2. The same alignment is now divided into

τ−1 |τ
+
1 |τ

−
5 , which is

−1 | 4 | 0 1 1 −1 −1
− | a | b d c d −
b | a | c d d − b

.

Note that the way to divide an alignment intoτ − blocks
is unique. For example, it is invalid if we divide the above
alignment intoτ−1 |τ

+
1 |τ

−
2 |τ

−
3 with τ = 2, since aτ−block is a

maximum continuous area, and thenτ−2 |τ
−
3 should be merged

into τ−5 .
After two sequences have been ligned, the alignment (A)

could be regarded as a list ofτ− blocks. Tseng et al. [15]
definedω in their paper to judge if an alignment is conversed.
The formal definition ofω is given as follows.

A = {τt1
a1,τ

t2
a2, · · · ,τ

tl
al},

wherel is the number of blocks inA, ti ∈ {+,=,−},1≤ i ≤ l.
And,

ω(A) = ∑1≤i≤l(ai)
ψ,

whereψ is a parameter which is 2 in this paper.
The near-optimal block alignment will beA if ω(A) is

maximum. An example is illustrated in Table II.
Clearly, the alignment with largerω means the alignment

with longer blocks. As we mentioned before, the longer blocks
are the better. The near-optimal block alignment problem isto
find the alignment with the maximumω in all near-optimal

alignments, which isabdcd|-
bacdd|b

in our example whend = 2,

τ = 0 andψ = 2.
Let us take sequencesabdcd and bacddb as our example

in Figure 3. There are three little squares inside each square.
Each little square represents the accumulatedω from the lower
right corner (position(6,5)) of layer 0 to this position in
the respective direction. If there are two numbers in the little

- 1257 -



TABLE II

ALL NEAR-OPTIMAL ALIGNMENTS OF SEQUENCESABDCD AND BACDDB WHEN d = 2, τ = 0 AND ψ = 2.

Layer Alignment A ω

0
a|bdc|-|d|-
-|bac|d|d|b

{τ−1 ,τ+
3 ,τ−1 ,τ+

1 ,τ−1 } 12 +32+12+12+12 = 13

0 a|bdcd|--
-|bacd|db

{τ−1 ,τ+
4 ,τ−2 } 12 +42+22 = 21

1
-|a|b|dcd|-
b|a|-|cdd|b

{τ−1 ,τ+
1 ,τ−1 ,τ+

3 ,τ−1 } 12 +12+12+32+12 = 13

1 abdcd|-
bacdd|b

{τ+
5 ,τ−1 } 52 +12 = 26

1
a|bd|-|cd|-
-|ba|c|dd|b

{τ−1 ,τ+
2 ,τ−1 ,τ+

2 ,τ−1 } 12 +22+12+22+12 = 11

2
-|a|b|dc|-d
b|a|c|dd|b-

{τ−1 ,τ+
1 ,τ=

1 ,τ+
2 ,τ−2 } 12 +12+12+22+22 = 11

2
-|a|b|dc|d
b|a|c|dd|b

{τ−1 ,τ+
1 ,τ=

1 ,τ+
2 ,τ−1 } 12 +12+12+22+12 = 8

2 -|a|b|dc|d-
b|a|c|dd|-b

{τ−1 ,τ+
1 ,τ=

1 ,τ+
2 ,τ−2 } 12 +12+12+22+22 = 11

2
-|a|b|d|c|d|-
b|a|c|d|-|d|b

{τ−1 ,τ+
1 ,τ=

1 ,τ+
1 ,τ−1 ,τ+

1 ,τ−1 } 12 +12+12+12+12+12+12 = 7

2 a|b|dc|-|d|-
b|-|ac|d|d|b

{τ+
1 ,τ−1 ,τ+

2 ,τ−1 ,τ+
1 ,τ−1 } 12 +12+22+12+12+12 = 9

2
a|b|dcd|--
b|-|acd|db

{τ+
1 ,τ−1 ,τ+

3 ,τ−2 } 12 +12+32+22 = 15

2 -|a|b|d|cd|-
b|a|c|-|dd|b

{τ−1 ,τ+
1 ,τ=

1 ,τ−1 ,τ+
2 ,τ−1 } 12 +12+12+12+22+12 = 9

2
a|b|-|dcd|-
-|b|a|cdd|b

{τ−1 ,τ+
1 ,τ−1 ,τ+

3 ,τ−1 } 12 +12+12+32+12 = 13

square, then the left number representsω and the other denotes
the current block length at that position. The current block
length is 0 if it is not shown. The circle positions means
impossible alignments, so we will not show them.

Before presenting our algorithm, we first explain the mean-
ings of variables used in the algorithm. The alignment lattice
AL is of size(m+1)× (n+1), wherem andn are the lengths
of the two given sequences, respectively. In our algorithm,
C(i, j,U) (U ∈ {H,V,D}) denotes the added score (edge
weight) from the prior horizontal, vertical, or diagonal position
to position (i, j), and ωk(i, j,U) (U ∈ {H,V,D}) denotes the
maximum∑1≤i≤k(ai)

ψ from position (m,n) of layer 0 across
the prior horizontal, vertical, or diagonal positions to position
(i, j) of layer k. The last,Lk(i, j,U) (U ∈ {H,V,D}) denotes
the current block length of position (i, j) of layerk that comes
from various directions. Our algorithm is given as follows.

Algorithm: Near-optimal Block Alignments(NBA)
Input:

Alignment latticeAL, tracings of possible alignments
T R and tracing queueR.

Output:
Maximum ω among all near-optimal alignments.

Step 1:
Initialization: ωk(i, j,U)=0 andLk(i, j,U)=0, where

0≤ k ≤ d, 0≤ i ≤ m, 0≤ j ≤ n, andU ∈ {H,V,D}.
Step 2:

C(i, j,U) =







ScoreMatrix(−,S2j) if U = H,

ScoreMatrix(S1i,−) if U = V,

ScoreMatrix(S1i,S2j) if U = D,

whereS1i andS2j represent theith and jth characters
of S1 andS2, respectively and 0≤ i ≤ m, 0≤ j ≤ n,
andU ∈ {H,V,D}.
C(i, j,U) = ∞ if an undefined value is encountered.

Step 3:
If R 6= /0, thenB = DeQ(R); otherwise go to Step 6.

Step 4:
Let [k](i, j) be the content ofB.

∆ = TRk(i, j,U),

ωk(i, j,U) =

{

Choose(k, i, j,∆,U) if ∆ ≥ 0,

0 if ∆ = −1,

whereU ∈ {H,V,D}.
ωk(i, j,U) = 0 if an undefined value is encountered.

Step 5:
Go to Step 3.

Step 6:
Outputmax(ωk(0,0,U)+(Lk(0,0,U))ψ), where 0≤
k ≤ d, U ∈ {H,V,D}.

- 1258 -



0
0

0
0

0
0

0
0

0
0

0
0

0

0

0 0

0

0

0
0

Not specific where it comes from

Comes from layer 0

Comes from layer 2

Comes from layer 1

 L

 L

 L

b(6)

d(5)

c(4)

d(3)

b(2)

a(1)

−(0)

d(5)d(4)c(3)a(2)b(1)−(0)

−(0) b(1) a(2) c(3) d(4) d(5)

−(0)

a(1)

b(2)

d(3)

c(4)

d(5)

b(6)

−(0) b(1) a(2) c(3) d(4) d(5)

−(0)

a(1)

b(2)

d(3)

c(4)

d(5)

b(6)

0

1

2
 V

 H
 D

11,1

12,1
10,1

14,1

10,1

13,1

9,1

8,1

5,1

4,2

2,1

4,1

 0,2

0,1
2

 0,1
12,1

10,1

1,5

6,2

6,1

1,4

11,1

10,1

1,3

5,1
1,2

20,1

 4,4

4,3

4,2

4,1
2,1

1,1

0,2  0,1

0
0

0
0

0
0

0

0

0
0

0

0

0
0

0

0

00
0 0

0
0

0
0

0
0

0
0

Fig. 3. The final result of sequencesabdcd andbacddb after Algorithm NBA is performed.

For example in Figure 2, suppose element[2](3,4) has to
be processed now. It is clear that there is no incoming edge
from directionH, so ω2(3,4,H) = 0. And there is only one
way to go to the position (3,4) of layer 2 inV direction, we
will leave the ω2(3,4,V ) out of discussion. If we want to
decide the value ofω2(3,4,D), we have to look over all the
incoming edges of position (4,5) of layer 2. (Position (4,5)
is the prior position of position (3,4) in directionD.) In this
case, it has three incoming edges fromH, V andD directions.
(DirectionsV and D come in from layer 0, and directionH
comes from layer 2.) Though we have known the values ofω
andL of those prior positions, we need to check if the current
block can be extended or not when we choose the edge of
some direction. All three incoming edges get negative scores,
but we get positive score inD direction. (Thresholdτ is 0
in our example.) It means that a new block starts, and then
we have to reset current block length to 1 and to calculate
the currentω by adding the powerψ (ψ is an predefined
parameter, which is 2 in this paper.) of prior block length.
ω2(3,4,D){H,V,D} = {4,4,1} in this case, since we have to
choose the maximum,ω2(3,4,D) = 4. Note that if there are

more than one maximum, we should choose the one with the
longest current block length.

Since it is complicated to decide the correct value of
ωk(i, j,U), we use the functionChoose(k, i, j,∆,U) to choose
the value. We show functionChoose(k, i, j,∆,U) and the
meanings of its arguments as follows.

Function: Choose(k, i, j, ∆, U)
Input:

k, i and j, wherek is the index of the layer,i, j
mean the coordinates,∆ is the incoming layer and
U ∈ {H,V,D} means the direction that it came from.

Output:
The correct value ofωk(i, j,U), and the value of
Lk(i, j,U) which is updated to a correct one.

Step 1:

(x,y) =







(i, j +1) if U = H.

(i+1, j) if U = V.

(i+1, j +1) if U = D.

Step 2:
Check if the phase is changed from (x,y,U ′) to

- 1259 -



(i, j,U), where (x,y,U ′) represent the outgoing edge
of directionU ′ at position (x,y).
A phase is said to bechanged if and only if one of
the following conditions holds.






C(x,y,U ′) < τ & C(i, j,U) ≥ τ,
C(x,y,U ′) > τ & C(i, j,U) ≤ τ,
C(x,y,U ′) = τ & C(i, j,U) 6= τ,

whereU ′ ∈ {H,V,D}.
A changed phase means a new block, and we have
to reset the length of current block to 1.

Step 3:
Compute the following:
TempL[U ′] =






1 if phase is changed
from (x,y,U ′) to (i, j,U),

L∆(x,y,U ′)+1 otherwise,
whereU ′ ∈ {H,V,D}.

Tempω[U ′] =






















ω∆(x,y,U ′)+ (L∆(x,y,U ′))ψ +(TempL[U ′])ψ

(if phase is changed from(x,y,U ′) to (i, j,U)),

ω∆(x,y,U ′)+ (TempL[U ′])ψ

(otherwise),
whereU ′ ∈ {H,V,D}.

Step 4:
Without loss of generality, assume thatTempω[Z] is
not less than the other two. Then:
Lk(i, j,U) = TempL[Z]

OK =





















ω∆(x,y,Z)+ (L∆(x,y,Z))ψ

(if phase is changed from(x,y,Z) to (i, j,U)),

ω∆(x,y,Z)
(otherwise).

Notice that if there are more than one maximum
in Tempω{H,V,D}, we should find the most benefit
one, i.e. the one with the longest current block length,
as our Z.

Step 5:
Return(OK).

Figure 3 shows the full result after NBA algorithm is per-
formed. In this example, the maximumω is 21 of layer 0, with

the alignment
a|bdcd|--
-|bacd|db

; 26 of layer 1, with the alignment

abdcd|-
bacdd|b

; 15 of layer 2, with the alignment
a|b|dcd|--
b|-|acd|db

. As

we can see, there is a positive block with length 5 in layer
1. It means that the block may be more meaningful if it is in
biosequences.

It is clear that the time complexity of Algorithm NBA is
O(dmn). We may reduce the time complexity toO(|R|) which
is much less thanO(dmn) if we skip the initialization in Step
1.

IV. CONCLUSIONS

In this paper, we present a method to mark the tracings
of all near-optimal alignments withind score compared to the
optimal alignment. And then, we propose an algorithm to solve
the near-optimal block alignment problem. Both the method
and the algorithm can be easily implemented and efficiently.
The filtering scheme can be replaced by any one mentioned by
Tseng et al. [15] or other criteria easily. The time complexity
will remain the same if the criteria can be done in linear time.

The real biological sequence alignment is hard to find
because we do not really know the correct score function of
nature. The score functions presented by scientists may be
close to the correct one, though. Thus we need to check all
the near-optimal alignments to find the real one. It is to time
consuming to check by human power. Our proposed algorithm
is a good choice to speed up our knowledge of mysterious
nature.

For now it is necessary to design different algorithms to
filter the near-optimal alignments with different criteria. In the
future, we would like to parameterize the problem and design
the algorithm to solve it.

REFERENCES

[1] S. Altschul and B. W. Erickson, “Optimal sequence alignment using
affine gap costs,”Journal of Molecular Biology, Vol. 48, pp. 603–616,
1986.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,”Journal of Molecular Biology,
Vol. 215, pp. 403–410, 1990.

[3] A. Apostolico and C. Guerra, “The longest common subsequence
problem revisited,”Algorithmica, No. 2, pp. 315–336, 1987.

[4] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms,”Seventh International Symposium on String
Processing Information Retrieval, A Coruña, Spain, pp. 39–48, 2000.

[5] Y. Y. Chen, C. B. Yang, and K. T. Tseng, “Prediction of protein structures
based on curve alignment,”Proc. of the 20th Workshop on Combinatorial
Mathematics and Computation Theory, Chiayi, Taiwan, pp. 33–44, 2003.

[6] M. O. Dayhoff., Atlas of Protein Sequence and Structure. National
Biomedical Research Foundation, Washington, DC, 1978.

[7] D. F. Feng, M. S. Johnson, and R. F. Doolittle, “Aligning amino
acid sequences: comparison of commonly used method s,”Journal of
Molecular Evolution, Vol. 21, pp. 112–125, 1985.

[8] O. Gotoh, “An improved algorithm for matching biological sequences,”
Journal of Molecular Biology, Vol. 162, pp. 705–708, 1982.

[9] O. Gotoh, “Optimal sequence alignment allowing for longgaps,” Bul-
letin of Mathematical Biology, Vol. 52, pp. 359–373, 1990.

[10] D. S. Hirschberg, “Algorithms for the longest common subsequence
problem,” Journal of the ACM, Vol. 24, No. 4, pp. 664–675, 1977.

[11] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,”Communications of the ACM, Vol. 20, No. 5,
pp. 350–353, 1977.

[12] D. Naor and D. L. Brutlag, “On near-optimal alignments of biological
sequences,”Journal of Computing Biology, Vol. 4, pp. 349–366, 1994.

[13] W. Pearson and W. Miller, “Dynamic programming algorithms for
biological sequence comparison,”Methods in Enzymology, Vol. 210,
pp. 575–601, 1992.

[14] R. M. Schwartz and M. O. Dayhoff.,Matrices for detecting distant
relationships. National Biomedical Research Foundation, Washington,
DC, 1979.

[15] K. T. Tseng, C. B. Yang, and K. S. Huang, “The better alignment among
output alignments,”Proc. of the 2005 International Conference on
Mathematics and Engineering Techniques in Medecine and Biological
Sciences, Las Vegas, Nevada, USA, pp. 31–37, 2005.

[16] C. B. Yang and R. C. T. Lee, “Systolic algorithms for the longest
common subsequence problem,”Journal of the Chinese Institute of
Engineers, Vol. 10, No. 6, pp. 691–699, 1987.

- 1260 -




