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ABSTRACT 
The concept of constrained sequence alignment is 

proposed to incorporate the biologist's knowledge into 
sequence alignment such that the user-specified 
residues/nucleotides are aligned together in the 
computed alignment. Tang et al. were first to investigate 
the constrained multiple sequence alignment problem. 
Their algorithm for two sequences alignment with 
constraints runs in O(αn4) time and needs O(n4) space. 
Later, this result was improved by two groups of 
researchers independently to O(rn2) time and space 
using the same approach of dynamic programming. 
Recently, Lu and Huang designed a memory-efficient 
algorithm to improve the two sequence alignment with 
constraints (CPSA) by adopting the divide-and-conquer 
approach, this algorithm for solving CPSA problem can 
run in O(rn2) time and only need O(un) space, where u 
is the sum of the length of constraints and usually u<<n 
in the practical applications. In this paper, we design an 
efficient parallel algorithm for the constrained multiple 
sequence alignment based on the memory-efficient 
algorithm designed by Lu and Huang and the 
progressive strategy.  
 
 
1: INTRODUCTIONS 
 

Generally speaking, biologists have the knowledge 
of their datasets of the structures/functionalities/ 
consensuses. The constrained sequence alignment is 
trying to include the biologist's knowledge into 
sequence alignment to increase the correctness of the 
alignment results. For example, many ribonucleases 
(RNases) including bovine and human pancreatic 
RNaseAs have been isolated and characterized in terms 
of their amino acid sequences, coding genes, three- 
dimensional structures and biological functions. The 
major structural features of all RNases contain three 
conserved His12, Lys41 and His119 active site residues 
and four disulfide bonds as compared to bovine 
pancreatic RNaseA. Since the RNases with solved 
three-dimensional structures all show very high 
homology among the catalytic domains and disulfide 
linkages, we would expect that their alignment should 
place His12 (Lys41 and His119, respectively) of bovine 
pancreatic RNase and other His (Lys and His, 
respectively) residues in the same column. So that we 

should treat His12 (Lys41 and His119, respectively) as 
the constraints when aligning these RNases sequences 
and we expect that the alignment result will like we 
discuss above. Tang et al. [10] were first to investigate 
the constrained multiple sequence alignment problem 
(CMSA). Their algorithm for two sequences alignment 
with α constraints runs in O(αn4) time and need O(n4) 
space. The complexity of CMSA for K sequences 
alignment is O(αKn4). Later, this result was improved 
by two groups of researchers independently to O(αn2) 
time and space using the same approach of dynamic 
programming [4, 15]. Furthermore, each constraint 
expected to be aligned together can be seen as a 
conserved site of a protein/DNA/RNA family. And each 
conserved site may not only consist of a single residue/ 
nucleotide, but a short segment of residues/nucleotides. 
It means that the constraint specified by the biologists 
can be a segment of residues/nucleotides with size of r. 
In some applications, biologists may further allow some 
mismatches among the residues/nucleotides of the 
columns requested to be aligned. So that Tsai et al. [10] 
studied such a kind of the constrained sequence 
alignment and designed an algorithm of O(rn2) 
(O(rK2n2)) time and O(rn2) space for two (K) sequences. 

Although the improvement discussed above greatly 
increase the efficiency and practical usage of the CMSA 
algorithm designed by using the progressive strategy, 
the space complexity O(rn2) still limits the CMSA 
algorithm to just align a set of short sequences, at most 
several hundreds of the sequence length. Hence, Lu and 
Huang [8] designed a memory-efficient algorithm to 
improve the two sequence alignment with constraints 
(CPSA) by adopting the divide-and-conquer approach, 
this algorithm for solving CPSA problem can run in 
O(rn2) (O(rK2n2) for progressive CMSA) time and only 
need O(un) space, where u is the sum of the length of 
constraints. In this paper, we design an efficient parallel 
algorithm for the constrained multiple sequence 
alignment based on the memory- efficient algorithm [8] 
and the progressive strategy.  

This paper is organized as follows. In Section 2, we 
first introduce the progressive strategy of the CMSA 
problem. In Section 3, we describe the detail of our 
method improved from progressive strategy to 
parallelize the CMSA algorithm. In Section 4, we 
analyze the performance of our parallel algorithm and 
show the experimental results. 
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Figure 1: One example of the guide tree created. 

 
 
2: PROGRESSIVE STRATEGY OF CMSA 
 

The CMSA algorithm we introduced here is based 
on the progressive strategy by using CPSA as the kernel 
and the guide tree constructed from the Kruskal MST, 
called Kruskal merging order tree. The detailed 
algorithm of the CMSA is described in the following: 

 
Algorithm CMSA  
Input: K sequences S= {S

1
, S

2
, …, S

K
} and α constraints 

C= {C
1
, C

2
, …, C

α
}. 

Output: The constrained multiple sequence alignment 
of sequences S = {S

1
, S

2
, …, S

K
} with 

constraints C = {C
1
, C

2
, …, C

α
}. 

 
Step1. Compute the score of the global sequence 

alignment without any constraint using the 
Needleman-Wunsch algorithm [9] between all 
pairs of the K sequences. 

 
Step2. Create a complete graph G = (V, E) of K 

sequences in a way that each vertex Vi∈V 
represents a sequence Si∈S and each edge e of E 
between Vi and Vj is associated with a weight d(e) 
to represent the score of sequence alignment that 
is computed in Step1 between Si and Sj. 

 
Step3. Using the complete graph G created in Step2 to 

construct a Kruskal merging order tree TK. The 
Kruskal merging order tree is constructed in the 
following way. 
1. Sorting all edges of E in non-decreasing order 

according to their weights.  
2. Build a Kruskal MST T. Initially, T is empty. 

Then we repeatedly add the edges of E in 
non-decreasing order to T in a way that if the 
currently adding edge e to T does not create a 
cycle in T, then we add e to T; otherwise, we 
discard e. Let V= {V

 1
, V

 2
, …, V

 K
} be the 

vertexes of T and e
1
, e

2
, …, e

K-1
 be the edges of 

T with d(e
1
) ≤ d(e

2
), ≤ …≤ d(e

K-1
). 

3. For each Vi∈V, we create a tree Ti such that Ti 

contains only a node vi and Ti’s root is vi. 

Define the merge process of two trees Ti and Tj 

respectively rooted at vi and vj to be a new tree 

rooted at a new vertex u such that vi and vj 

become the children of u. 
4. For each ek = (vi, vj), where k increases from 1 

to K-1, we merge the tree Ti and Tj containing 

vi and vj respectively into a new tree. This 

process is continued until the remaining is only 
one tree. 

5. Drop the leaf nodes of the tree build in 4. Then 
this final tree is the Kruskal merging order tree 
TK. We use this Kruskal merging order tree TK 
as the guide tree. 

 
Step4. Use the Kruskal merging order tree TK created in 

Step3 as the guide tree. Progressively align the 
sequences according to the branching order of the 
guide tree TK in a way that the currently two 
closest pre-aligned groups of sequences are 
joined by applying Algorithm CPSA to the 
pair-wised represented sequences of these two 
groups. 

 
 
3: A PARALLEL ALGORITHM FOR 
CMSA 
 

The main idea of our parallel algorithm is based on 
the observation of the guide tree TK created in the 
Algorithm CMSA. In Algorithm CMSA Step 4, 
sometimes there are more than one pair of pre-aligned 
groups of sequences can be aligned in parallel, but they 
can just be aligned one after another in the Algorithm 
CMSA. Using a guide tree created like Figure 1 as 
example, in this case, job j1 ~ j4 can be done in parallel, 
but they will just be done one after another. In fact, we 
can treat each node in guide tree TK as a job. Then, each 
job in guide tree TK can be departed into three states: 
locked, free and assigned. Locked state means there is at 
least one child of this job is not assigned to any 
processor, and it can not be assigned now. Free-state 
means that all of this job’s child have been assigned or 
this job does not have any child (leaf node in TK), and 
this job can be assigned now, but not be assigned. 
Assigned state means that this job has been assigned to 
one of the processors. While deciding each job’s 
assigned processor, we should consider the balance of 
the communication overhead and each processor’s 
loading. If a job ja is assigned to processor Ps, but it’s 
child ja is assigned to Pt, then before Ps start to run job ja, 
Ps has to receive the aligned result from Pt, and there is 
one more communication between Ps and Pt. For the 
purpose of decreasing the total communication as much 
as possible, we may assign ja to processor Pt, so that 
there is no communication before Pt start to run job ja. 
But we should still consider one more point, if there is 
too much job assigned to Pt, and Ps is always in idle 
state, then the processor utilization will be too low. For 
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example, if we assign ja to Pt, and Pt is always busy 
until time tx, but Ps is idle between time ty to tx (ty < tx), 
then assigning ja to Ps and increase one more 
communication may be worthy because job ja can be 
done before time tx and communication overhead will 
cost no more than tx - ty. 

In order to decreasing the total communication time 
and increase the processor utilization, we use the 
concept of priority to decide each job’s assigned 
processor. Initially, each job has its own priority table to 
record every processor’s priority respect to this job, and 
these values are all set to zero. In each turn, we scan the 
guide tree TK to find which jobs are now in free-state. 
Suppose job ja is in free-state in this turn, and job jb and 
jc both are child of job ja, jb and jc are all in assigned 
state. Define pri(ja, Ps) as the priority of processor Ps 
respect to job ja. We discuss the following two possible 
cases. In case I, if jb and jc are both assigned to the same 
processor, say Ps, then pri(jb, Ps) and pri(jc, Ps) will both 
increase one unit. Before we decide which processor 
gets job ja, ja will update its priority table as pri(ja, Ps) = 
pri(jb, Ps) + pri(jc, Ps). Similarly, in case II, if jb and jc 
are assigned to different processors, say Ps and Pt, 
respectively. Then pri(jb, Ps) and pri(jc, Pt) will both 
increase one unit, and before assigning job ja, ja will 
update its priority table as pri(ja, Ps) = pri(jb, Ps) and 
pri(ja, Pt) = pri(jb, Pt). After ja updates its priority table, 
we will choose one processor which has highest priority 
and is not be assigned any job in this turn from ja’s 
priority table, and assign ja to this chosen processor. By 
the way, if job ja has only one child, say jb, and jb is 
assigned to Ps, then ja only need to update its priority 
table as pri(ja, Ps) = pri(jb, Ps). 

Now we discuss the way we use to assign jobs to 
processors. After guide tree TK is built, we create a state 
table which has K – 1 element, and each element state(a) 
records job ja’s state. Initially, all elements in state table 
are set as locked state except the jobs that are leaf nodes 
in guide tree. In each turn, we scan the state table to find 
which jobs are in free-state. Each time we find a job is 
in free-state, we will check if this job has a brother node 
in guide tree, if it has a brother and this brother job is 
also in free-state, then we put these two job into a queue 
list we call it as free-two, notes that these two jobs in 
free-two queue are treated as one element but not two 
elements. If this job does not have any brother job in 
guide tree or its brother job is in assigned state or locked 
state, then we just put this job into a queue list we call 
as free-one. We use Figure 2 to explain more clearly. In 
Figure 2, j1, j2 and j3 are all leaf nodes and they are in 
free-state, and the others are in locked state, initially. 
Job j2 and j3 are brother job, and job j1 does not have 
any brother job. In the first turn to scan the guide tree, j1 
will be put into free-one queue and j2 and j3 will be put 
into free-two queue. After scanning from the guide tree 
to find which jobs are in free-state, we start to decide 
the job assignment. In this time, we depart the job 
assignment in several cases according to the number of 
elements in free-one queue and free-two queue. Let 
free(1) and free(2) denote the number of elements in 

free-one queue and free-two queue, respectively. And 
let p denotes the total number of processors. We list the 
conditions of each case in Table 1. In case 1, the 
number of elements in free-two queue are more than the 
number of total processors, so we assigned each 
processor one element in the free-two queue, each 
processor will be assigned two jobs in this case, and 
these two jobs are brother job, respectively. The chosen 
processor is the one which has highest priority in these 
two job’s priority table and has not been assigned any 
job in this turn. For example, if an element in free-two 
queue stores job ja and jb. Suppose the processor which 
has highest priority respect to ja is Ps and Ps is not 
assigned any job yet, and the processor which has 
highest and second highest priority respect to jb are Pt 
and Pu, respectively. But Pt has been assigned jobs in 
this turn and Pu is not yet. Then we will choose a 
processor such that has higher value between pri(ja, Ps) 
and pri(jb, Pu). That means if pri(ja, Ps) is higher than 
pri(jb, Pu), we choose Ps, otherwise, we choose Pu, and 
the chosen processor will be assign these two jobs. In 
case 2, the assignment policy is similar with case 1, 
each element in free-two are assigned to one processor, 
and after all elements in free-two are assigned, we select 
two elements in free-one each time, and assigned them 
to a processor which has highest priority between these 
two job and has not been assigned any jobs in this turn 
yet, until all processors have been assigned jobs. In case 
3, after assigned each element in free-two to a processor, 
we then assign each element in free-one to a processor, 
and the chosen processor for each job is the one who 
has highest priority respect to this job and has not been 
assigned any job yet. Noting that in this case, the 
processor chosen by the element in free-two will be 
assigned two jobs, and the processor chosen by the 
element in free-one will only be assigned one job. In 
case 4, each element in free-two queue will be assigned 
to two different processors, it means that two jobs in 
each element will select its own highest priority 
processor and assigned to its chosen processor, 
respectively. If all elements in free-two queue are 
assigned and there are still some processors not assigned 
any job yet, then assign element in free-one to these 
processors, until all processors are assigned job. In this 
case, each processor will only be assigned one job. In 
case 5, the assignment policy is similar with case 4, the 
only different is that there will be some processors not 
assigned any job. In each turn, as the assignment is 
finish, the state of each job that is assigned in this turn 
will be set to assigned state, and check its parent job, if 
all child jobs of its parent job are in assigned state, then 
change the state of its parent job from locked state to 
free-state, otherwise, let it still be in locked state. 
Finally, delete all remain element in queue free-two and 
free-one. This assignment policy will recursively run 
until all jobs are in assigned state. Using this assignment 
policy, each processor’s job loading can be balanced 
and each job will have higher possibility to be assigned 
to the same processor that its child job assigned to. 
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After finishing job assignment, each processor has to 
know when should it send its aligned result to other 
processor or receive them from other processor by 
building its own sending and receiving list. We define a 
time-stamp as the time each job uses to finish one job. 
When job assignment is finish, processor can know 
which job it should run in each time-stamp by the order 
of each job adding into its own job list. Suppose job ja is 
the first job that is assigned to processor Ps, then 
processor Ps will run ja in the first time-stamp, after ja is 
finish, Ps will run the second job assigned to itself in the 
second time-stamp. For building sending and receiving 
list, each processor check the parent-job’s assigned 
processor and child-job’s assigned processor of every 
job that is assigned to it. If the assigned processor of 
child-job is different with itself, then before processor 
start to run this job, it has to receive the aligned result of 
this job’s child-job from child-job’s assigned processor. 
For example, if job ja’s assigned processor is Ps, and ja’s 
child-job jb is assigned to Pt. Then as Ps check ja and 
find its child-job jb is assigned to Pt, Ps will check job 
assignment table to know jb will be run by Pt in which 
time-stamp, say tx, and add one record into its receiving 
list to denote that it should receive jb’s aligned result 
from Pt in the end of time-stamp tx. Similarly, if the 
assigned processor of parent-job is not itself, then after 
processor finish this job, it has to send the aligned result 
of this job to the assigned processor of this job’s 
parent-job, so processor has add one record into its 
sending list that records the information of time-stamp 
and processor’s id. 

As processor’s sending and receiving list is created, 
each processor start to run their job according to their 
job list in each time-stamp, and as finishing this job, 
check its sending and receiving list and send aligned 
result to other processor or receive from them if 
necessary. The detailed algorithm of the PCMSA is 
described in the following: 

 
Algorithm PCMSA  
Environment: p processors. 
 
Input: K sequences S= {S

1
, S

2
, …, S

K
} and α constraints 

C= {C
1
, C

2
, …, C

α
}. 

Output: The constrained multiple sequence alignment 
of sequences S= {S

1
, S

2
, …, S

K
} with constraints 

C= {C
1
, C

2
,…, C

α
}. 

 
Step1. Compute the score of the global sequence 

alignment without any constraint using the 
Needleman-Wunsch algorithm between all pairs 
of the K sequences. And assign these K×(K-1) 
pairs to p processors such that each processor get 
K×(K-1)/p pairs. After each processor finish its 
own K×(K-1)/p pairs, send these scores to the 
first processor. After the first processor get all K×
(K-1) scores, it broadcast them to the other p-1 
processors. 

 

Table 1: Condition of each case 
Case id Condition 
Case 1 free(2) ≥  p 

Case 2 free (2) + free (1) / 2 ≥  p 
Case 3 free (2) + free (1) ≥  p 
Case 4 free (2) 2 + free (1) ≥  p 
Case 5 others 

 
 

 
Figure 2: Initially, j1 will be treated as free-one and (j2, 
j3) will be treated as free-two. 
 
 
Step2. Each processor create a complete graph G = (V, 

E) of K sequences in a way that each vertex Vi∈V 
represents a sequence Si∈S and each edge e of E 
between Vi and Vj is associated with a weight d(e) 
to represent the score of sequence alignment that 
is computed in Step1 between Si and Sj. 

 
Step3. Each processor using the complete graph G 

created in Step2 to construct a Kruskal merging 
order tree TK. Using the method introduced in 
Algorithm CMSA Step 3 to construct the 
Kruskal merging order tree. 

 
Step4. Each processor runs the job assignment policy. 
 
Step5. Each processor checks the parent-job and 

child-job of the job that is in its job list. If the 
assigned processor of job’s parent-job is not itself, 
then check this parent-job will be run in which 
time-stamp, and add one data that records 
parent-job’s assigned processor and running 
time-stamp into its own receiving list. If the 
assigned processor of job’s child-job is not itself, 
then add one data that records child-job’s assigned 
processor and the time-stamp that it will run this 
job into its own sending list. 

 
Step 6. Each processor run the job that according to its 

own job list in each time-stamp, after this job is 
finished, check its sending and receiving list to 
send to or receive from other processor if 
necessary. 
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Figure 3: Speed up of sequence length 3k. 
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Figure 4: Speed up of sequence length 4k. 
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Figure 5: Speed up of sequence length 5k. 

 
 

Table 2: Hardware and software list of NCHC 
Formosa PC Cluster 

CPU Intel Xeon 2.8GHz 
Memory 2GB 

Network Switch 1Gbps 
Complier GNU 

 
 
 

4: EXPERIMENT RESULT AND 
ANALYSIS 
 

We used MPI + C to implement our parallel method, 
and tested it on NCHC Formosa PC Cluster. The 
hardware and software information of NCHC Formosa 
PC Cluster is shown in Table 2, and Figure 3 ~ Figure 5 
are performance result. Notice that we use the best case – 
complete binary tree as the guide tree to test our parallel 
program. 

The best case for our parallel algorithm is when the 
guide tree TK is a complete binary tree like Figure 2. In 
our parallel algorithm, Step 1 and Step 6 are the 
parallelized parts, and Step 2 to Step 5 can not be 
parallelized. Analysis our implement for the best case, 
we can estimate the running time using the following 
formula: 
 

Serial: 3
1

22
1

234
1
1

2
)1(

8

652

2

)1(
trnkt

kkkk
t

nkk ×−+×+−−+×−  

 
Parallel:  
Step 1:  

1
12

2
)

2

)1(
)(log

2

)1(
)1(

2

)1(1
( t

kk
k

kk
p

nkk

p
×

−
×+

−
×−+

−
×

+ 
3222 ))(log

1
1(

2

)1(
))(log1( tk

p

kk
tkp ×+−−+×+−  

Step 2 ~ Step 5: 2
1

234

8

652
t

kkkk ×+−−
 

Step 6: 
If )(log1)(log 22 pk ≥−  

Then  

22
3
1

2
2 )(log3)1)((log tptrn

p

k
p ×+××−+   

32 ))()1((int))(log3( tcharsizenp
p

k
sizep ××−+×+

 

If )(log1)(log 22 pk <−  

Then  

22
3
1

2
2 )1)((log3)(log tktrnk ×−+××  

322 ))()2)((log(int))1)((log3( tcharsizenksizek ××−+×−+
 

Parameters 1
1t , 2

1t , 3
1t , t2 and t3 are computed on 

NCHC Formosa PC Cluster, 1
1t , 2

1t , 3
1t  are 

computation time, t2 is communication start up time, and 

t3 is communication transmission time. The values of 1
1t , 

2
1t , 3

1t , t2 and t3 are 64.5ns, 14.7ns, 55.1ns, 56us and 

50ns, respectively. Using the formulas shown above, we 
can estimate the running time and the speed up, and 
know how many processors will be needed to achieve 
our speed up goal. For example, suppose we have 512 
sequences with length 5k, and 5 constraints. If we want 
the speed up can be at least 15, then we will have the 
inequality Serial/Parallel >= 15, and set k=32, n=5000 
and r=5. After computing this inequality, we will have 
the result p>= 16. So we will need at least 16 processors 
to running this testing to have speed up 16. 
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Figure 6: Theoretical Speed up of sequence length 3k. 

 

4k

0

10

20

30

40

0 5 10 15 20 25 30 35

total processers

sp
ee

d
 u

p

32 sequences 64 sequences 128 sequences

256 sequences 512 sequences

 
Figure 7: Theoretical Speed up of sequence length 4k. 
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Figure 8: Theoretical Speed up of sequence length 5k. 

 
 

Figure 6 to Figure 8 are the theoretical speed up 
computed from Serial/Parallel. Comparing them with 
the experimental result, it shows that our tool can 
achieve 80% of the theoretical speed up. 
 
 
5: CONCLUSIONS 
 

In this paper, we have proposed a parallel algorithm 
for the constraint multiple sequences alignment with 

time complexity O( 422 )( kpnkrk ++ ) where k is the 

number of sequences, r is the number of constraints, n is 
the length of sequence and p is the number of processors. 
By the experimental results, we can show that our 
algorithm is more time-efficient than the serial 
algorithm, and can achieve a good speed up. 
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