
An Efficient Parallel Algorithm for Constraint Multiple Sequence Alignment

Hau-Jui Tsai, Chun-Yuan Lin, Yeh-Ching Chung, and Chuan Yi Tang*

Department of Computer Science, National Tsing Hua University, Hsin chu, Taiwan 300, ROC

{g934390@oz, cyulin@mx, ychung@cs, *cytang@cs}.nthu.edu.tw

ABSTRACT
The concept of constrained sequence alignment is

proposed to incorporate the biologist's knowledge into
sequence alignment such that the user-specified
residues/nucleotides are aligned together in the
computed alignment. Tang et al. were first to investigate
the constrained multiple sequence alignment problem.
Their algorithm for two sequences alignment with
constraints runs in O(αn4) time and needs O(n4) space.
Later, this result was improved by two groups of
researchers independently to O(rn2) time and space
using the same approach of dynamic programming.
Recently, Lu and Huang designed a memory-efficient
algorithm to improve the two sequence alignment with
constraints (CPSA) by adopting the divide-and-conquer
approach, this algorithm for solving CPSA problem can
run in O(rn2) time and only need O(un) space, where u
is the sum of the length of constraints and usually u<<n
in the practical applications. In this paper, we design an
efficient parallel algorithm for the constrained multiple
sequence alignment based on the memory-efficient
algorithm designed by Lu and Huang and the
progressive strategy.

1: INTRODUCTIONS

Generally speaking, biologists have the knowledge
of their datasets of the structures/functionalities/
consensuses. The constrained sequence alignment is
trying to include the biologist's knowledge into
sequence alignment to increase the correctness of the
alignment results. For example, many ribonucleases
(RNases) including bovine and human pancreatic
RNaseAs have been isolated and characterized in terms
of their amino acid sequences, coding genes, three-
dimensional structures and biological functions. The
major structural features of all RNases contain three
conserved His12, Lys41 and His119 active site residues
and four disulfide bonds as compared to bovine
pancreatic RNaseA. Since the RNases with solved
three-dimensional structures all show very high
homology among the catalytic domains and disulfide
linkages, we would expect that their alignment should
place His12 (Lys41 and His119, respectively) of bovine
pancreatic RNase and other His (Lys and His,
respectively) residues in the same column. So that we

should treat His12 (Lys41 and His119, respectively) as
the constraints when aligning these RNases sequences
and we expect that the alignment result will like we
discuss above. Tang et al. [10] were first to investigate
the constrained multiple sequence alignment problem
(CMSA). Their algorithm for two sequences alignment
with α constraints runs in O(αn4) time and need O(n4)
space. The complexity of CMSA for K sequences
alignment is O(αKn4). Later, this result was improved
by two groups of researchers independently to O(αn2)
time and space using the same approach of dynamic
programming [4, 15]. Furthermore, each constraint
expected to be aligned together can be seen as a
conserved site of a protein/DNA/RNA family. And each
conserved site may not only consist of a single residue/
nucleotide, but a short segment of residues/nucleotides.
It means that the constraint specified by the biologists
can be a segment of residues/nucleotides with size of r.
In some applications, biologists may further allow some
mismatches among the residues/nucleotides of the
columns requested to be aligned. So that Tsai et al. [10]
studied such a kind of the constrained sequence
alignment and designed an algorithm of O(rn2)
(O(rK2n2)) time and O(rn2) space for two (K) sequences.

Although the improvement discussed above greatly
increase the efficiency and practical usage of the CMSA
algorithm designed by using the progressive strategy,
the space complexity O(rn2) still limits the CMSA
algorithm to just align a set of short sequences, at most
several hundreds of the sequence length. Hence, Lu and
Huang [8] designed a memory-efficient algorithm to
improve the two sequence alignment with constraints
(CPSA) by adopting the divide-and-conquer approach,
this algorithm for solving CPSA problem can run in
O(rn2) (O(rK2n2) for progressive CMSA) time and only
need O(un) space, where u is the sum of the length of
constraints. In this paper, we design an efficient parallel
algorithm for the constrained multiple sequence
alignment based on the memory- efficient algorithm [8]
and the progressive strategy.

This paper is organized as follows. In Section 2, we
first introduce the progressive strategy of the CMSA
problem. In Section 3, we describe the detail of our
method improved from progressive strategy to
parallelize the CMSA algorithm. In Section 4, we
analyze the performance of our parallel algorithm and
show the experimental results.

- 1261 -

Figure 1: One example of the guide tree created.

2: PROGRESSIVE STRATEGY OF CMSA

The CMSA algorithm we introduced here is based
on the progressive strategy by using CPSA as the kernel
and the guide tree constructed from the Kruskal MST,
called Kruskal merging order tree. The detailed
algorithm of the CMSA is described in the following:

Algorithm CMSA
Input: K sequences S= {S

1
, S

2
, …, S

K
} and α constraints

C= {C
1
, C

2
, …, C

α
}.

Output: The constrained multiple sequence alignment
of sequences S = {S

1
, S

2
, …, S

K
} with

constraints C = {C
1
, C

2
, …, C

α
}.

Step1. Compute the score of the global sequence

alignment without any constraint using the
Needleman-Wunsch algorithm [9] between all
pairs of the K sequences.

Step2. Create a complete graph G = (V, E) of K

sequences in a way that each vertex Vi∈V
represents a sequence Si∈S and each edge e of E
between Vi and Vj is associated with a weight d(e)
to represent the score of sequence alignment that
is computed in Step1 between Si and Sj.

Step3. Using the complete graph G created in Step2 to

construct a Kruskal merging order tree TK. The
Kruskal merging order tree is constructed in the
following way.
1. Sorting all edges of E in non-decreasing order

according to their weights.
2. Build a Kruskal MST T. Initially, T is empty.

Then we repeatedly add the edges of E in
non-decreasing order to T in a way that if the
currently adding edge e to T does not create a
cycle in T, then we add e to T; otherwise, we
discard e. Let V= {V

 1
, V

 2
, …, V

 K
} be the

vertexes of T and e
1
, e

2
, …, e

K-1
 be the edges of

T with d(e
1
) ≤ d(e

2
), ≤ …≤ d(e

K-1
).

3. For each Vi∈V, we create a tree Ti such that Ti

contains only a node vi and Ti’s root is vi.

Define the merge process of two trees Ti and Tj

respectively rooted at vi and vj to be a new tree

rooted at a new vertex u such that vi and vj

become the children of u.
4. For each ek = (vi, vj), where k increases from 1

to K-1, we merge the tree Ti and Tj containing

vi and vj respectively into a new tree. This

process is continued until the remaining is only
one tree.

5. Drop the leaf nodes of the tree build in 4. Then
this final tree is the Kruskal merging order tree
TK. We use this Kruskal merging order tree TK
as the guide tree.

Step4. Use the Kruskal merging order tree TK created in

Step3 as the guide tree. Progressively align the
sequences according to the branching order of the
guide tree TK in a way that the currently two
closest pre-aligned groups of sequences are
joined by applying Algorithm CPSA to the
pair-wised represented sequences of these two
groups.

3: A PARALLEL ALGORITHM FOR
CMSA

The main idea of our parallel algorithm is based on
the observation of the guide tree TK created in the
Algorithm CMSA. In Algorithm CMSA Step 4,
sometimes there are more than one pair of pre-aligned
groups of sequences can be aligned in parallel, but they
can just be aligned one after another in the Algorithm
CMSA. Using a guide tree created like Figure 1 as
example, in this case, job j1 ~ j4 can be done in parallel,
but they will just be done one after another. In fact, we
can treat each node in guide tree TK as a job. Then, each
job in guide tree TK can be departed into three states:
locked, free and assigned. Locked state means there is at
least one child of this job is not assigned to any
processor, and it can not be assigned now. Free-state
means that all of this job’s child have been assigned or
this job does not have any child (leaf node in TK), and
this job can be assigned now, but not be assigned.
Assigned state means that this job has been assigned to
one of the processors. While deciding each job’s
assigned processor, we should consider the balance of
the communication overhead and each processor’s
loading. If a job ja is assigned to processor Ps, but it’s
child ja is assigned to Pt, then before Ps start to run job ja,
Ps has to receive the aligned result from Pt, and there is
one more communication between Ps and Pt. For the
purpose of decreasing the total communication as much
as possible, we may assign ja to processor Pt, so that
there is no communication before Pt start to run job ja.
But we should still consider one more point, if there is
too much job assigned to Pt, and Ps is always in idle
state, then the processor utilization will be too low. For

- 1262 -

example, if we assign ja to Pt, and Pt is always busy
until time tx, but Ps is idle between time ty to tx (ty < tx),
then assigning ja to Ps and increase one more
communication may be worthy because job ja can be
done before time tx and communication overhead will
cost no more than tx - ty.

In order to decreasing the total communication time
and increase the processor utilization, we use the
concept of priority to decide each job’s assigned
processor. Initially, each job has its own priority table to
record every processor’s priority respect to this job, and
these values are all set to zero. In each turn, we scan the
guide tree TK to find which jobs are now in free-state.
Suppose job ja is in free-state in this turn, and job jb and
jc both are child of job ja, jb and jc are all in assigned
state. Define pri(ja, Ps) as the priority of processor Ps
respect to job ja. We discuss the following two possible
cases. In case I, if jb and jc are both assigned to the same
processor, say Ps, then pri(jb, Ps) and pri(jc, Ps) will both
increase one unit. Before we decide which processor
gets job ja, ja will update its priority table as pri(ja, Ps) =
pri(jb, Ps) + pri(jc, Ps). Similarly, in case II, if jb and jc
are assigned to different processors, say Ps and Pt,
respectively. Then pri(jb, Ps) and pri(jc, Pt) will both
increase one unit, and before assigning job ja, ja will
update its priority table as pri(ja, Ps) = pri(jb, Ps) and
pri(ja, Pt) = pri(jb, Pt). After ja updates its priority table,
we will choose one processor which has highest priority
and is not be assigned any job in this turn from ja’s
priority table, and assign ja to this chosen processor. By
the way, if job ja has only one child, say jb, and jb is
assigned to Ps, then ja only need to update its priority
table as pri(ja, Ps) = pri(jb, Ps).

Now we discuss the way we use to assign jobs to
processors. After guide tree TK is built, we create a state
table which has K – 1 element, and each element state(a)
records job ja’s state. Initially, all elements in state table
are set as locked state except the jobs that are leaf nodes
in guide tree. In each turn, we scan the state table to find
which jobs are in free-state. Each time we find a job is
in free-state, we will check if this job has a brother node
in guide tree, if it has a brother and this brother job is
also in free-state, then we put these two job into a queue
list we call it as free-two, notes that these two jobs in
free-two queue are treated as one element but not two
elements. If this job does not have any brother job in
guide tree or its brother job is in assigned state or locked
state, then we just put this job into a queue list we call
as free-one. We use Figure 2 to explain more clearly. In
Figure 2, j1, j2 and j3 are all leaf nodes and they are in
free-state, and the others are in locked state, initially.
Job j2 and j3 are brother job, and job j1 does not have
any brother job. In the first turn to scan the guide tree, j1
will be put into free-one queue and j2 and j3 will be put
into free-two queue. After scanning from the guide tree
to find which jobs are in free-state, we start to decide
the job assignment. In this time, we depart the job
assignment in several cases according to the number of
elements in free-one queue and free-two queue. Let
free(1) and free(2) denote the number of elements in

free-one queue and free-two queue, respectively. And
let p denotes the total number of processors. We list the
conditions of each case in Table 1. In case 1, the
number of elements in free-two queue are more than the
number of total processors, so we assigned each
processor one element in the free-two queue, each
processor will be assigned two jobs in this case, and
these two jobs are brother job, respectively. The chosen
processor is the one which has highest priority in these
two job’s priority table and has not been assigned any
job in this turn. For example, if an element in free-two
queue stores job ja and jb. Suppose the processor which
has highest priority respect to ja is Ps and Ps is not
assigned any job yet, and the processor which has
highest and second highest priority respect to jb are Pt
and Pu, respectively. But Pt has been assigned jobs in
this turn and Pu is not yet. Then we will choose a
processor such that has higher value between pri(ja, Ps)
and pri(jb, Pu). That means if pri(ja, Ps) is higher than
pri(jb, Pu), we choose Ps, otherwise, we choose Pu, and
the chosen processor will be assign these two jobs. In
case 2, the assignment policy is similar with case 1,
each element in free-two are assigned to one processor,
and after all elements in free-two are assigned, we select
two elements in free-one each time, and assigned them
to a processor which has highest priority between these
two job and has not been assigned any jobs in this turn
yet, until all processors have been assigned jobs. In case
3, after assigned each element in free-two to a processor,
we then assign each element in free-one to a processor,
and the chosen processor for each job is the one who
has highest priority respect to this job and has not been
assigned any job yet. Noting that in this case, the
processor chosen by the element in free-two will be
assigned two jobs, and the processor chosen by the
element in free-one will only be assigned one job. In
case 4, each element in free-two queue will be assigned
to two different processors, it means that two jobs in
each element will select its own highest priority
processor and assigned to its chosen processor,
respectively. If all elements in free-two queue are
assigned and there are still some processors not assigned
any job yet, then assign element in free-one to these
processors, until all processors are assigned job. In this
case, each processor will only be assigned one job. In
case 5, the assignment policy is similar with case 4, the
only different is that there will be some processors not
assigned any job. In each turn, as the assignment is
finish, the state of each job that is assigned in this turn
will be set to assigned state, and check its parent job, if
all child jobs of its parent job are in assigned state, then
change the state of its parent job from locked state to
free-state, otherwise, let it still be in locked state.
Finally, delete all remain element in queue free-two and
free-one. This assignment policy will recursively run
until all jobs are in assigned state. Using this assignment
policy, each processor’s job loading can be balanced
and each job will have higher possibility to be assigned
to the same processor that its child job assigned to.

- 1263 -

After finishing job assignment, each processor has to
know when should it send its aligned result to other
processor or receive them from other processor by
building its own sending and receiving list. We define a
time-stamp as the time each job uses to finish one job.
When job assignment is finish, processor can know
which job it should run in each time-stamp by the order
of each job adding into its own job list. Suppose job ja is
the first job that is assigned to processor Ps, then
processor Ps will run ja in the first time-stamp, after ja is
finish, Ps will run the second job assigned to itself in the
second time-stamp. For building sending and receiving
list, each processor check the parent-job’s assigned
processor and child-job’s assigned processor of every
job that is assigned to it. If the assigned processor of
child-job is different with itself, then before processor
start to run this job, it has to receive the aligned result of
this job’s child-job from child-job’s assigned processor.
For example, if job ja’s assigned processor is Ps, and ja’s
child-job jb is assigned to Pt. Then as Ps check ja and
find its child-job jb is assigned to Pt, Ps will check job
assignment table to know jb will be run by Pt in which
time-stamp, say tx, and add one record into its receiving
list to denote that it should receive jb’s aligned result
from Pt in the end of time-stamp tx. Similarly, if the
assigned processor of parent-job is not itself, then after
processor finish this job, it has to send the aligned result
of this job to the assigned processor of this job’s
parent-job, so processor has add one record into its
sending list that records the information of time-stamp
and processor’s id.

As processor’s sending and receiving list is created,
each processor start to run their job according to their
job list in each time-stamp, and as finishing this job,
check its sending and receiving list and send aligned
result to other processor or receive from them if
necessary. The detailed algorithm of the PCMSA is
described in the following:

Algorithm PCMSA
Environment: p processors.

Input: K sequences S= {S

1
, S

2
, …, S

K
} and α constraints

C= {C
1
, C

2
, …, C

α
}.

Output: The constrained multiple sequence alignment
of sequences S= {S

1
, S

2
, …, S

K
} with constraints

C= {C
1
, C

2
,…, C

α
}.

Step1. Compute the score of the global sequence

alignment without any constraint using the
Needleman-Wunsch algorithm between all pairs
of the K sequences. And assign these K×(K-1)
pairs to p processors such that each processor get
K×(K-1)/p pairs. After each processor finish its
own K×(K-1)/p pairs, send these scores to the
first processor. After the first processor get all K×
(K-1) scores, it broadcast them to the other p-1
processors.

Table 1: Condition of each case
Case id Condition
Case 1 free(2) ≥ p

Case 2 free (2) + free (1) / 2 ≥ p
Case 3 free (2) + free (1) ≥ p
Case 4 free (2) 2 + free (1) ≥ p
Case 5 others

Figure 2: Initially, j1 will be treated as free-one and (j2,
j3) will be treated as free-two.

Step2. Each processor create a complete graph G = (V,

E) of K sequences in a way that each vertex Vi∈V
represents a sequence Si∈S and each edge e of E
between Vi and Vj is associated with a weight d(e)
to represent the score of sequence alignment that
is computed in Step1 between Si and Sj.

Step3. Each processor using the complete graph G

created in Step2 to construct a Kruskal merging
order tree TK. Using the method introduced in
Algorithm CMSA Step 3 to construct the
Kruskal merging order tree.

Step4. Each processor runs the job assignment policy.

Step5. Each processor checks the parent-job and

child-job of the job that is in its job list. If the
assigned processor of job’s parent-job is not itself,
then check this parent-job will be run in which
time-stamp, and add one data that records
parent-job’s assigned processor and running
time-stamp into its own receiving list. If the
assigned processor of job’s child-job is not itself,
then add one data that records child-job’s assigned
processor and the time-stamp that it will run this
job into its own sending list.

Step 6. Each processor run the job that according to its

own job list in each time-stamp, after this job is
finished, check its sending and receiving list to
send to or receive from other processor if
necessary.

- 1264 -

3k

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

total processers

sp
ee

d
 u

p

32 sequences 64 sequences 128 sequences

256 sequences 512 sequences

Figure 3: Speed up of sequence length 3k.

4k

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

total processers

sp
ee

d
 u

p

32 sequences 64 sequences 128 sequences

256 sequences 512 sequences

Figure 4: Speed up of sequence length 4k.

5k

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

total processers

sp
ee

d
 u

p

32 sequences 64 sequences 128 sequences

256 sequences 512 sequences

Figure 5: Speed up of sequence length 5k.

Table 2: Hardware and software list of NCHC
Formosa PC Cluster

CPU Intel Xeon 2.8GHz
Memory 2GB

Network Switch 1Gbps
Complier GNU

4: EXPERIMENT RESULT AND
ANALYSIS

We used MPI + C to implement our parallel method,
and tested it on NCHC Formosa PC Cluster. The
hardware and software information of NCHC Formosa
PC Cluster is shown in Table 2, and Figure 3 ~ Figure 5
are performance result. Notice that we use the best case –
complete binary tree as the guide tree to test our parallel
program.

The best case for our parallel algorithm is when the
guide tree TK is a complete binary tree like Figure 2. In
our parallel algorithm, Step 1 and Step 6 are the
parallelized parts, and Step 2 to Step 5 can not be
parallelized. Analysis our implement for the best case,
we can estimate the running time using the following
formula:

Serial: 3
1

22
1

234
1
1

2
)1(

8

652

2

)1(
trnkt

kkkk
t

nkk ×−+×+−−+×−

Parallel:
Step 1:

1
12

2
)

2

)1(
)(log

2

)1(
)1(

2

)1(1
(t

kk
k

kk
p

nkk

p
×

−
×+

−
×−+

−
×

+
3222))(log

1
1(

2

)1(
))(log1(tk

p

kk
tkp ×+−−+×+−

Step 2 ~ Step 5: 2
1

234

8

652
t

kkkk ×+−−

Step 6:
If)(log1)(log 22 pk ≥−

Then

22
3
1

2
2)(log3)1)((log tptrn

p

k
p ×+××−+

32))()1((int))(log3(tcharsizenp
p

k
sizep ××−+×+

If)(log1)(log 22 pk <−

Then

22
3
1

2
2)1)((log3)(log tktrnk ×−+××

322))()2)((log(int))1)((log3(tcharsizenksizek ××−+×−+

Parameters 1
1t , 2

1t , 3
1t , t2 and t3 are computed on

NCHC Formosa PC Cluster, 1
1t , 2

1t , 3
1t are

computation time, t2 is communication start up time, and

t3 is communication transmission time. The values of 1
1t ,

2
1t , 3

1t , t2 and t3 are 64.5ns, 14.7ns, 55.1ns, 56us and

50ns, respectively. Using the formulas shown above, we
can estimate the running time and the speed up, and
know how many processors will be needed to achieve
our speed up goal. For example, suppose we have 512
sequences with length 5k, and 5 constraints. If we want
the speed up can be at least 15, then we will have the
inequality Serial/Parallel >= 15, and set k=32, n=5000
and r=5. After computing this inequality, we will have
the result p>= 16. So we will need at least 16 processors
to running this testing to have speed up 16.

- 1265 -

3k

0

10

20

30

40

0 5 10 15 20 25 30 35

total processers

sp
ee

d
 u

p

32 sequences 64 sequences 128 sequences

256 sequences 512 sequences

Figure 6: Theoretical Speed up of sequence length 3k.

4k

0

10

20

30

40

0 5 10 15 20 25 30 35

total processers

sp
ee

d
 u

p

32 sequences 64 sequences 128 sequences

256 sequences 512 sequences

Figure 7: Theoretical Speed up of sequence length 4k.

5k

0

10

20

30

40

0 5 10 15 20 25 30 35

total processers

sp
ee

d
 u

p

32 sequences 64 sequences 128 sequences

256 sequences 512 sequences

Figure 8: Theoretical Speed up of sequence length 5k.

Figure 6 to Figure 8 are the theoretical speed up
computed from Serial/Parallel. Comparing them with
the experimental result, it shows that our tool can
achieve 80% of the theoretical speed up.

5: CONCLUSIONS

In this paper, we have proposed a parallel algorithm
for the constraint multiple sequences alignment with

time complexity O(422)(kpnkrk ++) where k is the

number of sequences, r is the number of constraints, n is
the length of sequence and p is the number of processors.
By the experimental results, we can show that our
algorithm is more time-efficient than the serial
algorithm, and can achieve a good speed up.

6: REFERENCES

[1]. P. Bonizzoni and G.D.V edova, “The complexity of

multiple sequence alignment with SP-score that is a
metric,” Theoretical Computer Science, vol. 259, 2001,
pp.63-79, 2001.

[2]. H. Carrillo and D. Lipman, “The multiple sequence
alignment problem in biology,” SIAM J. Applied
Mathematics, vol. 48, 1988, pp.1073-1082.

[3]. S.C. Chan, A.K.C. Wong, and D.K.Y. Chiu, “A survey of
multiple sequence comparison methods,” Bulletin of
Mathematical Biology, vol. 54, 1992, pp.563-598.

[4]. F.Y.L. Chin, N.L. Ho, T.W. Lamy, P.W.H. Wong and
M.Y. Chan. “Efficient constrained multiple sequence
alignment with performance guarantee,” Proc. IEEE
Computer Society Bioinformatics Conference, 2003, pp.
337-346.

[5]. F. Corpet, “Multiple sequence alignment with
hierarchical clustering,” Nucleic Acids Research, vol. 16,
1988, pp.10881-10890.

[6]. D.F. Feng and R.F. Doolittle, “Progressive sequence
alignment as a prerequisite to correct phylogenetic trees,”
J. Molecular Evolution, vol. 25, 1987, pp. 351-360.

[7]. D. Higgins and P.S harpe, “CLUSTAL: a package for
performing multiple sequence alignment on a
microcomputer,” Gene, vol. 73, 1988, pp.237-244.

[8]. C.L. Lu and Y.P. Huang, “A memory-efficient algorithm
for multiple sequence alignment with constraints,”
Bioinformatics, vol. 21, 2005, pp.20-30.

[9]. S. Needleman and C. Wunsch, “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,” J. Molecular Evolution, vol.
48, 1970, pp.443-453.

[10]. C.Y. Tang, C.L. Lu, M.D.T. Chang, Y.T. Tsai, Y.J. Sun,
K.M. Chao, J.M. Chang, Y.H. Chiou, C.M. Wu, H.T.
Chang, and W.I. Chou, “Constrained multiple sequence
alignment tool development and its application to RNase
family alignment,” J. Bioinform. Comput. Biol., vol. 1,
pp.267–287.

[11]. W.R. Taylor, “Multiple sequence alignment by a pairwise
algorithm,” CABIOS, vol. 3, 1987, pp.81-87.

[12]. J.D. Thompson, D.G. Higgs, and T.J. Gibson,
“CLUSTALW: improving the sensitivity of progressive
multiple sequence alignment through sequence weighting,
position specific gap penalties, and weight matrix
choice,” Nucleic Acids Research, vol. 22, 1994,
pp.4673-4680.

[13]. Y.T. Tsai, Y.P. Huang, C.T. Yu, and C.L. Lu, “MuSiC: a
tool for multiple sequence alignment with constraints,”
Bioinformatics, vol. 20, 2004, pp. 2309–2310.

[14]. L. Wang and T. Jiang, “On the complexity of multiple
sequence alignment,” J. Computational Biology, vol. 1,
1994, pp.337-348.

[15]. C.T. Yu, “Efficient algorithms for constrained sequence
alignment problems,” Master’s Thesis, Department of
Computer Science and Information Management,
Providence University, 2003.

- 1266 -

