
G-BLAST: a Grid-Based Solution of mpiBLAST on Computational Grids

Chao-Tung Yang Tsu-Fen Han
High-Performance Computing Laboratory

Department of Computer Science and Information Engineering
Tunghai University

Taichung City, 40704, Taiwan R.O.C.
ctyang@thu.edu.tw g942814@thu.edu.tw

ABSTRACT

Research in the area of bioinformatics has grown
with each passing day in recent years as demands for
more computing power increased. The solutions to these
demands usually involve using parallelism techniques.
For example, mpiBLAST is a parallel program that
executes jobs in parallel in clusters with MPI. Although
Cluster environments can reduce the execution time and
increase alignment efficiency, they may not be a good
solution when aligning very large genomic databases.
Grid Computing can coordinate the resources of
distributed virtual organizations and satisfy a great
many computational demands. In addition to integrating
distributed resources, Grid Computing can reduce
server idle times via management of integrated
computing resources. This study proposes an approach
that integrates mpiBLAST in a Grid Computing
environment called BioGrid, and implementation of a
Grid service called G-BLAST. In here, the G-BLAST is
compliant with the Web Service Resource Framework
(WSRF) standard.

1: INTRODUCTION

Bioinformatics combines biology and information
technology and includes computational tools and
methods for managing, analyzing, and manipulating
large biology datasets. Computing technologies are vital
for bioinformatics applications [1][2][3]. For example,
biology problems often require repeating a task millions
of times, such as when searching for sequence
similarities in existing databases or comparing groups of
sequences to determine evolutionary relationships. In
such cases, high-performance computers to process this
information are indispensable. Biological information is
stored on many computers around the world. The easiest
way to process this data is to join these computers
together through network. Such activities require
high-performance computing infrastructures [4][5] with
access to huge information databases [6]. The major
advances in computer technology and computer science
over the past 30 years have dramatically changed much
of our society. Currently, many parallel versions of

bioinformatics applications can be used to conduct
computing tasks on Linux PC cluster or Grid systems.

NCBI BLAST [7] is one of the best tools available to
bioinformatics for using heuristic similarity-search
algorithms to find sequences in genome databases
similar to given query sequences. mpiBLAST [8] is a
parallelization of BLAST that executes BLAST jobs in
parallel using Message Passing Interface (MPI) [9]. Even
with this parallel version, mpiBLAST, BLAST still
needs sufficient time to analyze and align genomic
databases.

Grid [10][11] enable virtual organizations to share
geographically distributed resources in their pursuit of
common goals, assuming the existence of a central
location, central control, omniscience, and an existing
trust relationship.

The BioGrid [2][12][13] is a Grid environment aimed
at improving the performance of bioinformatics
applications. In this work, we propose BioGrid
Framework, a Grid-based solution for mpiBLAST built
on the Globus Toolkit 4.0 [14] that integrates
mpiBLAST into a Grid environment. Moreover, we
report on implementing a G-BLAST Service that allows
use of mpiBLAST, which is integrated into BioGrid. The
purpose of this study is to get higher performance than
traditional Cluster architectures and to have an easier
user interface than previous mpiBLAST versions.
Therefore, this present approach focuses on how to
integrate mpiBLAST into a Grid environment, and
attempts to build a hierarchical architecture that
integrates a Grid environment and a cluster environment.
The GUI implemented is used to perform users’
invocations to BioGrid. The G-BLAST Service provides
functions for managing submissions, segmenting
genomic databases, dispatching and monitoring Grid
jobs, combining result files, and returning results via
WSRF [15].

The rest of this paper is organized as follows. In
Section 2 we describe what Grid Computing and Gird
Middleware are, and in Section 3 we describe the
application, framework, and technology that G-BLAST
uses. Development and details of G-BLAST are
presented in Section 4. Conclusions are given in Section
5, with emphasis on potential areas for future work.

- 1272 -

2: Background Review

2.1: Grid Computing

The main concept of Grid Computing [11][16] is to
extend the original ideas of the Internet to sharing
widespread computing power, storage capacities, and
other resources. Grid Computing can coordinate the
resources of distributed virtual organizations and satisfy
a great quality of computational demands. Besides
integrating distributed resources, Grid Computing can
also reduce idle time of servers via management of
integrated computing resources. Owing to a deluge of
data and information, fields such as high-energy physics,
bioinformatics, and digital archive, demand a great deal
of computational and storage capacity.

2.2: Grid Middleware

The Globus Project provides software tools that make
it easier to build computational Grid systems and
applications. These tools are collectively called the
Globus Toolkit. The toolkit includes software for
security, information infrastructure, resource
management, data management, communication, fault
detection, and portability. We used it as the infrastructure
of our BioGrid.

The composition of the Globus Toolkit can be
pictured as three pillars: Resource Management,
Information Services, and Data Management. Each pillar
represents a primary component of the Globus Toolkit
and makes use of a common foundation of security. The
Globus alliance proposed a common data transfer and
access protocol called GridFTP. It is a high-performance,
secure, efficient data movement, and reliable data
transfer protocol optimized for Grid environments. The
GridFTP protocol extends the standard FTP protocol, the
highly-popular Internet file transfer protocol, and
provides a superset of the features offered by the various
Grid storage systems currently in use.

MPICH-G2 [17] is a grid-enabled implementation of
the MPI v1.1 standard. In addition, MPICH-G2 allows
coupling of multiple machines, with different
architectures, to run MPI applications. MPICH-G2
automatically converts data in messages sent between
machines of different architectures and supports
multiprotocol communication by automatically selecting
TCP for intermachine messaging and (where available)
vendor-supplied MPI for intramachine messaging.

3: Parallel Bioinformatics Applications

Comparing a sequence against a database is one of
the most common bioinformatics applications. A
sequence alignment is needed before making
comparative statements about nucleic acid or protein
sequences. The concept of selecting an optimal sequence
alignment is simple, but is not at all simple in practice.
Choosing a good alignment artificially is possible, but it

must do more than once or twice. An automatic method
for finding the optimal alignment out of the thousands of
alternatives is the right approach.

A common application of sequence alignment is
searching a database for sequences similar to a query
sequence. Hence, there are many sequence alignment
tools, such as BLAST [5] [18] and FASTA, based on
various algorithms. There are vast volumes of DNA
sequence data, and we need to figure out which parts of
that DNA control the various chemical processes of life
and determine the functions of new proteins from the
known functions and structures of some proteins.
Availability of computer resources is the key factor
limiting use of bioinformatics analyses as a result of the
growing computational demands. Various databases of
gene/protein sequences, gene expression, and related
analysis tools help scientists determine whether and how
a particular molecule is directly involved in a disease
process. That, in turn, aids in the discovery of new and
better drug targets [11] [19].

3.1: mpiBLAST

The Basic Local Alignment Search Tool (BLAST) is
a sequence database search tool that seeks similarities
between two substrings in molecular biology by using
score matrices to improve filtration efficiency and to
introduce more accurate rules for locating potential
matches. BLAST attempts to find all locally maximal
segment pairs in query sequences and database
sequences with scores above some set threshold.
mpiBLAST is a freely available, open-source
parallelization of NCBI BLAST. It contains a pair of
programs that replace formatdb and blastall with versions
that execute BLAST jobs in parallel on clusters of
computers with MPI installed.

There are two primary advantages to using
mpiBLAST rather than conventional BLAST. First,
mpiBLAST segments a target database, then dispatches
the segments to nodes in clusters. Because the database
segment in each node is small, it can usually reside in the
buffer-cache, yielding a significant speedup due to the
elimination of disk I/O. Second, it allows BLAST users
to take advantage of efficient, low-cost Beowulf clusters
because interprocessor communication demands are low.
Table 1 shows Appropriate Query/Program
Combinations of BLAST.

Table 1. Appropriate Query/Program Combinations for
“BLAST 2 Sequences”

First Query Second
Query

Program to Use

Nucleotide Nucleotide blastn, megablast,
or tblastx

Nucleotide Protein blastx
Protein Nucleotide tblastn
Protein Protein blastp

- 1273 -

The mpiBLAST Partitioning schema is shown in
Figure 1. It uses multithreading to segment databases,
assigning distinct portions of the database to each
processor. It wraps the standard NCBI formatdb called
mpiformatdb to format the Database. Command line
arguments specify the number of fragments.
mpiformatdb formulates command line arguments that
force NCBI formatdb to format and divide the database
into many fragments of approximately equal size.

Figure 1. The mpiBLAST partitioning schema

When mpiformatdb execution is complete, the

formatted fragments are placed in shared storage.
Alignment of the database is accomplished by the local
sequence alignment algorithm implemented in the NCBI
[20] development library. If a node does not have
fragments needed by a search, the fragments are copied
from shared storage. Fragments are assigned to nodes
using an algorithm that minimizes the number of
fragments copied during each search.

3.2: BioGrid Framework

This project constructed the BioGrid framework
shown in Figure 2. It is a Virtual Grid Organization that
includes many sites. The framework can contain many
bioinformatics applications, such as mpiBLAST and
FASTA, among others. This present approach considers
how to integrate mpiBLAST into a Grid environment.

In BioGrid, sites can be PC Clusters, PCs, or super
computers. This project focuses on the Beowulf Cluster.
Each site must have Fedora Core 4 Linux OS, Globus
Toolkit 4.0 (GT4), and MPICH-G2 installed. Because
mpiBLAST performs on clusters, we let a cluster be a
Grid node. Therefore, this project built a hierarchical
architecture that integrates a Grid environment and a
cluster environment. In order to use mpiBLAST in
BioGrid, we implemented a Grid service called
G-BLAST. Users invocations are performed on
G-BLAST, which is built on GT4 and manages the
submission, dispatch and monitoring of Grid jobs, and

returns results to users via WSRF. We describe
G-BLAST in more detail in the next section.

Figure 2. The BioGrid software architecture

4: G-BLAST Grid Service Design

We propose the G-BLAST Service built on the
BioGrid framework as shown in Figure 3. This service
uses the Java and C++ program languages to implement
all components. The User Portal and mpiBlast Service
are implemented in Java because it has better support for
the Grid services in GT4 than others. The Workflow
System, Job Dispatch System, Information System,
Segmentation Databases System, Job Monitor System,
and Combination Results are implemented in C++. Each
mpiBlast Service is built on a master server in a
standalone Cluster system, and executes mpiBLAST
applications through MPICH-G2.

4.1: User Portal

The User Portal enables interactions with G-BLAST
Service. It is divided into two parts that are the user
application and the G-BLAST Service portal. They are
wrapped in the SOAP format, which then transfers
whatever it receives or returns via WSRF.

The first part is a desk client application that enables
use of the G-BLAST Service. This portal was developed
in Java and provides the same functions as mpiBLAST,
but ours is a GUI that allows easy use, just like the
conventional mpiBLAST. The portal always returns
messages from G-BLAST Service, whether the user
invocation was successful or not. If the user’s invocation
is successful, the portal shows the alignment results, or
an appropriate message telling the user what has
happened. Moreover, our portal provides security control
in that the user must show authorization before using
G-BLAST Service.

- 1274 -

The second part is a part of G-BLAST, and it receives
user invocations and returns results, such as job running
time, job running status, and how many jobs running are,
from G-BLAST.

BioGrid User

User Portal

Segmentation
Databases

System

Information
System

Job Monitor
System

Combination
Result Files

Job Dispatch
System

Workflow
System

Fetch
System

Information

 Genomic Databases

Checking
database

Information
Database

Status Information:
‧Size of each segmentation
‧Execution time
‧Is it success?

mpiBlast
Service

Query StatusQuery Database

mpiBlast
Service

mpiBlast
Service

Dispatch Jobs …

Fetch/Store
Server

Information

Figure. 3. The G-BLAST Service System architecture

4.2: Workflow System

The Workflow System checks Genomic Databases in
the server and monitors the job loading of the server on
which the G-BLAST Service is built.

Database checking is necessary because even though
the probability is extremely low, the genomic database
the client needs may be lost from the server. Thus, we
must be sure this database, which is needed by the user,
existing. If the checking result is true, then the user’s
invocation is accepted and the job is delivered to the Job
Dispatch System. If the result is false, a message is
displayed to notify the user that the invocation was
rejected.

Server loading is monitored because there are many
user invocations, and we need to know jobs statuses in
order to avoid overloading the server. This component
records the date, time, and size of the genomic database
when G-BLAST is invoked, and records the date and
time again after the invocation is accomplished.
PostgreSQL stores these records in the Information
Database. Since these records tell us the run time of each
job and how many jobs are running, we can utilize them
to estimate the run time of a new job in advance. Thus,

we can also use them to control server loading with this
component by deciding which job runs immediately and
which job must wait for a while.

4.3: Information System

This component collects the running statuses of each

site’s jobs from the Job Monitor System. These statuses
enable the Job Dispatch System to decide how to
dispatch jobs and how to segment the database. When a
site’s job is accomplished, this component records the
size of each segment, job execution time, and whether or
not the job was successful.

PostgreSQL is used to store these records in the
Information Database. It must be noted that the
Workflow System and the Information System use
different tables.

4.4: Database Segmentation System

This component is used to segment genomic
sequence databases. You perhaps have a question that is
why you do not use mpiformatdb command provided by
mpiBLAST, and there are two reasons.

The first reason is that the mpiformatdb command
uses simple division, putting the sequences in each
fragment of the original sequence database in rotation.
Since the sequence databases in this project are
downloaded from NCBI and their sequences in the
database are not stored in order of size, the fragments
mpiformatdb yields are also not stored in order of size.
“Size” refers to the total letters/length in the sequences.
Sequence database lengths and search run times appear
to be strongly related in that mpiBLAST uses the Local
Alignment algorithm. Consequently, it orders the
sequences in each fragment by rotation, but not in
sequence length order, so it is difficult to predict
execution time and tends to reduce performance.
Therefore, this project sorts original databases in
sequence length order in advance and then divides them.
Fragments divided by this component are dispatched to
each site by the Job Dispatch System, and a significant
improvement in performance is obtained.

The second reason is that the mpiformatdb command
provided by mpiBLAST is not used is that it divides
sequence databases into approximately equal size
fragments. Since our system has a hierarchical
architecture in which each site may have its own
computation capacity and network speed, dividing
sequence databases into approximately equal size
fragments is not a good method for us. It leads to faster
sites needing to wait for slower sites to complete their
sub jobs, and strongly affects performance. Therefore,
we divide sequence databases into different size
fragments according to site speed and capacity, thus
allowing database sequences to be of appropriate size for
each site. This information is sent to the Job Dispatch
System. For example, if a job involves two sites, A and B,
and site A has twice the computation capacity of site B,
but they have the same network speed, we divide the

- 1275 -

sequence database into a two-thirds fragment and a
one-third fragment, and assign the two-thirds fragment to
site A and the other to site B.

4.5: Job Dispatch System

This component fetches and analyzes system
information and then utilizes it to decide how to segment
databases and how to dispatch jobs from the Workflow
System.

The process is divided into the five steps shown
below.
• Step 1: Fetch a job from the Workflow System.
• Step 2: Fetch system information from the

Information System.
• Step 3: Analyze system information such as the run

status of each job from each site. This information is
used to decide how many sites are needed by the
current job and which sites can run the job.

• Step 4: Tell the Database Segmentation System how
to divide the sequence database needed by the job.

• Step 5: Tell the Job Monitoring System which sites
are needed to work on the current job.

4.6: Job Monitoring System

This component has both server and client roles, i.e.,

it belongs to G-BLAST Service and is a Job Monitoring
System when it is acting as a server, but it needs to
connect to mpiBlast Service at each site to dispatch
sub-jobs when it is acting as a client.

It dispatches sub-jobs assigned by the Job Dispatch
System and delivers the fragments divided by the
Database Segmentation System to each site via GridFTP.
Moreover, it monitors the status of each site and tells the
Information System to store this information in the
Information Database.

4.7: mpiBlast Service

This service is a simple Grid service. It first receives
user invocations, which include commands, query
sequences, and sequence databases. Second, it executes
grid-proxy-init commands provided by GT4. Third, it
executes mpiformatdb and mpiblast programs provided
by mpiBLAST. Finally, it returns result files to users if
the second and third steps are successful.

Because it is a simple Grid service, it connects to any
client developed in accordance with WSDL
documentation that is the same as the WSDL
documentation of the mpiBlast Service. In this project,
we put the client application in the Job Monitor System,
which dispatches jobs to sites.

4.8: Result File Combination

Because sequence databases are segmented by the

Database Segmentation System in advance, many
unwanted result files are generated, rather than one

complete result file. This component combines all result
files belonging to a job into a complete result file and
shows it on the user’s display via the User Portal.

5: Discussion

Four findings from G-BLAST Service are worth

summarizing.
First, G-BLAST segments sequence databases in

advance in accordance with the Job Dispatch System and
then decides which sites need to run the jobs.
Conventional mpiBLAST divides sequence databases
into approximately equal fragments using the
mpiformatdb command and then assigns the fragments to
nodes. However, the sites may have different
computation capacities and network speeds, which leads
to faster sites needing to wait for slower sites to complete
their sub jobs. Overall performance is strongly affected
by this situation.

Second, G-BLAST does not use the mpiformatdb
command. It just segments the sequence databases,
which is faster than using mpiformatdb. G-BLAST lets
mpiBlast Service executes mpiformatdb and formats its
own fragments. This is just like performing mpiformatdb
in parallel, and is faster than conventional mpiBLAST. In
addition, execution mpiformatdb by mpiBlast Service
can avoid G-BLAST server overloading with segmenting
sequence databases.

Third, BioGrid is flexible compared to conventional
mpiBLAST. Because each BioGrid site is independent,
each can easily adjust its environment or performance.
Conventional mpiBLAST needs more steps to make such
adjustments.

Fourth, BioGrid mpiBLAST is GUI-operated, rather
than command-line-operated, which makes it easier to
use. Results are also visible on users’ screens allowing
one–touch storage.

6: Related Work

In [21] Kandaswamy provided a web service portal in

a grid environment and implemented a user interface that
enabled BLAST service use. This work discussed web
service for scientific Grid applications, but did not
propose a solution for very large sequence databases.

In [22] Andrade provided two Perl scripts. The first
script manages submission, monitoring, and collection of
Grid Jobs, and also splits large files into selected
numbers of smaller files. These functions are similar to
the G-BLAST Service Job Monitor System and Database
Segmentation System. The second script is for parallel
execution on Grid nodes. Their research greatly
resembles ours, but they split files into selected numbers.
In G-BLAST Service, files are split according to the
performance of each site. G-BLAST Service splits files
based on the ability and speed of each site as determined
by the Job Dispatch System.

Moreover, since BLAST is not a parallel system,
each Grid node is standalone. Thus, [20] and [21] can use

- 1276 -

BLAST but not mpiBLAST, so they cannot flexibly
extend the performance of each node as we can.

7: Conclusions

This paper proposes the Grid-based solution BioGrid.

It integrates mpiBLAST into a Grid environment. We
also report on implementing a G-BLAST Service that
allows use of mpiBLAST which is integrated into
BioGrid. G-BLAST is faster than conventional Cluster
architectures, and it is easier to use than previous
mpiBLAST offerings.

Future work will keep improving the Workflow
System and Job Dispatch System strategies to enable
better G-BLAST performance. We hope future research
will provide more detailed results that further
differentiate these views.

REFERENCES

[1] Sturn A, Mlecnik B, Pieler R, Rainer J, Truskaller T,
Trajanoski Z., “Client-Server Environment for
High-Performance Gene Expression Data Analysis,”
Bioinformatics, 2003, 19(6):772-773.

[2] K. Fumikazu, Y. Tomoyuki, F. Akinobu, D. Xavier, S.
Kenji, and K. Akihiko, “OBIGrid: A New Computing
Platform for Bioinformatics,” Genome Informatics,
13:484-485, 2002.

[3] S. Gernot, R. Dietmar, and T. Zlatko, “ClusterControl: A
Web Interface for Distributing and Monitoring
Bioinformatics Applications on a Linux Cluster,”
Bioinformatics, 20(5):805-807, 2004.

[4] R. Buyya, “High Performance cluster Computing:
System and Architectures,” Vol. 1, Prentice Hall PTR,
NJ, 1999.

[5] R. Prodan and T. Fahringer, “ZENTURIO: An
Experiment Management System for cluster and Grid
Computing,” Proceedings of IEEE International
Conference on cluster Computing (CLUSTER’02), pp.
9-18, Chicago, Illinois, USA, 2002.

[6] F. Achard, G. Vaysseis, and E. Barillot, “XML,
bioinformatics and data integration,” Bioinformatics, vol.
17 no.2 2001 Pages 115-125.

[7] NCBI BLAST, http://130.14.29.110/BLAST/.
[8] mpiBLAST, http://mpiblast.lanl.gov/.
[9] MPI, http://www.lam-mpi.org/.

[10] I. Foster, “The Grid: A New Infrastructure for 21st
Century Science,” Physics Today, 55(2):42-47, 2002.

[11] I. Foster and C. Kesselman, “The Grid 2: Blueprint for a
New Computing Infrastructure (Elsevier Series in Grid
Computing), Morgan Kaufmann, 2nd edition,” 1999.

[12] C. T. Yang, Y. L. Kuo, K. C. Li, and J. L. Gaudiot, “On
Design of Cluster and Grid Computing Environments for
Bioinformatics Applications,” Distributed Computing -
IWDC 2004: 6th International Workshop, Lecture Notes
in Computer Science, Springer-Verlag, Arunabha Sen,
Nabanita Das, Sajal K. Das, et al. (Eds.), Kolkata, India,
vol. 3326, pp. 82-87, Dec. 27-30, 2004.

[13] R. Nobrega, J. Barbosa, and P. Monteiro, “BioGrid
Application Toolkit: a Grid-based Problem Solving
Environment Tool for Biomedical Data Analysis,”
VECPAR, 2006

[14] GT4, http://www.globus.org/.

[15] WSRF, http://www.globus.org/wsrf/.
[16] I. Foster and C. Kesselman, “Globus: A metacomputing

infrastructure toolkit,” The International Journal of
Supercomputer Applications and High Performance
Computing, 11(2):115–128, summer 1997.

[17] N. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A
Grid-Enabled Implementation of the Message Passing
Interface,” Journal of Parallel and Distributed
Computing (JPDC), Vol. 63, No. 5, pp. 551-563, May
2003.

[18] C. T. Yang, Y. L. Kuo and C. L. Lai, “Design and
Implementation of a Computational Grid for
Bioinformatics,” Proceedings of the 2004 IEEE
International Conference on e-Technology, e-Commerce
and e-Service (EEE 04), pp. 448-451, Grand Hotel,
Taipei, Taiwan, March 28-31, 2004.

[19] P. Bala, J. Pytlinski, and M. Nazaruk, “BioGRID – An
European Grid for Molecular Biology,” Proceedings of
the 11th IEEE International Symposium on High
Performance Distributed Computing, 2002, pp. 412.

[20] NCBI, http://www.ncbi.nlm.nih.gov/.
[21] G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, S.

Marru, and D. Gannon, “Building web service for
scientific grid applications,” International Business
Machines Corporation, 2006, VOL. 50

[22] J. Andrade, L. Berglund, M. Uhlen, and J. Odebrg, “The
use of the Grid technology to solve computationally and
data intensive bioinformatics tasks,” Workshop on
state-of-the-art in scientific and parallel computing, 2006

- 1277 -

