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Abstract

A Single Nucleotide Polymorphism or SNP is a DNA se-

quence variation occurring when a single nucleotide in the

genome differs between members of species. Recent research

reveals that SNPs within certain haplotype blocks induce only

a few distinct common haplotypes in the majority of the pop-

ulation. The existence of haplotype block structures has se-

rious implications for association-based methods in mapping

of disease genes. In this paper, we propose and implement

several efficient algorithms for identifying haplotype blocks

in the genome. For dealing with missing data, which often

appears in real biomedical data, we develop methods that as-

sign missing data to specific alleles such that the resulting

diversity is minimized. Our developed system is used for

analyzing chromosome 21 haplotype data provided by Patil

et al. [11]. In contrast to previous partition methods, the

haplotype blocks and tagSNPs identified by our methods are

longer and fewer, yet still retaining the desired expressing

capability.
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1 Introduction

SNPs make up 90% of all human genetic variations,
and SNPs with a minor allele frequency of ≥ 1% oc-
cur every 100 to 300 bases along the human genome.
Global pattern of human DNA sequence variation (hap-
lotypes) defined by common single nucleotide polymor-
phisms (SNPs) have important implications for iden-
tifying disease association and human traits. Recent
studies have shown that the chromosome recombina-
tion only takes places at some narrow hotspots. We use
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some characteristics of recombination on the analysis
of haplotype strings and observe several situations of
haplotype patterns to identify some ranges of chromo-
some with few or even no recombination event occurred.
Those ranges are called haplotype blocks. It means every
haplotype pattern is inherited to descendant completely
if the number of haplotype patterns in a haplotype block
is few. Each haplotype block, in which the genome is
largely made up of regions of low diversity, can be char-
acterized by a small number of SNPs, which are refereed
to as tagSNPs [7]. This characteristic is very important
and useful for medicine or therapy.

Studying on SNP and haplotype blocks not only de-
crease the cost for detecting inherited diseases but also
has many contributions for classifying the race of human
and researching on species evolution. Our ultimate goal
is to select haplotype block designations that best cap-
ture the structure within the data. Unfortunately, a
consensus definition for haplotype blocks based on the
LD (linkage disequilibrium, also termed allelic associa-
tions) structure has not been established thus far. How-
ever, a range of operational definitions has been used
to identify haplotype-block structures, including LD-
based [4, 12], recombination-based [6, 13], information-
complexity-based [1, 8, 5] and diversity-based [3, 11, 15]
methods. For a diversity-based test, methods can be
classified into two categories: those that divide strings
of SNPs into blocks on the basis of the decay of LD
across block boundaries and those that delineate blocks
on the basis of some haplotype-diversity measure within
the blocks. Patil et al. [11] defined a haplotype block
as a region in which a fraction of percent or more of
all the observed haplotypes are represented at least n
times or at a given threshold in the sample. They ap-
plied the optimization criteria outlined by Zhang et al.
[14, 15] and describe a general algorithm that defines
block boundaries in a way that minimizes the number
of SNPs that are required to identify all the haplotype
in a region. Patil et al. have identified a total of 4,563
tagSNPs and a total of 4,135 blocks to define the haplo-
type structure of human chromosome 21. In each block
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they required at least 80% of haplotype must be repre-
sented more than once in the block.

In this paper, we propose diversity functions that
can be adapted to measure haplotype block quality.
We implement programs according to our dynamic
programming algorithms to partition haplotypes into
blocks. Our algorithms find segmentations consisting of
k blocks such that the total length is maximized. Based
on the same criteria adopted by Patil et al., at least 80%
of haplotypes appeared more than once in the block, we
identify a total of 1,707 blocks, which can be tagged by
4,588 tagSNPs. The number of blocks we identified is
58.7% less than those identified by Patil et al. Further-
more, although the number of tagSNPs discovered by
our method is almost the same as theirs, note that, for
example, 20% of our tagSNPs (about 900 tagSNPs) is
sufficient to tag 50% region of chromosome 21 (more
than 16 Mb). Many similar interesting observations are
addressed in Section 3.

2 Methods

A SNP (Single Nucleotide Polymorphisms) is defined
as a position in a chromosome where each one of two (or
more) specific nucleotides is observed in at least 10% of
the population [11]. The nucleotides involved in a SNP
are called alleles. A SNP is said biallelic if it has only
two different alleles. Almost all SNP are biallelic and
we will consider exclusively biallelic SNP in this paper.

2.1 Diversity Functions

The result of block partition and the meaning of each
haplotype block may be different by using different mea-
suring formula. Here we provide a measuring functions
for analysis. In simplicity, we convert haplotype sam-
ples into haplotype matrixes by assigned major alleles
to 0 and minor alleles to 1. Given an m× n haplotype
matrix A, a block A(i, j) (i, j are the block boundaries)
of matrix A is viewed as m haplotype strings; they are
partitioned into k groups by merging identical haplo-
type strings into the same group. The probability pi of
each haplotype pattern si, is defined accordingly such
that

∑
pi = 1. Li [9] proposes a diversity formula de-

fined by
δD(S) = 1−

∑

pi∈S

p2
i . (1)

Note that δD(S) is the probability that two haplotype
blocks chosen at random from S are different from each
other.

We can use the formula to calculate the degree of
difference within haplotype strings. Diversity mea-
surement usually reflects the activity of recombination
events occurred during the evolutionary process. Gener-
ally, haplotype blocks with low diversity indicates con-
served regions of genome.

2.2 Common Haplotypes

Two haplotypes are said to be compatible if the alle-
les are identical at all loci for which there are no miss-
ing data; otherwise the two haplotypes are said to be
incompatible. As in Patil et al., we define the ambigu-
ous haplotypes as those haplotypes compatible with at
least two haplotypes that are themselves incompatible.
It should be noted that when there are no missing data,
all of the haplotypes are unambiguous. We define the
common haplotypes as those haplotypes that are rep-
resented more than once in a block. The haplotypes
are called singleton if they are not compatible with any
others.

We are mainly interested in the common haplotypes.
Therefore we require that, in the final block partition, a
significant fraction of the haplotypes in each block are
common haplotypes. Patil et al. require that at least
α =70%, 80%, and 90%, respectively, of the unambigu-
ous haplotypes appear more than once. The α is also
referred to as the coverage of common haplotypes in a
block. Ambiguous haplotypes are not included in cal-
culating percent coverage. The coverage of block A can
be mathematically formulated as a form of diversity:

δS(A) = 1− C

U
=

S

U
. (2)

Here U denotes the number of unambiguous haplotypes,
C denotes the number of common haplotypes, and S
denotes the number of singleton haplotypes. In other
words, Patil et al. [11] require that at most δS(A) ≤
30%, 20%, and 10%. Note that the coverage will not
decrease as the length of haplotypes increase.

2.3 Haplotype Blocks Partitioning

When we select haplotype blocks base on the di-
versity value that calculated by diversity function 1,
the diversity value of a candidate block must smaller
than the diversity limit D. Denote the farthest site
j = L[i] for each site i as the largest site j with the
diversity δ(i, j) ≤ D. We show in [10] that all far-
thest sites can be determined in time complexity O(n)
by using the characteristic of block diversity. Note
that δD-function is a monotonic non-decreasing func-
tion from [1..n; 1..n] to the unit real interval [0, 1]; that
is, 0 ≤ δ(j′, k′) ≤ δ(j, k) ≤ 1 whenever [j′, k′] ∈ [j, k].

Given a haplotype matrix A and a diversity upper
limit D, let S = {B1, B2, . . . , Bk} be a segmentation
of A with δ(B) ≤ D for each B ∈ S. The length of S
is the total length of all block in S; i.e., `(S) = |B1| +
|B2|+ · · ·+ |Bk|. Our objective is to find a segmentation
consists of k feasible blocks such that the total length
`(S) is maximized. Given A and D, first we consider
the most general form of the problem and define the
block length evaluation function

f(k, i, j) = max{ `(S) | S a feasible segmentation of
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LowDiv(R)
Input: Haplotype matrix A with missing data.
Output: Haplotype matrix A with low diversity by assigning missing data to 0 or 1.
1 Sort k groups without missing data in S = 〈s1, s2, . . . , sk〉.

. si’s are listed in decreasing order of the number of haplotype strings.
2 Sort all rows with missing data in T = 〈t1, t2, . . . , t|T |〉.

. ti’s are listed in increasing order of the number of missing data.
3 for i ← 1 to |T | do . visit all strings in T.
4 for j ← 1 to k do . visit all groups in S.
5 if Compatible(ti, sj) then
6 ti ← Consolidate(ti, sj)
7 |sj | ← |sj |+ 1
8 remove ti from T and leave this for loop
9 if ∀sj ∈ S is not compatible with ti then
10 {sk+1}

S
ti . add ti into set S be a new group.

11 |sk+1| ← 1

Figure 1: Assigning missed data with values to obtain matrix of low diversity.

A(i, j) with k blocks}
Note that the k-longest-blocks [10] asks to find the
value f(k, 1, n). After the left farthest sites, L[j]’s, are
calculated, the answer can be found in O(nk) time after
the preprocessing. It can be verified that

f(k, 1, j) = max{f(k, 1, j − 1),
f(k − 1, 1, L[j]− 1) + j − L[j] + 1}

That is, the k-th block of the maximal segment S in
[1, j] either does not include site j; otherwise, the block
[L[j], j] must be the last block of S. Note that f(k, 1, j)
can be determined in O(1) time when f(k−1, 1, ·)’s and
f(k, 1, 1..(j − 1))’s are ready. It follows that f(k, 1, ·)’s
can be calculated from f(k − 1, 1, ·)’s, totally in O(n)
time. Thus a computation ordering from f(1, 1, ·)’s,
f(2, 1, ·)’s, . . . , to f(k, 1, ·)’s leads to the result of O(nk)
time.

2.4 TagSNPs Selection

For each block, we want to minimize the number of
SNPs that uniquely distinguish at least 80% of the un-
ambiguous haplotypes in the block. Those SNPs can be
thought of as a signature of the haplotype block parti-
tion. They are referred to as tagSNPs that are able to
capture most of the haplotype diversity, and therefore,
could potentially capture most of the information for
association between a trait and the marker loci [2].

Our strategy for selecting the tagSNPs in haplotype
blocks is as the following. First, the common haplotypes
are grouped into k distinct patterns in each block. Af-
ter the missing data are assigned, as explained in the
next subsection, we decide the least number of groups
needed such that haplotypes in these groups contain at
least 80% of the unambiguous haplotypes in the block.
Finally, we select a loci set which consist of minimum

number of SNPs on the haplotypes such that each pat-
tern can be uniquely distinguish; exhaustive searching
method can be used very efficiently since the number
of tagSNPs needed for each block is usually modest in
the situation. The exhaustive searching algorithm enu-
merates next r-combination in lexicographic order to
generate the next candidate tagSNP loci set until each
pattern can be uniquely distinguish.

2.5 Dealing with Missing Data

In real biomedical data, some SNPs may be miss-
ing, and we may fail to distinguish two distinct hap-
lotypes due to the ambiguity caused by missing data.
The haplotype matrix A is generalized to an m×n ma-
trix of m observations over n markers (sites) such that
Aij ∈ {0, 1, 3}; Aij = 3 when the j-th SNP site of ob-
servation i is a missing data. One way to deal with the
missing data when trying to determine the diversity of
submatrix A(j, k) is to set missing values of Aij ’s to ei-
ther 0 or 1, such that the resulting diversity of A(j, k)
is minimized. However, as we have shown in [10] that
the minimum diversity problem is NP-complete.

Given a haplotype matrix A with missing data, we
say two rows i, j of A are different if there exists a col-
umn k such that {Aik, Ajk} = {0, 1}; in other words,
it is impossible to assign missing data of A to make
the two rows identical. Two rows are compatible if they
are not different. Our method for dealing with missing
data is as the following. The main idea is to assign the
missing data Aij = 3 to 0 or 1 in interval [x, y] such
that δ(A(x, y)) is minimized. By reducing the patterns
of haplotype as few as possible, the assigned haplotype
patterns would lead to small diversity score.

Our method consists of three phases: partition phase,
search phase, and assignment phase. First, we partition
A(x, y) into two sets. The set of strings with miss-

- 1280 -



ing data is called T , and those strings without miss-
ing data are called S. Strings in S can be grouped
into k patterns (distinct strings), 〈s1, . . . , sk〉; they are
arranged in order of decreasing number of haplotype
strings, 〈p1, . . . , pk〉 such that p1 ≥ p2 ≥ . . . ≥ pk. The
strings in T are ordered in increasing the number of
missing site, 〈t1, . . . , tn〉.

In search phase, we try to find the compatible strings
from set S and T . For each ti ∈ T , i = 1, . . . , n, we
find a string sj ∈ S such that ti and sj are compati-
ble and pj is maximized before invoking the assignment
phase. If there is not any string compatible with ti,
ti is added into set S and becomes a new group sk+1.
In third phase, we assign the missing data of string ti
to the corresponding value in string sj . Repeat the sec-
ond and third phases above until all string ti ∈ T are be
classified into S. These steps aim to increase fewest hap-
lotype patterns and to assign more counts into groups
with larger counts. The heuristic algorithm is shown in
Figure 1. Note that missing data may still exist in the
haplotype matrix after the missing data process; e.g.,
some strings are never compatible with the others or
the values of one specific column are all missing data.
It’s worthy noting that the situations do not influence
the computation of diversity. Because two strings are al-
ways different no matter how we assign the missing data
and the values of one specific column with all missing
data are the same.

3 Experimental Results

We apply our dynamic programming algorithm to the
haplotype data for chromosome 21 provided by Patil et
al. [11]. The data contain 20 haplotype samples and
each contains 24,047 SNPs spanning 32.4 Mb of chro-
mosome 21. The minor allele frequency at each marker
locus is at least 10%. Using our algorithm with the same
criteria as in Patil et al. with coverage = 80%, a total of
4,588 tagSNPs and a total of 1,707 haplotype patterns
blocks are identified. In contrast, Patil et al. identified
a total of 4,563 tagSNPs and a total of 4,135 blocks.
Our dynamic programming algorithm reduces the num-
ber of blocks by 58.71%. The properties of blocks are
showed in Tables 1. Our analysis system discovers a
total of 564 blocks containing more than 15 SNPs per
block. The blocks with more than 15 SNPs account for
33% of all of blocks. The average number of SNPs for
all of the blocks is 14.09. The largest block contains 135
common SNPs, which is longer than the largest block
(containing 114 SNPs) identified by Patil et al..

Figure 2-a shows the relation between blocks number
and the percentage of genome region (common SNPs)
covered by the total blocks length. Note that only a
few blocks are needed to cover a wide range of genome
region. For example, 503 blocks (about 29% of blocks
in figure 2-b) suffices to cover 70% of genome region
(about 16,830 common SNPs); the average length of

each block covered 33 common SNPs. Figure 3-a shows
us how many tagSNPs are required when blocks cover
certain percent of genome region. According to experi-
mental results, when blocks cover 70 percent of genome
region, we just required 1,633 tagSNPs (about 35.6%
of tagSNPs in Figure 3-b) to capture the majority of
information about haplotypes. This also indicates that
our method identifies only a few tagSNPs to capture
the most of genome region information. Table 2 shows
some examples of this case. Figure 4-a shows the blocks
cover percentage in the genome genion, in contrast to
percentage of common SNPs coverage by each tagSNP
on average. Note that as the total blocks coverage in
the genome region increase, fewer common SNPs are
covered by each tagSNP on average. Figure 4-b shows
SNP numbers covered per tagSNP for each 10 percent
of genome region covered. It is interesting to note that
our method discovers the marginal utility of tagSNPs
decreases as the genome region covered increases. Fig-
ure 4-c shows that the relationship between the percent-
age of genome region to number of tagSNPs needed to
cover.

Furthermore, we examine the influence of common
haplotype coverage, α, on the block patterns. The
coverages with 70%, 80%, and 90% are examined.
When the required coverage is 90%, the total num-
ber of blocks increases to 3,132. The total number
of tagSNPs required to distinguish these blocks in-
creases to 6,310. The length of the largest block de-
creases to 92 SNPs. When the coverage is decreased
to 70%, the total number of blocks decreases to 1,136
with the largest block containing 183 common SNPs,
and the total number of SNPs required to distinguish
these blocks decreases to 3,925. Some of our pri-
mary results have been incorporated into our web-
based system, and the system is freely accessible at
http://bioinfo.cs.pu.edu.tw/∼hap/chr21.html.

4 Conclusion

In this paper, we develop haplotype block-partition
system according to our dynamic programming method
where we require the total block length is maximized.
By using appropriate diversity function, the block selec-
tion problem can be viewed as finding a segmentation of
given haplotype matrix such that the diversities of cho-
sen blocks satisfy certain value constraint. Compared
with Patil et al.’s results, our method identifies longer
blocks and the numbers of blocks is reduced by 57.7%
for the haplotype data on chromosome 21. Our method
discovers that only a few blocks is sufficient to cover a
wide range of genome region, and it requires just a few
tagSNPs to capture the most of genome region informa-
tion.

Instead of genotyping all of the SNP markers on the
chromosome, one may wish to use only the genotype
information on the tagSNP. Only about 19.1% (4,588)
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Figure 2: (a) The percentage of genome region covered by the blocks number, and (b) the percentage of blocks
number on the chromosome 21.
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Figure 3: (a) The tagSNPs required versus the percentage of genome region covered. (b) The percentage of tagSNPs
required versus the percentage of genome region covered.
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Figure 4: (a) The percentage of genome region covered versus the number of SNPs covered by each tagSNP on
average. (b) SNP numbers covered per tagSNP for each 10 percent of genome region covered. (c) The number of
tagSNPs increases whenever the genome region covered increases by 10 percent.
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Common SNPs/block No. of block Length Avg. length All blocks(%) Common SNPs(%)

< 15 1143 8029 7.02 66.96 33.39

15 to 30 412 8603 20.88 24.14 35.78

> 30 152 7415 48.78 8.90 30.83

Total 1707 24047 14.09 100.00 100.00

Max. Block 135

Table 1: The properties of haplotype blocks defined by the dynamic programming algorithm with 80% coverage.

TagSNPs required (%) 1 2 3 4 5 10 15 20

Genome region covered (%) 5.36 10.02 13.43 16.75 19.98 32.13 41.78 50.29

Table 2: The relation between the percentage of tagSNPs required and genome region covered.

of all of the SNPs (24,047) can account for 80% of the
common haplotypes in each block. Thus, studying the
tagSNPs can dramatically reduce the time and effort
for genotyping, without losing much haplotype infor-
mation. In fact, the result of block partition and the
meaning of each haplotype block may be different by
using different measuring formula, so we propose a di-
versity function to measure the block quality. We also
provide our algorithms for dealing with missing data
whin haplotype matrix. Haplotype diversity is widely
used in population genetics studies, for this reason we
develop a web tool that can be applied to analyze and
visualize the diversity of haplotypes.
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