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ABSTRACT 
The analysis of temporal microarray datasets usually 

focused on the expression patterns of genes, and genes 
with similar expression patterns are clustered. However, 
the relationships among the clustered genes are not 
clear except for the plausible co-regulated connections. 
Also, there are no established methods to quantify the 
changes among the data sets in different stages. We 
have combined protein-protein interaction data with 
micorarray expression profiles to reveal the possible 
interactions among genes with/without similar 
expression patterns. Based on the features of networks, 
we propose a quantitative measure to evaluate the 
changes between two microarray datasets in different 
conditions or time points. The quantified scores could in 
turn be used as a criterion to identify significant 
sub-networks, which may be used to establish the 
functional connections to the specified conditions or 
factors. 
 
 
1: INTRODUCTIONS 
 

The advances in microarray techniques have enabled 
high-throughput monitoring of state changes on various 
types of cells. Often, cells under different conditions 
(e.g. cancer v.s. normal or treated v.s. untreated) are 
monitored and compared for differences in mRNA 
expression levels. Most microarray studies focus on the 
expression patterns of genes, i.e. whether a set of genes 
show similar expression levels under similar conditions, 
and whether these genes are regulated by the same 
transcription factors. Only a few studies integrate 
microarray data and network information (regulatory 
network, metabolic pathways, or protein-protein 
interaction networks) and examine the relationships 
among a set of genes in interest [1]. 

As more and more biological data accumulated, 
network biology is becoming critical in the new systems 
biology era. Network biology deals with biological 
networks, whether they are regulatory networks, signal 
transduction networks, metabolic pathways, or physical 
interaction networks. Understanding the connections 
among network nodes (genes, proteins, or metabolites) 

will reveal insights to the underlying biological 
mechanisms of life. 

In this work, we have employed human 
protein-protein interaction networks in the analysis of 
microarray data. The expression levels of mRNA (and 
thus protein) are obtained from temporal microarray 
experiments, and are used as modifiers of the protein 
interaction network. Considering these changes in 
expression levels, the protein-protein interaction 
networks change as well, resulting in dynamic networks 
corresponding to changes in biological conditions. 

However, dynamic networks are not trivial to 
analyze. For example, how to quantify changes or 
differences between two networks under different 
conditions? Without a quantitative measure, it is not 
possible to evaluate such changes; and only qualitative 
or descriptive terms can be used. Most studies on 
network features and topologies focus on the ‘global’ 
characteristics of networks [2, 3]. However, not all 
biological processes have global effects. It is necessary 
to have a measure on both global and sub-network 
dynamics. 

In this work, we proposed novel network descriptors 
capable of quantitative evaluation of dynamic biological 
network changes. We have incorporated concepts from 
information theory [4]. The nodes (proteins) and edges 
(interactions) are assigned predefined states. Based on 
the distribution of these states, two novel scores, node 
and edge entropies, can be calculated. These two scores 
reflect the quantitative changes of proteins and their 
interactions in different conditions. With these scores, it 
is now possible to evaluate whether a perturbation (treat 
with drugs or knock out genes) have global or local 
influences, and to what degree. Also, these scores can 
be used to identify sub-networks with maximum 
changes. That is, such sub-networks might be close 
related to the specified conditional changes or 
perturbations. 

The rest of this paper is organized as follows: 
Section 2 outlines materials and methods used to derive 
our scores. Section 3 illustrates the application of our 
scores in a real biological scenario, the pitfalls and 
advantages of the new scores are also discussed. Section 
4 concludes the novelty and potential impacts of this 
work. 
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2: MATERIALS AND METHODS Category Proteins 

Cartilage CDH11, FARP1, CRTAP, LECT1, 
CHI3L1, COMP, HAPLN1, CSPG2, 
CSPG4, AGC1, NID2, CHSY1, 
CHRDL2, CSS3, OMD, CHST11, 
CRTAC1, CHST12, ChGn, BMP8B, 
SPOCK1, CHPF, MIA, CILP, CHST3, 
MTFR1 

Collagen CTHRC1, COL1A1, COL2A1, COL3A1, 
COL4A1, COL4A2, COL4A4, COL5A1, 
COL5A2, COL6A1, COL6A2, COL6A3, 
COL7A1, COL8A1, COL8A2, COL9A3, 
COL11A1, COL11A2, COL12A1, 
COL15A1, COL16A1, MMP1, MMP2, 
MMP13, COL5A3, PCOLCE 

Extra 
Cellular 
Matrix 

PRG4, CIB2, CIB1, LMAN2, ADRM1, 
ECM2, ECM1, ALCAM, ITGA11, 
ITGB3BP, ITGB1BP2, ITGA5, ITGA7, 
ITGAE, ITGB1, ITGB2, ITGB4BP, 
ITGB5, L1CAM, LOC391783, LGALS1, 
LGALS3BP, LGALS8, MCAM, 
CLEC4A, CEECAM1, PRG1, MASP1, 
JAM2, HAPLN2, CLEC11A, VCAM1, 
ASAM, ILKAP, LMAN2L, JAM3, 
MBL1P1, PAPLN, ITGB1BP1, ITGBL1, 
CD47, CD302, CLEC2B 

Growth 
Factor 

FRS2, OGFR, CTGF, HBEGF, EPS8, 
FGF1, FGF2, FGF7, FGF13, FGFR1, 
FGFR2, GFER, GRB2, GRB10, GRB14, 
HDGF, IGF1, IGF2, IGF2R, IGFBP1, 
IGFBP2, IGFBP3, IGFBP4, IGFBP5, 
IGFBP6, IGFBP7, LTBP1, LTBP2, 
LTBP3, NGFB, HDGFRP3, PDGFA, 
PDGFRA, PDGFRL, PDGFRB, 
FGFRL1, PDGFC, EPS15L1, TGFB1I1, 
TGFB2, TGFB3, TGFBI, VEGF, 
VEGFB, VEGFC, OGFRL1, HDGF2, 
HGS, FIBP, TBRG4, FGFBP1 

Signaling 
Protein 

CMTM7, CLC, SOCS4, CMTM3, ATF2, 
CMTM4, DOCK1, DOCK9, CXCL1, 
HSPG2, IK, ATF1, CKLF, CMTM6, 
CMKOR1, CXCL16, CCL2, CCL20, 
CXCL12, SOX9, TIMP3, N-PAC, 
SOCS2, CBFA2T2, CRLF1, SCYE1, 
SOCS5 

Table 1. The selected proteins related to chondrocyte 
differentiation. 

 

 
2.1: TEMPORAL MICROARRAY DATA 
SETS 

 
Temporal microarray data are obtained from James 

et al. [5]. Chondrocytes from mouse were incubated and 
monitored with microarray. The differentiation and 
maturation of chondrocytes are critical to skeletal 
development. These chondrocytes were monitored every 
3 days for 15 days, resulting in five microarray images. 
The microarray data were deposited into the GEO 
database [6]. GEO (Gene Expression Omnibus) 
provides a platform to share microarray data. The five 
sets of microarrays collected in day 3, 6, 9, 12, and 15 
are designated as stage 0, 1, 2, 3, 4 in this work, 
respectively. 

The microarray used in [5] are manufactured by 
Affymetrix. There are 22,690 probes representing nearly 
14,000 mouse genes. A ruby (http://www.ruby-lang.org/) 
script was written to parse the raw data. Mouse genes 
are mapped to homologous human genes since only a 
few mouse protein-protein interaction data are available. 
The conversion is performed with conversion table 
provided by NCBI. Near 11,700 genes are converted 
into their human homologs. 

In addition to the mammalian time course 
experiments, we also applied our method to a yeast time 
course dataset. Data from the yeast cell cycle 
experiment conducted by Spellman et al. [7] has been 
analyzed with our method. In these experiments, four 
datasets are available based on the synchronization 
scheme: α Factor, CDC15, CDC28, and elutriation. For 
brevity, we only show the results from the α Factor 
dataset. There are 18 time points in the α Factor dataset. 
These time points are spaced in 7 minutes. 800 cell 
cycle regulated genes were identified by Spellman et al. 
The sub-network formed by these cell cycle genes are 
constructed and compared to the entire yeast 
interactome. 

 
2.2: PROTEIN INTERACTION DATA 

 
Human protein-protein interaction data are obtained 

from the POINT database [8]. POINT contains more 
than 150,000 protein-protein interactions from various 
model organisms. There are more than 37,000 human 
protein-protein interaction data in POINT, participated 
by nearly human 10,000 proteins. POINT also contains 
more than 25,000 predicted protein interactions, but 
these predicted data are not used in this work. 

The global network, referred as ‘Human Proteome’, 
is constructed with all available human protein-protein 
interactions. 

Five sets of proteins are identified through literatures 
and by expert. These proteins are served as ‘seeds’ or 
‘queries’ for a sub-network connected to these proteins. 
These proteins are closely related to chondrocyte 
differentiation. Therefore the sub-network formed by 

these proteins should reflect the majority of the changes 
occurred in the chondrocyte development process. The 
five categories include cartilage, collagen, extra cellular 
matrix, growth factor, and signaling proteins. Selected 
proteins in these categories are listed in Table 1. 

The expert selected sub-network is generated based 
on these query genes. It includes the five sub-networks 
defined in previous paragraph, and also includes extra 
interactions among the five sub-networks. Proteins 
interacting with these queries are picked and included in 
this sub-network. We consider this sub-network is 
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critical and may represent most of the changes in 
chondrocyte differentiation. Five other sub-networks 
based solely on one of the categories are also 
constructed. 

For the yeast dataset, 45,146 interactions are 
available in the POINT database. The entire yeast 
interaction network is referred as ‘Yeast Interactome’. 
The 800 cell cycle regulated genes are used as ‘queries’ 
to construct a cell cycle sub-network. This sub-network 
is referred as ‘Cell Cycle Sub-Network’. The list of the 
800 cell cycle genes can be found in [7]. 

 
2.3: EVALUATION OF STATE CHANGE 

 
State changes obtained from microarray data are the 

change in expression levels. Using a baseline time point, 
the rest of the microarray states can be compared with 
this reference state. We use the stage 0 (day 3) data as 
the reference set. We define the states of nodes as 
follows: 

⎪
⎩

⎪
⎨

⎧

−
=

regulateddown  is gene  theif 1,
    unchanged is gene  theif 0,
  regulated up is gene  theif 1,

N
iS      (1) 

where  is the state of node i. A gene (node) is 
considered as up regulated if its expression level is more 
than 2 times higher than baseline. If the expression level 
is less than 1/2 of the baseline, the gene is considered as 
down regulated. A gene is considered as unchanged if 
the above two conditions are not met. 

N
iS

Similarly, the states of edges are defined as follows: 
N
j

N
i

E
ij SSS +=                           (2) 

where  is the edge between node i and j. According 
to the definition in eq. (1), edge states have five possible 
values: 2, 1, 0, -1, and -2, respectively. Edges in 
protein-protein interaction network are interactions 
between two proteins. The expression levels of mRNAs 
imply the abundance of the proteins in the cell. Based 
on Bayesian approaches, the probability of two proteins 
interact with each other can be estimated from the 
abundances of these proteins. In Eq. (2), the edge states 
are defined based on the states of the two nodes forming 
this edge. Since the node states are actually a logarithm 
of the expression ratio, summation of the node states 
approximates the logarithm on the product of expression 
ratios. 

E
ijS

With the definitions of node and edge states, the 
networks can be seen as a collection of nodes and edges 
in different states. The distributions of these states can 
be used estimate the changes between different time 
points or conditions. Based on the formulation in 
information theory [4], the entropy or information 
contents of a information stream can be defined as 
follows: 

∑−=
i

ii ppH ln                        (3) 

where H is the information content (entropy), and pi is 
the frequency of observing state i in the entire 

population. From our definitions of node and edge states, 
we can calculate node and edge entropies accordingly. 
For example, the node entropy will be calculated as 
follows: 

( )110011 lnlnln

ln

−−++−=
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N
i

N
i     (4) 

 
2.4: RANDOMIZED NETWORKS 

 
Using a bootstrap method, we have generated 

randomized networks to be compared with the expert 
selected and global networks. The randomized networks 
are generated using two schemes, one is to generate a 
random network with the same number of nodes as the 
expert selected one, and the other is to generate a 
random network with the same number of edges. For 
both node and edge based randomization, 10,000 
networks were generated. The node and edge entropies 
of these random networks were calculated and averaged. 

 
3: RESULTS AND DISCUSSIONS 

 
3.1: CHONDROCYTE DATA SET 

 
Node and edge entropies are calculated for several 

network and sub-networks. The summary of these 
networks are listed in Table 2. The Human Proteome 
network represents the global condition and the 
influences of differentiation in the global scope. Expert 
Curated sub-network is supposed to be the sub-network 
with significant changes, since the query nodes are 
highly related to chondrocyte differentiation. The two 
types of random sub-networks should be close to the 

Network Name Description 
Human 
Proteome 

All of the available human 
protein interactions 

Expert Curated Expert selected sub-network, 
including the five categories of 
proteins 

Cartilage Sub-network based on proteins in 
Cartilage category 

Collagen Sub-network based on proteins in 
Collagen category 

ECM Sub-network based on proteins in 
Extra Cellular Matrix category 

Growth Factor Sub-network based on proteins in 
Growth Factor category 

Signal Sub-network based on proteins in 
Signaling Protein category 

Random (node) Random network with the same 
number of nodes as Expert 
Curated 

Random (edge) Random network with the same 
number of edges as Expert 
Curated 

Table 2. Various network and sub-networks used in 
entropy calculation. 
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global network, since they are sampled randomly from 
the global network. The node and edge entropies for 
these network and sub-networks are illustrated in Figure 
1. Figure 1a shows the node entropies, whereas Figure 
1b shows the edge entropies. 

From Figure 1, it is clear that for both node and edge 
entropies, the entropy values have a trend to increase as 
chondrocyte differentiation progress. This is not 
surprising, since differentiation is a process to change 
toward a condition different from the baseline. Increase 
in entropy implies that the distribution of states is 
perturbed and deviate from the original uniform 
condition. In the baseline time point (stage 0), all of the 
genes are in unchanged reference state. As stage 
progress, some genes will become up regulated 
(expression level higher than those in the baseline) or 
down regulated (expression level lower than those in the 
baseline). 

There are several differences between node and edge 
entropies. First of all, the scales of the two entities are 
slightly different. The maximum value of node entropy 
is -ln(1/3), where as that of edge entropy is -ln(1/5). The 
scales shown in Figure 1 are normalized. This enables 
the comparisons between node and edge entropies. 

Second, the edge entropy values of the random 
networks are identical to that of Human Proteome. 
However, the node entropy values are slightly different 
for random and global networks. It seems that the 
distributions of node states are slightly biased. Also, the 
separation between expert selected sub-network (dashed 
line) and the global network (solid line) is larger in edge 
entropy. This suggests that the edge entropy might 
perform better than node entropy in searching a 
significant sub-network reflecting maximum changes. 
Maximizing node entropy should result in a 
sub-network focused on proteins with modified 
expression levels, whereas maximizing edge entropy 
should lead to a network including interactions with 
changed weights. Edge entropy, in this regard, should 
reflect more of the functional aspects of the dynamics in 
biological networks. Most network analyses focus on 
what nodes (proteins) are critical to the network 
topology per se [2, 3, 9]; however, we consider the 
edges (interactions) might provide more important 
information as what these participators are doing. 

(a) 

(b) 

Figure 1. (a) Node entropy and (b) edge entropy of 
various networks in different stages. 

Among the five sub-networks from five categories 
of proteins, the Cartilage related network is most 
interesting. The node entropy of Cartilage sub-network 
is increasing as the progress of stages, but the edge 
entropy is higher at earlier stages and drop later (Figure 
1b). Collagen related sub-network also has similar 
characteristics, but to a lesser extent. Cartilage genes are 
marker genes in chondrocyte differentiation. Changes in 
the expression levels of cartilage genes increase the 
node entropy. It is interesting, however, why the edge 
entropy drop in later stages. Drop in edge entropy 
implies the states of interactions involved in this 
sub-network are moving toward the reference state. That 
is, functions associated with these cartilage proteins 
cease to function as the differentiation progress to a 
certain point. The functional implication of cartilage 
genes in chondrocyte differentiation is beyond the scope 
of this paper, and further investigations are required to 
fully understand the functional roles of cartilage related 
genes in this particular setting. 

 
3.2: YEAST CELL CYCLE DATA SET 

 
Our method has also been applied to the yeast cell 

cycle dataset. The results are illustrated in Figure 2. In 
the yeast data set, only two networks are used: the 
‘Yeast Interactome’, which contains all available yeast 
protein-protein interactions, and ‘Cell Cycle 
Sub-Network’, which contains 800 cell cycle regulated 
genes identified by Spellman et al. [7] Since the cell 
cycle regulated genes include genes peaked at various 
phases (M, G1, S, and G2), the periodicity of entropy 
changes are not clearly observable. However, the 
distinction between ‘Yeast Interactome’ and ‘Cell Cycle 
Sub-Network’ is obvious. This result again confirms 
that our method is able to distinguish sub-networks. 

The differences between node and edge entropies, 
on the other hand, are not obvious. The entropy values 
are not normalized in the yeast data set, and the scales 
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are not directly comparable for node and edge entropies. 
However, the overall profiles of node and edge 
entropies are similar, suggest the two may perform 
equally well in the yeast data set. 

One thing of interest is that the node and edge 
entropies decreasing along the 18 time points. The yeast 
cells have been synchronized in this time course 
experiment, the expression levels are compared to those 
from the asynchronized culture. Smaller entropy values 
imply convergence between the two states 
(synchronized and asynchronized). Decreasing entropy 
values may suggest that the cell culture may experience 
‘loss of synchronicity’ problem. On the other hand, the 
synchronization methods may introduce perturbations to 
the cell, and causes the increase of entropy. As time 
progresses, the system may stabilize to a steady state. It 
is amazing that edge and node entropies can catch such 
subtle changes. Further investigations are required to 
conclude the actual cause of this phenomenon. 

 
4: CONLUSIONS 

 
We have developed novel measures to quantify the 

dynamics and changes of biological networks under 
different conditions. Our scores are easy to calculate 
and applicable to various scenarios. With our scores, 
new insights might be revealed from older experimental 
microarray data available in public database like GEO. 

We also found that in analyzing biological networks, 
edges (interactions) might play more important roles 
than nodes (proteins or genes). More investigation are 
required to validate this assumption, but we believe this 

idea will shed new lights to network biology and 
systems biology. 

(a) 

(b) 

Figure 2. (a) Node entropy and (b) edge entropy of 
yeast networks in different time points. 

Node and edge entropy values may also serve as a 
score to identify sub-networks with biological 
significances. We are working on a genetic algorithm 
based method for sub-network identification. Hopefully 
this method will be helpful to the field of bioinformatics 
in general. 
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