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Abstract 

The segmentation of 3D microPET image is one of 
the most important issues in tracing and recognizing the 
gene activity in vivo. In order to discover and recover 
the dynamic activity of gene expression, reconstruction 
techniques with higher precision and fewer artifacts are 
necessary. To improve the resolution on microPET 
images, the maximum likelihood estimate (MLE) by the 
EM algorithm is applied. In addition, advanced 
statistical technique based on the mixture model is 
developed to segment the reconstructed images. In this 
study, the new proposed method is evaluated with 
simulation and empirical studies. The performance 
shows that the proposed method is feasibly promising. 
Keywords: FBP, MLE-EM, Gaussian mixture model, 
Kernel density estimation, FWHM.  
 
 
1: Introduction 
 

Positron emission tomography (PET) provides a 
useful medical modality to detect the metabolic activity 
inside human body. Recent study [1] shows that the 
technique of microPET has been developed to trace the 
gene expression in vivo. Hence, it is very crucial to 
enhance reconstruction and analysis techniques with 
better precision and fewer artifacts so that the genuine 
gene expression inside biological objects can be 
recovered. 

To improve resolution and reduce artifacts on PET 
images, many methods have been proposed in literature, 
including the maximum likelihood estimate by EM 
(MLE-EM) algorithms and other related techniques. 
The MLE-EM reconstructions and related 
improvements have also been proposed [2-12]. The 
motivation of this study is to apply these techniques 
with improved analysis methods to reconstruct 
microPET images. 

The filter backpropagation (FBP) reconstruction has 
been applied in tomography due to its power of fast 
computation. Wong et al. (2001, 2002) use FBP 
reconstruction and K-means clustering with Akaike 
information criterion (AIC) to segment PET images. 
However, the FBP had been developed for transmission 
tomography. It is not accurate for emission tomography 
which contains randomness in PET. Moreover, the FBP 
reconstruction of PET image is typically noisy and 

inaccurate. Hence, we use the MLE-EM reconstruction 
to reconstruct microPET images of gene expression 
more accurately. Due to the varying variances among 
segments of microPET images, we will consider the 
Gaussian mixture model (GMM) instead of K-means 
clustering [16-17]. 

A rat study by the microPET R4 system in the 
Institute of Nuclear Energy in Taiwan is used for 
empirical study. The data consists of 63 slices with 256 
by 256 pixels is reconstructed from microPET sinogram. 
Static scanning of 3600 seconds is applied on rat’s brain, 
the region of interesting (ROI) areas fall between the 
51st to the 60th slices. 

This study is organized as follows. We present 
materials and methods in section two. In section three, 
the evaluated performances of the proposed method are 
reported by empirical and simulation studies. Finally, 
we will report our findings and future discussions. 

 
2: Materials and Methods   
 
2.1: The MLE-EM Algorithm for PET  
 

Suppose the target image is partitioned into B pixels 
and there are D detector tubes. For each pixel, b = 1, 
2, …, B, and each tube, d = 1, 2, …, D, the observations 
in sinograms of prompt and delayed windows are 
assumed to follow Eqs. (1) and (2). 
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* *( ) ~ ( ( )),d dn d Poisson dλ            (2) 

where )()()( *** ddd dp λλλ +=  and 

�
=

=

B

b

bdbpd
1

* ).(),()( λλ  The ( )
*
pn d  and ( )

*
dn d  

are the numbers of coincidence events in prompt and 
delayed windows respectively, ( )bλ  is the emission 

intensity of the target image at pixel b, ( ),p b d  is the 

transition probability, ( )
*
d dλ  is the accidental 

coincidence intensity, ( )
*
pn d  and ( )

*
dn d are 

assumed to be statistically independent. 
As ( )

*
pn d  and ( )

*
dn d  are assumed to follow 

independent Poisson distributions with mean of 

- 1314 -



  

( )
*
p dλ  and ( )

*
d dλ  respectively, the joint likelihood 

function of ),( **
dpL λλ is listed in Eq. (3). 

*

*

( )* *
* *

*
1

( )* *

*
1

exp( ( )) ( )
( , )

( )

exp( ( )) ( )
                  .

( )

p

d

n dD
p p

p d
d p

n dD
d d

d d

d d
L

n d

d d
n d

λ λ
λ λ

λ λ

=

=

−
=

−

∏

∏

    (3) 

The EM algorithm can be applied to compute the 
maximum likelihood estimate iteratively [18-19]. Firstly, 
the observed data, ( )

*
pn d  and ( )

*
dn d , are 

regarded as incomplete data. The EM algorithm needs 
to model the complete data. One possible model for 
PET is shown as in Eqs. (4) and (5). 

)),(),((~),(* bdbpPoissondbn p λ         (4) 

)).((~)( ** dPoissondn dpd λ              (5) 

The ( )
* ,pn b d  is the detected number of emissions 

occur at bth pixel in dth tube and ( )
*
pdn d  is the 

detected number of accidental coincidence (AC) events 
in dth tube. It is assumed that ( )

* ,pn b d and 
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pdn d are statistically independent, then 
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After applying EM approach, we can determine new
λ  

and *new
dλ  as the solutions that maximize the expected 

log likelihood function in complete data space. The 
optimal solution can be achieved directly by taking the 
first derivatives of the new parameters equal to zeros. 
The solutions are shown in Eqs. (6) and (7). 
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for all b = 1, 2,…, B, and d = 1, 2,…, D. 
 

2.2: Gaussian Mixtures Model on 3D 
Segmentation 
 

For the study of a set of 3D images, it is denoted by 
Ixyz, where Ixyz represents the intensity at the xyzth voxel 
of one set of 3D images. In this study, xy in one slice 
has the size of 256x256 and the number of slices z has 
the size of 10. Since the variance scale in segments of 
3D images may be different, we consider Gaussian 
mixture model with different mean vectors and 
covariance matrices [16-17]. 

Suppose that the probability of the data Ixyz comes 
from the kth cluster distribution is probability �k, then, 
Eq. (8) holds.  
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Hence, the probability density function of Ixyz is as Eq. 
(9). 
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where fk(Ixyz,�k) refers to the probability density function 
in the kth cluster with parameter �k. All parameters are 
collected to form a parameter vector 

).,...,,,...,( 11 KK θθππ=Φ Since, the MLEs 
are usually difficult to solve directly. Alternatively, the 
EM algorithm can be applied to find the MLE 
iteratively [16-17]. Firstly, we introduce an index 
function as in Eq. (10). 
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Let Cxyz = (Cxyz1, …, CxyzK) denote the unobserved index 
vector and {Ixyz, Cxyz} form the complete data for the 
EM algorithm. Given Cxyz, the conditional density of Ixyz 
becomes Eq. (11). 

.);()|(
1
�

=

=

K

k
kxyzkkxyzkxyzxyz IfCCIf θπ       (11) 

Similarly using EM approach finds MLE of parameters 
with the constraint of Eq. (8), the solutions of 
parameters for the local maximum are shown as in Eqs. 
(12) - (15). 
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Also, the Gaussian distribution for the kth cluster is 
listed as Eq. (16).  
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2.3: EM Algorithm for GMM 
 
The EM algorithm for GMM is described as follows.  

1. Set the initial parameters � (old).  
2. Update the parameters by using Eqs. (12) - (15). 
3. If log Lin(�

(new) ) –log Lin (�(old)) < tolerance, 
then the iteration stops. Otherwise, go to Step 2 
with the old values of parameters replaced by 
the new values.  
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2.4: Slice Normalization 
 

The intensity heterogeneity in slices of microPET 
images comes from differences in emission activities 
and reconstruction processes. The heterogeneity 
between slices affects the accuracy of the segmentation. 
Hence, slice normalization is needed before 3D 
segmentation to adjust image levels between slices. The 
slice normalization is defined in Eq (17).  

zz

zxyznew
xyz MinMax

MinI
aI

−

−
= ,             (17) 

where new
xyzI  is the new intensity after slice 

normalization, xyzI  is the original intensity at xyzth 

voxel, zMin  is the minimum value of the zth slice, 

zMax  is the maximum value of the zth slice, and a is a 
none zero constant for adjusted image level, like a = 
32768. 
 
2.5: Determination of the Cluster Number for 
GMM 
 

The kernel density estimation (KDE) [20] is adopted 
to determinate the numbers of cluster used in GMM. 
Those high peaks could be regarded as mean of the 
groups and low peaks were used to decide standard 
deviation of the groups. It is based on the empirical rule 
the range of σµ 3±  covers the most of observations 
from a normal distribution. Hence, the initialized values 
of GMM are determined by applying this empirical rule. 
Let the value of high peak be hp and value of the right 
low peak be lp, then this empirical rule is used to 
estimate � by (hp-lp)/3. Therefore, hp and (hp-lp)/3 will 
be used as the starting values of � and � for one cluster. 
This approach can automatically decide the cluster 
number and starting values of each cluster in EM 
algorithm of GMM. 
 
3: Results 
 
3.1: Simulation Studies 
 

The simulated phantom study with 457932 total 
counts is displayed in Figure 1. This simulated study is 
focused on testing and evaluating the performance of 
GMM. Figure 1A shows target image with five ROIs. 
Figure 1B displays target image with 50% noise added. 
Figure 1C presents the clustering results by GMM. The 
number of clusters is decided by the KDE shown in 
Figure 1D. There are four local high peaks regarded as 
the means of four clusters. For accuracy comparison, 
Figure 2 shows the indices of ROIs by GMM. Figure 3 
presents the accurate comparison between the results by 
K-means and GMM. It is observed that the GMM has a 
clearer segmentation result than the K-means method 

has. Detail results of ROIs are shown in Table 1. The 
total accuracy of GMM is 92.1% and that of K-means is 
66.6%.  

Another simulated volume data based on the 
modified Shepp-Logan's head phantom image is shown 
as in Figure 4A and 4B. Fifty percentage of noise ratio 
to phantom images are added. In order to compare the 
effects of variation between slices, different image 
levels and shapes of ROIs are considered in slice 1 and 
2. First, we use the MLE-EM reconstruction, the result 
is shown in Figure 4C and 4D. Meanwhile, the GMM is 
also applied to segment two images without slice 
normalization as shown in Figure 4E and 4F. It is 
observed that the boundaries of ROIs are difficult to 
distinguish. Therefore, slice normalization is applied to 
the volume data and then GMM is used to segment 
images as shown in Figure 4G and 4H. The boundaries 
of these segmentations become clearer after slice 
normalization. Figure 4I plotted estimated kernel 
density curve of volume data for finding the number of 
clusters and initialized values. 

For these simulation cases, the performance and 
accuracy using GMM is better than those of using 
K-means. The KDE is adopted to decide the number of 
clusters and the starting values of parameters in the EM 
algorithm. The slice normalization is necessary when 
GMM is applied to segment volume data in this study. 
 
3.2: Empirical Studies 
 

The empirical data of one rat (i.e., one big mouse) 
injected by F18 isotope scanning is collected from the 
microPET R4 system. The acquired configurations are 
listed as below. Scanner energy is between 350 and 750 
Kev with total scanning 3600 seconds. There are 32 
rings in microPET R4 system. File format of histogram 
data is stored by 2 bytes for each voxel. Ten slices (from 
the 51st to the 60th slice) of the volume data are used for 
investigation and evaluation. 

Figure 5 shows estimated kernel density curve of 
volume data. Based on this KDE, four groups are 
determinate by local high peaks and their starting values 
are obtained for EM algorithm. Figure 6 shows the 
reconstructed rat images by MLE-EM from the 51st to 
the 60th slice. Besides, Figure 7 and 8 show the 
segmentation results by GMM and K-means 
respectively. The detail segmentation from GMM are 
shown with the comparison to Figure 6. The details 
uptake areas can be segmented by GMM from 59th and 
60th images, in addition, it can segment small areas with 
high gene expression than those by K-means. On the 
contrary, the K-means method segments big areas and 
ignores small uptake areas.  

For this real rat microPET study, the GMM leads to 
more detail segmentation results than the K-means 
method does. The GMM also has better performance 
than K-means. The full width half maximum (FWHM) 
is usually used to evaluate performance of segmented 
results. The horizontal line profile near the center of the 
60th slice is used to investigate the performance between 

- 1316 -



  

GMM and K-means. Figure 9 is plotted with four 
regions in this line profile and their FWHMs for Fig. 6. 
Table 2 shows that the FWHMs of segmented results by 
GMM are closer to target FWHMs than those by 
K-means. Meanwhile, the signal to noise ratio (SNR) 
defined by the ratio of mean value to standard deviation 
is used to compare the segmentation performance 
between GMM and K-means. The SNRs of four regions 
of GMM are higher than those of K-means.    

 
4: Conclusion and Discussion 
 

We have proposed the GMM to segment 3D 
microPET images with the MLE-EM reconstruction. 
With fewer artifacts, the MLE-EM reconstruction is 
more precise than the FBP reconstruction is. For the 
seeding region growing methods proposed in literature 
for the segmentation of PET images, initial seeds were 
crucial to perform images segmentation. The number of 
clusters was determined by a subjective choice or 
sequentially searching.  

On the other hand, the GMM proposed in this study 
can perform the segmentation automatically through the 
KDE method. The KDE approach can automatically 
estimate the number of clusters and provide the initial 
values for the EM algorithm of GMM. If the activities 
of various clusters have different temporary patterns, the 
slice normalization approach incorporated with GMM is 
useful to segment 3D images. For further investigation, 
it will be of great interest to evaluate the qualitative and 
quantitative performance by more phantom and 
empirical studies with the comparisons to judgments 
from medical experts in the future. 
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Fig.1. A) Simulation image of five clusters is displayed. B) Adding 50% noise into Fig. A. C) Clustering results 
using GMM. D) Kernel density curve using C with values of high and low peaks. It identifies four peaks. Hence, the 
number of groups is set as four.  

 

  
Fig.2. Target ROIs are marked. Fig.3. The results of A) by K-means and B) by GMM clustering are shown. 

 

 
 

Fig.4. Simulated volume data including slice 1 and 2 are marked as A and B. C and D are reconstructed images after 
added 50% noise ratio to A and B. E and F are segmented results without slice normalization. G and H are 
segmented results with slice normalization. I is the estimated kernel density curve of simulated volume data after 
slice normalization.  

 
Fig.5. Kernel density curve using rat volume data (10 slices) with values of high and low peaks. There are four peaks. 
Hence, the number of groups is set as four. Values of peak are applied to compute starting values in EM algorithm. 
 

Table 2: The FWHMs and SNRs of segmented results 
by GMM are better than those by K-means. 

Pixel of 
Boundary 

Signal to Noise 
Ratio (SNR) Region 

FWHM 
of 

Region GMM K-means GMM K-means 

1 3.75 4 7 9.83  6.82  

2 3.40 4 6 8.64  6.23  

3 4.14 5 7 4.05  2.13  

4 4.45 5 7 3.15  2.13  

Table 1: Compared clustering results by K-means and 
GMM. 

Exact Counts Accuracy (%) 
ROI # True Pixel 

Count K-means GMM K-means GMM 
ROI 1 6604 4128 6206 62.5% 94.0% 
ROI 2 702 488 522 69.5% 74.4% 
ROI 3 748 700 745 93.6% 99.6% 
ROI 4 350  280 285 80.0% 81.4% 
ROI 5 88 58 59 65.9% 67.0% 

Total 8492 5654 7817 66.6% 92.1% 
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Fig.6. The reconstructed rat images are shown from the 51st (top-left) to the 60th (bottom -right) slice. 

 

     

     
Fig.7. The results of segmentation by the GMM are shown from the 51st (top-left) to the 60th (bottom -right) slice.  

     

     
Fig.8. The results of segmentation by the K-means method are shown from the 51st (top-left) to the 60th (bottom 
-right) slice.  

 
Fig.9. The horizontal line profile of the 60th slice of Fig. 6 is shown with FWHMs. The FWHMs of region 1, 2, 3 
and 4 are 3.75, 3.40, 4.14 and 4.45 pixels respectively. The top part shows the location of this line profile in the 
MLE-EM reconstruction image and the segmented results by GMM and K-means. 
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