
 1

The Effect of Problem-Solving Instruction on Computer
Engineering Majors’ Performance in Verilog (HDL)

Programming

Hung, Yen-Chu

Abstract—This study investigated the effect of instruction in
problem-solving skills on computer engineering majors’
performance in programming in the Verilog(HDL) language.
Comparisons were made among two treatment groups
(deduction and analogy) and a control group, whose pre- and
post-test scores were analyzed with the ANCOVA procedure.
Result showed that instruction in problem-solving skills
significantly increased achievement in Verilog(HDL) language
programming in computer engineering majors.

Index Terms—Programming, analogy, deduction, Verilog
(HDL) language, Problem solving

omputers are useful educational tools. Many schools have
purchased microcomputers and many students are

instructed in various programming languages. Research has
shown that students are able to develop higher-order thinking
skills through the process of programming [2],[36],[38]. For
example, programming skills was found to improve learners’
mathematics study skills. Through metacognitive monitoring,
learners are able to correct small problems in their procedures
(e.g., “debugging” or “stepwise refinement”) while finding a
solution to a programming problem. The purpose of the current
study was to ascertain whether learning problem-solving skills
(deduction and analogy) enables one to learn how to program in
the Verilog(HDL) language. The result of this study could lead
to a new way of looking at programming instruction.
 Widespread individual studies have been conducted in
schools on computer programming and cognitive development.
For instance, Salomon and Perkins [38] conducted a study to
ascertain the effect of LOGO language programming on
cognitive development. Their study identified six kinds of
transfer of learning from programming: (a) mathematical and
geometric concepts and principles; (b) problem solving,
problem finding, and problem management strategies; (c)
abilities in formal reasoning and representation; (d) models of
knowledge, thinking, and learning; (e) cognitive styles; and (f)
enthusiasm and tolerance for meaningful academic engagement.
Au and Leung [2] suggested that LOGO training has beneficial
effects on children’s higher level cognitive skills such as
problem solving. Dalton and Goodrum [7] suggested that,
when used together, computer programming and

problem-solving strategy instruction may provide an effective
means of teaching transferable problem-solving skills. Papert
[30] noted that learning computer programming with LOGO is
an ideal environment for learning problem-solving skills and
increase the learner cognitive activity. These studies have
shown that LOGO computer programming is an ideal
environment for learning problem-solving skills because the
LOGO language has (a) a top-down programming design; (b)
modularity; and (c) requirements of limited use of logical
constructs.

 Research findings about other computer languages also
confirm that programming portrays an ideal environment for
learning problem-solving skills. Funkhouser and Dennis [10]
indicated the effects of problem solving computer software on
increasing problem-solving ability. Reed et al. [33],[34] found
that learners using both the LOGO computer language and the
BASIC computer language had significant increases in
problem-solving skills. They also found no significant
difference between using the LOGO language and the BASIC
language in increasing problem-solving skills.
 Several studies have been conducted regarding the
implication of cognitive psychology related to designing
programs. Hooper [14] reported that students using computer
programming simulation employed more sophisticated
algorithms during programming than did students who were
not exposed to the manipulative computer model (MEMOPS)
which was designed to facilitate the learning of programming.
Thomas and Hooper [43] reported that simulation may be
useful for reinforcing complex sequences. When using
simulations the learner is forced to assume responsibility for
executing the process, whereas in the alternative methods the
learner responds to external questions or instructions. Alperson
and O’Neil [1] compared a computer-based tutorial with
simulations for transmitting knowledge in beginning
anthropology and psychology courses. Salisbury [36] found
that in the cognitive psychology area, the development of the
use of subskills, inference, spaced practice, spaced review, the
capacity of short-term memory, and the representation of
information in memory are related to each issue in the design of
computer drill programs.

II. A Basic Theoretical Model for Instruction

C

- 1423 -

 2

 While the literature suggests that learning a computer
programming language may improve a learner’s
problem-solving abilities, the reverse may also be true; that is,
developing problem-solving skills may enhance the ability to
learn a programming language. Both “problem solving” and
“programming” involve a common subset of cognitive
behaviors, memorizing and a schema or template. Thus, it may
be inferred that each provides a set of experiences which
enhance the learning of the other. Figure 1 depicts such a
relationship. At the center of the figure are cognitive elements
common to both programming and problem-solving
proficiency. If a learner is deficient in one or more proficiency,
he or she must acquire these structures. It has been suspected by
some researchers that, for success in such activities, the learner
must acquire these shared structures [1, 36, 43]. The mode for
instruction in either activity may simply involve spending
sufficient time and reinforcing the activities that build common
cognitive structures.

 Programming Cognitive Elements Problem Solving

*Language
 symbols
*Syntax
*Methods
 etc.

*Procedures
 (sequences, rules)
*Symbols
 (words, representations)
*Associations
 (maps, instant recall,
 feelings)

*Deduction
*Induction
*Methods
 etc.

Fig. 1 Cognitive Elements Common to Problem Solving and Programming
 The identification, description and validation of the common
elements or structure are, by themselves, a major research
problem. Support for this theory of “mutual causation” may be
given by demonstrating that instruction in either problem
solving or programming will enhance the acquisition of skill in
the other. Some research results have indicated that learning
problem-solving methods could increase student learning to
program in the BASIC language. Palumbo and Reed [29] found
a significant, positive correlation between problem-solving
skills and BASIC language competency measures. Bayman and
Mayer [4] reported learning BASIC programming involves the
growth of syntactic and conceptual knowledge and that
strategic knowledge and problem solving performance are
strongly related to measures of conceptual knowledge.
 Elements common to programming are language symbols,
syntax, methods, etc., and those common to problem solving
are deduction, analogy, analogy and methods, etc. All of the
elements common to either programming or problem solving
are also inherent as cognitive elements. For example, language
symbols in programming are synonymous with the cognitive
elements of symbols. Likewise, deduction in problem solving
is a cognitive procedure, and so forth.

Purpose

To gain greater insight into the relationship between
problem-solving and programming, the current study examined
the effect of learning problem solving prior to learning to

program in the Verilog(HDL) language. The purpose of this
study was to compare the effects of learning problem-solving
methods with instruction in a non problem-solving activity on
subsequent achievement in learning to program in the
Verilog(HDL) language in computer engineering students. The
problem-solving methods studied in this research were
deduction and analogy. This research may suggest that learning
problem-solving methods could be important for students in
providing them with increased knowledge and skills to learn
how to program.

Research Questions
Seven research questions were developed to address the

problem of the study. The first six sought to determine if there
were significant differences:
1. among experimental and control groups on the

Verilog(HDL) language program pretest mean scores;
2. between the problem-solving pretest mean scores of the

experimental and control groups;
3. between the adjusted post-test means of the experimental

and control groups on Verilog(HDL) language
achievement;

4. between the adjusted post-test means of the experimental
and control groups on problem-solving achievement;

5. between the adjusted post-test means of the experimental
and control groups on the Verilog(HDL) language
programming design; and

6. between the adjusted post-test means of the experimental
and control groups on Verilog(HDL) language program
understanding?

The last question sought to determine if there was a significant
relationship:
7. between the Verilog(HDL) language tests and the

problem-solving tests.

Problem Solving
Problem solving is a cognitive process of the brain at the

higher cognitive layer that searches a solution or finds a path to
reach a given goal [46],[48].Problem solving is one of the 37
fundamental cognitive processes modeled in the Layered
Reference Model of the Brain[46]. This study was focused on
deduction and analogy.

Deduction
 Discrimination is the ability to determine the objects and/or
events that have a direct impact on the problem. Students can
go beyond the simple practice of discrimination and be led to
solve classification problems and develop logical thinking
skills in interesting ways. Skinner [39] noted that deduction is a
way of constructing discriminative stimuli. Useful forms of
deduction inspire the thinker to formulate a systematic form of
analysis which will reduce the problems that exist to the
simplest form. For example, a deductive inference could be
stated as: A personal computer has a 1000 MHz processor. One
can deduce that this computer is faster than computers with 333
MHz processors since 333 is less than 1000. Programming

- 1424 -

 3

often involves arranging statements into a logical sequence; for
example,
 Input A, B, C;

 Wire e;
 And g1(e, A, B);
is logical because before one can add and print the sum, the
values must first be entered. The sequence
 And g1(e, A, B);

 Input A, B, C;
 Wire e;
would not be logical. Deductive reasoning would lead to this
conclusion because of prior experiences in attempting to
present a result without having the necessary information.
 By arranging a problem into a series of logical steps, one
applies “deductive” reasoning. Therefore, computer language
programming requires extensive application of the principles of
deduction. This computer programming strategy can be
developed in several ways. Most appropriate to this research is
to expand the students’ ability to use deduction, which
subsequently affects one’s ability to design and understand
computer language programming.

Analogy
 Analogy is the comparison of two pairs which have the same
relationship. An analogy is a comparison in which different
items are compared point by point, usually with the idea of
explaining something unknown by something known.
Analogies are offered to provide insights, and can be very
instructive. Analogies tend to suggest that existing similarities
imply even more similarities. Analogy requires increased
emphasis when considering its potential for creativity in
solving new problems. Analogy thinking should expand one’s
considerations and remove barriers of fixed-rule thinking.
Developing a knowledge base will improve the chance of
finding a solution, and having the ability to draw on a broader
knowledge base. Creative solutions are demanded of analogy
thinkers. Such thinkers will have to organize, retrieve, and use
an excess of information to solve their problems. Analogy uses
experimental reasoning to arrive at the whole from the
particulars. Thus, analogy employs basic inference strategy
used in synthesized learning.
 Creativity should not be construed to be limited to only
analogy thinking. Creative efforts may involve both deductive
and analogy thinking in the solution of problems of expression.
Using problem-solving methods as a skill to understand and
design computer language programming is the highest order
commonly found in the demonstration of a designer’s idea and
expression of his or her aesthetic feelings. Thus, problem
solving involves mostly intuitive, creative thought. A broad
understanding of problem-solving capabilities and the logical
combination of analogy as a skill along with one’s personal
knowledge broadens one’s abilities to design and understand
programming.

HDL(Hardware Description Language)
 A hardware description language is a language that describes

the hardware of digital systems in a textual form. It resembles a
programming language, but is specifically oriented to
describing hardware structures and behavior.

Effect of problem-solving methods on learning to program
 Computer programming can be perceived as a problem
solving process [20] that involves the following:

 Creating a program – Translating natural languages
into Computer code to solve problems.

 Comprehending a program – Explaining computer
code in natural languages.

 Modifying a program – Changing computer code to
achieve a slightly different problem goal.

 Debugging a program – Fixing a non-working
program.

The four computer programming activities in software
engineer can be easily explained by the models and process
presented in earlier sections. All the activities will involve
relatively straightforward abstraction and conceptualization if
the activities’ tasks are problem with readily available memory
cues for direct solution path determination.

To teach programming to students, research has shown a
need for a more structured form of instruction to express the
concept of program design. Linn [18] and Mayer [22]
suggested that planning specific programs will effectively
enhance learning computer language design. Plans can build
program fragments that symbolize model action sequences in
programming with particular tasks or subtasks. Researchers
have used an expert model of programming to teach a
beginning structured language such as PASCAL [17],[42].
Expert models of programming rely on plans as a central idea.
 However, a mere theoretical plan for programming is not
adequate. One must develop a reinforcing method for delivery
that supports utilization of heuristics to improve inductive,
deductive, metacognitive, and creative thinking as methods to
apply when attempting problem solving. Programming
schemata effectively requires the student to understand all the
tools available and to use them in the most expeditious way to
seek resolution. Vosniadou & Ortony [44] found that students
who are exposed to analogs with surface similarity and deep
similarity could induce a schema by the process of mapping.
Then, the analogy schema (i.e., mapping identities) form the
basis for analytical reasoning and problem solving. Based on
this premise, problem solving can be taught and learned
effectively. Problem solving helps students comprehend
computer programming problems deeply which, in turn, helps
them solve problems efficiently. Greeno and Simon [12]
reported that patterns of information in a problem have to be
recognized to determine that a problem-solving operation can
be applied. McKeithen et al. [24] found that expert problem
solvers represent problems immediately in terms of core
programming structures which allow them to find elegant
solutions. On the other hand, novice problem solvers fixate on
surface features of problems without comprehending the
structure which can be translated into a program. The current
study deduces that programming skills are an effective

- 1425 -

 4

approach to teach problem-solving skills to improve students’
ability to understand and solve critical thinking problems faced
daily. In other words, students’ problem representation and
problem solving in teaching programming would be
significantly improved by teaching schemata of programming.
 Salomon & Globerson [37] reported that the degree of
students’ mindfulness as a tendency influences their learning.
The more mindful a student is, the greater the capacity to learn
computer programming. If students can be subsequently taught
to use computer programming design after learning
problem-solving methods, their ability to learn programming
design will develop more rapidly. This study seeks to answer
the following question: Is learning to design and understand
Verilog(HDL) language programs more effectively achieved
by those who first acquire problem-solving skills?

Does Learning Analogy and Deduction Affect Ability to Learn
Programming?
 Problem solving is commonly known as the application of
acquired information, knowledge, and skills to new situation
information acquisition itself is a cognitive process, which
psychologists refer to as a transfer [23],[27],[31]. The transfer
is in effect when what a person learned in one situation affects
how the person learns and performs in a future situation.

Analogy and deduction are problem-solving methods.
Analogy involves some set of cognitive processes that enables
one to abstract rules from experience. Learning proceeds from
the specific to a general rule. On the contrary, deduction is the
set of processes used to apply rules that one has previously
acquired. Learning involves the use of general knowledge to
solve a specific problem. Thus, analogy is associated with the
learning process, whereas deduction is associated with the
application of knowledge. Pea [32] found that the best way to
help students to learn computer programming is to provide
clear models that show the process of controlling data. One
could infer that students learn deduction (problem-solving skill)
by using a step-by-step method to solve problems. Then, after
learning computer programming, such as employing top-down
model programming, one could use deductive methods or ideas
to design and understand computer programming. Papert [30]
and Feurzig et al. [9] reported that metacognition, general
problem solving, and divergent thinking (analogy reasoning)
have possible cognitive benefits toward active participation in
computer programming by students.
 Analogy reasoning ability influences programming
achievement. Since students show differences in cognitive
abilities (analogy reasoning ability) and mindfulness in
computer learning, problem solving affects new task cognitive
skills. These skills are directly related to design of programs.
Thus, if one teaches students problem-solving methods using
analogy or deduction, one could also increase their ability to
understand and design computer language program. This was
hypothesized in the present study.

Method
 In this study an experimental research design was adopted in

which 48 students enrolled in the Computer Engineering
Department at National Chiayi University in Taiwan
participated as subjects during the fall of 2004.
 This research used a pretest/post-test control-group design
structure [5]. Sections of students were randomly assigned to
either one of two experimental groups, or to a control group.
The method of instruction and testing is outlined in Table 1.
Problem-solving and Binary Numbers were taught using
traditional instructional methods. The primary instruction
materials for the experimental groups (deduction and analogy)
were developed from Mathematics for Elementary Teachers”
by G. L. Musser and W. F. Burger [26] and submitted to a panel
of experts for validation.
 During the first week, all groups were given a Verilog(HDL)
programming and problem-solving pretest prior to instruction.
For the next two weeks, students in the deduction and analogy
groups received common instruction in problem-solving while
the control group learned Binary systems. During the fourth
week, deductive and analogy reasoning was taught separately
to students in the respective experimental groups while the
control group continued learning Boolean Algebra and logic
gates. A description of the instructional methods used for each
group is presented in the following two subsections:
Problem-solving instruction; and Instruction in deduction and
analogy.

Problem-solving instruction
 Two methods of traditional problem solving were taught to
the experimental groups during the second to fourth weeks of
instruction. The first method instructed students to understand
the problem by asking seven questions:
1. Do you understand all the words;
2. Can you restate the problem in your own words;
3. Do you know what is given;
4. Do you know what the goal is;
5. Is there enough information;
6. Is there extraneous information; and
7. Is the problem similar to another problem you have

solved?
Then students were taught to devise a plan by (a) looking

for a pattern; (b) solving a simpler problem; and/or drawing a
picture. Next, students were asked to carry out the plan by (a)
implementing the chosen strategy (strategies) until the problem
is solved or a new plan is made; (b) take a reasonable amount of
time to solve the problem, seek hints, or put it aside; or (c) start
over with a fresh strategy. Finally, students were instructed to
look back and ask: (a) is the solution correct and does it satisfy
the statement of the problem; (b) can an easier solution be
found; and (c) can the solution be extended to a more general
case? These traditional methods of problem-solving are based
on the theory of George Polya, a mathematician who devoted
his teaching to helping students become better problem solvers.
An example of a problem given to students to solve using this
approach is (provided below):

 A teacher lineup contained four students (A, B, C, D),
one of who is a gifted student. The lineup is graduated by

- 1426 -

 5

height, with the tallest student on the left and shortest on
the right. There are two students between A and B, and C
is left of D. The gifted student is third from the left, and B
is to the right of the gifted student. Who is the gifted
student?

 A.. A
B B
C C
D D
E Cannot be determined

 (Musser & Burger, 1988, p. 7)[26]

 The second traditional method taught was to have students
draw a picture, or diagram. A sample problem used was as
follows:

 A survey was taken of 150 college freshmen. Forty of
them were majoring in mathematics, 30 of them were
majoring in English, 20 were majoring in science, 7 had
double majors of mathematics and English, and none had
a double (triple) major with science. How many students
had majors other than mathematics, English, or science?

Student were encouraged to discuss in groups and use Venn
diagrams within a rectangle in solving this problem.
 Another traditional problem-solving strategy taught to the
students was direct reasoning. The following is a sample
problem:

 In a group of nine coins, eight weigh the same and the
ninth is heavier. Assume that the coins are identical in
appearance. Using a pan balance, what is the smallest
number of weightings needed to identify the heavy coin?

Students discuss as a group their method of weighing the

coins separated into three groups of three coins each. By direct
reasoning, they weigh group A and B, and if they balance they
determine the heavy coin is in group C. Reasoning that A and B
are equal, they weigh B and C together and note which way the
scale tips and arrive at the answer that two weightings are
needed.
 The third problem-solving strategy taught is to work
backwards. A sample question used in this method is provided
below:

 How can you bring up from the river exactly six quarts
of water when you have only two containers, a four-quart
pail and a nine quart pail, to use for measuring?

Students discuss and visualize the given tools—the two
containers. They imagine two cylindrical containers having
equal bases whose heights are a 4:1 ratio. Then they eventually
come to the realization that by filling the larger container to
capacity (9 quarts), they can pour out exactly three quarts. Then
they get the idea that they can achieve this by having just one
quart in the smaller container. If they fill the larger container to
full capacity twice and pour from it four quarts into the smaller
container and the remainder into the river twice in succession,
they can get one quart in the container. The answer was reached

by using something already known and following the method
of analysis, working backward.
 Students were also taught to set up equations in
mathematical symbols to do problem solving and then translate
the language back to fit the real situation, thus using
mathematical formulas (program design) and mathematical
expression (computer language expression). They also learned
to use analogy (similar objects), to decompose and recombine,
and to use heuristics (the procedures of analysis and synthesis).
In heuristics, one starts with analysis of what is required and
taken for granted and draws conclusions from the
consequences until a point is reached where synthesis can be
used. Synthesis reverses the process, starting from that point
last reached in analysis (what was admitted to be true) and what
preceded it in the analysis, until the retraced steps lead to
arriving at what was originally required. Synthesis is also called
constructing a solution or reasoning.

Instruction in deduction and analogy
 In deduction, premises are given and the problem solver
must apply the appropriate rules to draw a conclusion.
Deduction is a process of deriving a conclusion from one or
more statements. A valid argument is an argument in which the
conclusion must be true as long as the premises are true. In a
deductive task, premises are given and the problem solver must
apply the appropriate rules to draw a conclusion. For example,
in an instructional session, the instructor might present the
students the following two statements:

All students need to go to school.
Mary is a student.

Then the instructor would ask the students to discuss the
statements and draw a logical conclusion: Mary needs to go to
school (because she is a student). Generally, the students
should not have much problem reaching this conclusion, but
with harder problems, they may need direction from the
instructor until they fully understand the process.
 Analogy involves forming a general principle from the given
facts or examples. In an analogy task, a series of instances are
given and the problem solver must generate a rule or pattern
that describes the structure of the problem. In an example
lesson using analogy, the students are given several facts such
as:
The day before yesterday, the sky was covered with dark clouds.
It rained

Yesterday, the sky was covered with dark clouds. It
rained. Today, the sky was covered with dark clouds. It
rained.

Following discussion, the students are asked to tell the class
whatever observations they made in regards to the phenomenon.
The instructor may guide them to come forward with the
principle that: when the sky is covered with dark clouds, it will
rain.

Table 1. Instruction and Test Schedule

- 1427 -

 6

NOTE: Tests are shaded.

Testing
 The three groups of students (two experimental groups and
one control group) took six tests: two paper and pencil

knowledge pretests, two midterm tests, and two post-tests
(Table 1). The teacher-made midterm tests were held after the
teacher completed Verilog(HDL) language instruction. The
midterm tests were composed of several problems from
homework and textbook assignments. The final exams on
problem solving and on Verilog(HDL) language programming
covered all material taught in the Verilog(HDL) programming
course.

Results
 Comparisons were made among the three treatment groups.
Approximately 10 percent of the pretest questions were
answered correctly. As shown in Table 2 and Figure 2, the
average pretest scores were 2.27, 2.14, and 2.40, respectively,
for the control, deduction, and analogy groups. The students’
knowledge of Verilog(HDL) language before instruction was
limited; whereas following instruction approximately 30
percent of the post-test questions were answered correctly. The
average post-test scores were 6.60, 9.42, and 11.13,

respectively, for the control deduction, and analogy groups.
Table 2. Means for the Verilog(HDL) Language Pre- and

Post-tests
 Comparisons were also made by treatments within groups
(Table 2) In the pretest. Data from the tests were analyzed
using the ANCOVA to determine if statistically significant
differences existed among the groups (Table 3). The level of
significance was set at α = 0.05. The covariates were the

Verilog(HDL) language pretest scores and the dependent
variables were the Verilog(HDL) language post-test scores.
There was a significant difference among the three treatments
for the Verilog(HDL) language post-test, among the students
in the three treatment groups.

Figure 2. Pre- and Post-test Means for the Three Experimental
Groups
Table 3 ANCOVA for the Three Experimental Groups

Findings

 The analysis of the pretest scores in Verilog(HDL) language
concepts and problem solving showed that the randomly
assigned groups were equal or nearly equal on these tests.
There was a significant difference on the Verilog(HDL)
post-test among the three treatment groups
 The results indicated that when students first study
problem-solving methods (analogy and deduction) they
experience a significant increase in Verilog(HDL) language
programming achievement (see Table 2 and Figure 2). The
study also showed that students who first receive
problem-solving instruction in analogy subsequently learn

 Instru
ction

Group

Total
by

hours

Deduction Analogy Control We
ek

1 Verilog(HDL) programming and
problem-solving pretest

 1 Problem-solving
instruction

Problem-solvi
ng instruction

Word-proc
essing

2-

3
4 Problem-solving

instruction
Problem-solvi
ng instruction

Word-proc
essing

4 2 Deductive
instruction

Analogy
instruction

Word-proc
essing

5-

7
9 Verilog(HDL) programming instruction

(everyone)
8 1 Verilog(HDL) programming instruction

(everyone)
 Verilog(HDL) programming midterm test one

9-

11
9 Verilog(HDL)programming instruction

(everyone)
12 3 Verilog(HDL) programming instruction

(everyone)
 Verilog(HDL) programming midterm test two

13-
15

9 Verilog(HDL) programming instruction
(everyone)

16 3 Verilog(HDL)programming instruction
(everyone)

 Verilog(HDL) programming and
problem-solving post-test

 Means
 Pretest Posttest
Control 2.27 6.60
Deduction 2.14 9.42
Analogy 2.40 11.13

0
2
4
6
8

10
12
14

Pretest Posttest
Trial

Mea

Control
Deduction
Analog

Source df Sum of
Squares

Mean
Squar

es

F value Pr > F

Covariate

 2 146.68 73.34 36.74 0.0001

 Error 40 79.84 1.99
 Total 44 323.92

- 1428 -

 7

Verilog(HDL) language programming significantly better than
students who first receive problem-solving instruction in
deduction and subsequently learn Verilog(HDL) language
programming. Further evidence supports that male??? students
in group one and two on Verilog(HDL) language programming
in design and understanding performed significantly better than
the female students in the control group.

Conclusions
 This study investigated the effect of problem-solving
instruction on computer engineering majors’ performance in
programming in the Verilog(HDL) language. The
Verilog(HDL) language programming midterm and the
Verilog(HDL) language programming post-test provided the
means to assess achievement in Verilog(HDL) language
program learning after two kinds of problem-solving
instruction⎯analogy and deduction.
 Evidence shows that students who first learn problem
solving (deduction or analogy) followed by receiving
instruction in Verilog(HDL) programming perform
significantly better than students who use a non
problem-solving method (word-processing) prior to learning
the Verilog(HDL) language.
 This study has implications for teaching programming and
problem solving. It was theoretically proposed that there exists
a mutual causation and interaction between problem solving
and programming. This study provides support that learning a
problem-solving method increases achievement in computer
language programming. Other studies [2],[33],[[34], [38]
support that learning computer language programming may
improve a learner’s problem-solving abilities. Combining these
studies and the present study supports the mutual causation
theory stemming from a common subset of cognitive behaviors,
memories and schema or templates. Learning either
problem-solving methods or programming provides a set of
experiences which enhance the learning of the other.

REFERENCES

[1] Alperson, J. R., & O’Neil, D. H. (1990, February). The boxscore: Tutorial

2, simulation 0. Academic Computing, 18-19, 47-49.
[2] Au, W. K., & Leung, J. P. (1991). Problem solving, instructional methods

and LOGO programming. Journal of Educational Computing Research,
7(4), 455-467.

[3] B. Smith, “An approach to graphs of linear forms (Unpublished work
style),” unpublished.

[4] Bayman, P., & Mayer, R. E. (1988). Using conceptual models to teach
BASIC computer programming. Journal of Educational Psychology,
80(3), 291-298.

[5] Campbell, D. & Stanley, J. (1963). Experimental and quasi-experimental
design for research. Boston: Houghton Mifflin.

[6] Chambers, J. A., & Sprecher, J. W. (1983). Computer-assisted instruction.
Englewood Cliffs, NJ: Prentice-Hall, Inc.

[7] Dalton, D. W., & Goodrum, D. A. (1991). The effects of computer
programming on problem-solving skills and attitudes. Journal of
Educational Computing Research, 7(4), 483-506.

[8] E. H. Miller, “A note on reflector arrays (Periodical style—Accepted for
publication),” IEEE Trans. Antennas Propagat., to be published.

[9] Feurzig, W., Horowitz, P. & Nickerson, R. (1981). Microcomputers in
education. Cambridge, MA: Bolt, Beranek, and Newman.

[10] Funkhouser, C., & Dennis, J. R. (1992). The effects of problem-solving
software on problem-solving ability. Research on Computing in
Education, 24(3), 339-348.

[11] G. O. Young, “Synthetic structure of industrial plastics (Book style with
paper title and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New
York: McGraw-Hill, 1964, pp. 15–64.

[12] Greeno, J. G., & Simon, H. A. (1988). Problem solving and reasoning. In
R. C. Atkinson, R. J. Herrnstein, G. Lindzey, & R. D. Luce (Eds.),
Stevens’ Handbook of Experimental Psychology: Learning and cognition
(2nd ed.).. New York: John Wiley & Sons.

[13] H. Poor, An Introduction to Signal Detection and Estimation. New York:
Springer-Verlag, 1985, ch. 4.

[14] Hooper, E. J. (1986). Using programming protocols to investigate the
effects of manipulative computer models on student learning. (Doctoral
dissertation, Iowa State University, 1986). Dissertation Abstracts
International, 47, 3009A.

[15] Kahney, H. (1993). Problem solving: Current issues. Philadelphia, PA:
Open University Press.

[16] Langstaff, J. J. (1989). Problem representation and achievement in
computer programming: The differential effects of inductive reasoning
skills and computer programming experience. (Doctoral dissertation,
University of Iowa). Iowa City, IA.

[17] Linn, M. C. & Clancy, M. J. (1989). The case for case studies of
programming problems. Paper presented at the meeting of the American
Education Research Association, San Francisco, CA.

[18] Linn, M. C. (1985). The cognitive consequences of programming
instruction in classrooms. Educational Researcher, 14, 14-29

[19] Luchins A. S. & Luchins, E. H. (1970). Wertheimer’s seminars revisited
problem solving and thinking. Albany, NY: State University of New York
at Albany, Inc.

[20] Matlin, Margaret W. (1998), Cognition, Fourth Edition. Harcourt Brace &
Company, ISBN:0-15-504081-2, pp.354-372.

[21] Mayer, R. E. (1983). Thinking, problem solving, cognition. New York:
Freeman.

[22] Mayer, R. E. (1988). Introduction to research on teaching and learning
computer programming. In R. E. Mayer(Ed.) Teaching and learning
computer programming. (pp. 1-12) Hillsdale, NJ: Lawrence Erlbaum
Associates.

[23] Mayer, Richard E. (1992), Thinking, Problem Solving, Cognition, Second
Edition, W.H. Freeman and Company, ISBN:0-7167-2215-1, pp. 36-38,
167-202, 397-400.

[24] McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981).
Knowledge organization and skill difference in computer programmers.
Cognitive Psychology, 13, 307-325.

[25] Michalski, R. S., (1983). Theory and methodology of inductive learning.
In R. S. Michalski, Machine learning: An artificial intelligence Tioga
Publishing Co.

[26] Musser, G. L., & Burger, W. F. (1988). Mathematics for elementary
teachers. New York: Macmillan.

[27] Ormrod, Jeanne Ellis (1999), Human Learning, Third Edition,
Prentice-Hall, Inc, Simon & Schuter/A Viacom Company, ISBN:
0-13-875684-8, pp. 347-383.

[28] Palumbo, D. B., & Reed, W. M. (1991). The effects of BASIC
programming language instruction on high school students’ problem
-solving ability and computer anxiety. Journal of Research on Computing
in Education, 23(3), 343-372.

[29] Palumbo, D. B., & Reed, W. M. (1992). The effects of BASIC instruction
on problem solving skills over and extended period of time. Journal of
Research on Computing in Education, 8(3),311-325

[30] Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas.
New York: Basic Books.

[31] Payne, David G., Michael J. Wenger (1998), Cognitive Psychology,
Houghton Mifflin Company, Boston, New York, ISBN: 0-395-68573-7,
pp 455, 479-482.

[32] Pea, R. D. (1986). Language-independent conceptual ‘bug’ in novice
programming. Journal of Educational Computing Research, 2(1), 25-35.

[33] Reed, W. M., & Palumbo, D. B. (1987/1988). The effect of the BASIC
programming language on problem-solving skills and computer anxiety.
Computers in Schools, 4(3/4) 91-104.

[34] Reed, W. M., Palumbo, D. B., & Stolar, A. L. (1987/1988). The
comparative effects of BASIC and Logo instruction on problem-solving
skills. Computers in Schools, 4(3/4), 105-118.

- 1429 -

 8

[35] Ricardo, C. M. (1983). Identifying student entering characteristics
desirable for a first course in computer programming. Doctoral
dissertation. Columbia University, NY.

[36] Salisbury, D, F. (1990). Cognitive psychology and it implications for
designing drill and practice programs for computers. Journal of
Computer-Based Instruction, 17, 23-30.

[37] Salomon, G, & Globerson, T. (1987). Skill may not be enough: The role of
mindfulness in learning and transfer. International Journal of Educational
Research, 7, 623-637.

[38] Salomon, G., & Perkins, D. (1985). Transfer of cognitive skills from
programming: When and how? Journal of Educational Computing
Research, 3(2), 149-169.

[39] Skinner, B. F. (1968). An operant analysis of problem solving. In B.
Klemmuntz (Ed.), Problem solving: Research, method and theory. New
York: Wiley.

[40] Skinner, B. F. (1968). The technology of teaching. New York: Appleton
Century Crofts.

[41] Snow, R. E. (1980). Aptitude Processes. In R. E. Snow, P., A., Federico,
& W. E. Montague (Eds.) Aptitude learning and instruction: Cognitive
process analyses of aptitude (Vol.1). Hillsdale, NJ: Erlbaum.

[42] Soloway, E. (1986). Learning to program = learning to construct
mechanisms and explanations. Communications of the ACM, 29,
850-858.

[43] Thomas, R. A., & Hooper, E. (1991). Simulation: An opportunity we are
missing. Journal of Research on Computing in Education, 23(4), 497-513.

[44] Vosniadou, S., & Ortony, A. (1989). (Eds.). Similarity and analogical
reasoning. New York: Cambridge University Press.

[45] W.-K. Chen, Linear Networks and Systems (Book style). Belmont, CA:
Wadsworth, 1993, pp. 123–135.

[46] Wang, Yingxu, Ying Wang, S Patel, and D. Patel (2004), A layered
Reference Model of the Brain, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 34, to appear.

[47] Wertheimer, M. (1945). Productive thinking. New York: Harper & Row.
[48] Wilson, R.A. and F. C. Keil (2001), The MIT Encyclopedia of the

Cognitive Science. MIT Press.

Yen-Chu Hung is an Associate Professor of Computer Engineering and the
Director of the Computer Center at National Chiayi University in Taiwan. He
specializes in computer languages and instruction.

- 1430 -

