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Abstract

In this paper, the feedback linearization technique on the basis of
equilibrium manifold to figure out a nonlinear PI configuration is
proposed. Based on the optimization-based tuning procedure, the
flexible tuning procedure can ensure the closed-loop performance. If
the off-line identification and the sinusoid function validation are
added, the observer-based PI control as the extended output feedback
design is successfully applied for a distributed bioreactor system.

1. Introduction

Continuous cultures of some microorganism such
as Saccharomyces cerevisiae and Zymomonas
mobilis have been known to exhibit highly
oscillatory behavior during routine operation
(Jobses et al., 1985; Strassle et al., 1988). Hjortse
and Nielsen (1995) developed the population
balance equation (PBE) to describe the oscillating
behavior of the microbial process. However, these
oscillations caused by the spontaneous
synchronization are probably attributable to
system perturbations (Hjortse and Nielsen, 1994).
Moreover, Kurtz et al. (1998) and Zhu et al. (2000)
recently proposed the nonlinear state feedback
control and linear model-based predictive control
for these self-oscillating systems, respectively.
Notably, these bioprocesses are class of
PBE-based distributed parameter systems, and
both manipulated variables by exploiting feed
substrate concentration and dilution rate are
usually taken into account. In our opinions, i) the
conventional control designs are difficult to
stabilize self-oscillating, nonlinear distributed
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systems; ii) the linear model-based control designs
are inadequate to reduce the large plant/model
mismatch; iii) the multivariable control strategies
hardly ensure the favorable cost/benefit ratio.

To our knowledge, the control of self-oscillating
and/or chaotic behavior of non-distributed systems
has been addressed in some literatures (Pérez and
Albertos, 2004; Pellegrini and Biardi, 1990; Wu,
2000a). It is noted that the traditional PI control
cannot effectively reduce the sustained oscillation
problem.  Referring the recent issues,
Alvarez-Ramirez (1999) indicated that the specific
PI configuration could be used to stabilize a class
of nonlinear systems, and Wu (2004) also
demonstrated that the nonlinear PI/PID control
would be effectively implemented for the output
regulation of polymerization processes. Besides, it
has been verified that the feedback linearization
algorithm can guarantee the asymptotical output
regulation of time-varying uncertain nonlinear
systems (Marino and Tomei, 1993). Intuitively, we
think that the self-oscillating bioprocesses can be
reduced as a time-varying uncertain nonlinear
system, and the hybrid control configuration
associated with PI control and nonlinear
linearizing control is probably practical and
feasible design for the stabilization of
self-oscillating, distributed systems.
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2. Process Model

Consider a binary fission organism in a
continuous bioreactor, in which the growth rate of
cell age is assumed unity and the age distribution is
governed by the population balance equation.
Referring to the modeling result in Kurtz et al.
(1998), the process model is described by
ow ow

?+—=—[D+F(a,5')JW (1a)
thy = =Dmy + [ T(a,S" )W (a,t)da (1b)
$=D(S, -8)-x(S) [ W(a,)da (Ic)
S'=a(S-S") (1d)

where process variables W (a,t) represents the
frequency of concentration of cells with the age a
at time ¢, m, is denoted as the cell number
concentration, S is the substrate concentration, and
S'  represents the  ‘effective’  substrate
concentration. The input variables are the dilution
rate D and the feed substrate concentration S, .

Since Eq. la is a typically partial differential
equation, the following initial and boundary
conditions are required

W(a,0) =W,(a)

w(0,0=2[ T(a,S"W(a,t)da @
where T'(a,S’) represents the cell division
intensity modeled by

0 a<a,
8= é(a—a(,)’ aza, jz2 ®

where ¢ is a constant and the critical age of
division @, is described by

_ '
a,=7x,+m[S

“4)
where 7, and 7, are specified constants. The
yield kinetic «(S) in Eq. lc is based on the
Monod expression

K(S) = My

K+S )

where g, and K are constants. The adaptivity
parameter « in Eq. 1d is denoted as a coefficient
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for changes in S and the response in cell
metabolism.
Remark 1: Basically, it is difficult to solve the
above model equations due to the semi-infinite
integral form. Referring to the issue in Kurtz et al.
(1998), the coordinate transformation, ¢'=1-¢™“,
is suggested to map [0, ) —[0, 1). Moreover, the
transformed equation by Eq. 1a is rewritten as
a—W+(1
ot
with respect to the renewal conditions by Eq. 2 is
shown as

W(a',0)=W,(a")
@, sW.o .
1-a'

By Eqgs 1b and lc, the corresponding transformed
equations are written as

)Z-j: [ D+T(a, ) | (6)

7
W(O,t)=2£ %

(ar)d,

ity ==Dm, + [ T(a'.8") (8)

$=D(S, -8)- (S)J:W(“ ) o

(8b)

In this article, the process model is based on the
transformed PBE model with initial and boundary
conditions by Eqs 6-9. Using the numerical
techniques introduced in the books of Marchuk
(1982) and Schiesser (1991), the method of lines
and finite differences can convert the PDE (Eq. 6)
into the successive ODEs with time as the
independent variable.

3. Nonlinear PI Control Designs

Because the process is a typically distributed
model, Christofides and Daoutidis (1996), and Wu
(2000b) used numerical techniques to establish a
class of non-distributed nonlinear control systems.
Since the PBE model has a uniform behavior after
the large time, the steady-state cell distribution is

considered. Suppose that the equilibrium W,
should be solved by
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d—W"‘ =—(D+I'(a', S, ))”7“
da : )

W
0=D(S,-S,)- K(S“)L (”)
)
and the approximate non-distributed model is
shown as

X, =—ux, +J;l"(a x) “( )d !

i, =u(S, —x,)- K(xz)J: (@) 4y

X, =a(x, —x;)

(10)

where x" =[m,, S, S']. Assume that the control
u=D, and the output y = x, . Moreover, the output
of the first-order reference model is shown as

Vo =Yy + [ (0, - )T (11)
where y and y,, represents the setpoint and

initial of reference model, respectively.

timea(h)

Fig. 1 Open-loop profiles

In fact, many states of bioprocesses are
unavailable, and metabolic kinetics of processes
are usually complex and uncertain. Inspired by the
response of W(a',t) in Figure 1, the steady-state
profile under periodic oscillation is a characteristic
to build up a training strategy. The off-line

estimation mechanism is constructed by a sinusoid
function

Q) = a, sin(a, + a,t)

(12)
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where parameters ¢, , i=1,2,3, should be identified
the  off-line
Moreover, the estimated function of W(a’,t) is

during estimation/correction.

shown as

W(d',t)=W, (a")1+x1)) (13)

Then, the reduced nonlinear observer is expressed
by
w (a t)

X = —uf, + LF(a’, "3)

W(a t)

—u(S -X,) k(X )J; (14)

X, =a(x,-x,)

where )Acl. ,i=1,2,3, represents the states of observer.

Through the off-line validation, if the estimation
errors given by

min"x—fc"SO',O'ZO
(15)
can hold, then the state estimation is feasible.

When only the cell number concentration (X, ) of

process is available, the nonlinear PI control is
written as

o =, + KL O, =)+ =57 [ 0, =)

(16)
with
~ 82 (y—ym,h) + 9(5&3’t)
u,(y) = B
K'(y)=-&y (17)
' =1/¢,

where 0(x,,7) = £F( B A3)W(a t)

Remark 2: The estimated function 6(%,,7) aims to
take over the original function 7(x,,f) as soon as

possible. It is no doubt that this time-varying
observer (Eq. 14) can sufficiently capture the
steady-state behavior of the biosystem. However,
the estimation error is inevitable due to model
errors and simplified identification rule by
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W(a',)

Furthermore, a simple and on-line adjustable
controller tuning algorithm is recommended. To
our knowledge, one of tuning parameters &g

exploiting the sinusoid function

associated with the integral mode should be fixed
to avoid the reset windup problem, and another
parameter &, is determined by solving the

minimization of the following quadratic form

min J = ﬁ( ¥y~ y(kADY (18)

where At represents the sampling time.

4. Conclusions

In this paper, we focus on oscillating microbial
cultures described by PBE models. According to
the equilibrium manifold, a non-distributed and
low-order model is developed. Based on a
first-order ~ reference  model and  the
optimization-based tuning algorithm, the simple,
nonlinear PI control is proposed. Since an oft-line
identification and validation of time-varying
observer is employed, we think that this extended
output feedback design is valuable in the possible
real-time implementation.
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