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Abstract

A three-element multivariable control system with two-degree-of-freedom (2-df) is
proposed. Among the three elements, one in the main loop is designed as an inverse-based
controller for rejecting disturbance, and the other two which serve as pre-filter and
dynamic preset are devised for set-point tracking. These elements can be designed to
satisfy two desired objectives independently and with emphasis on their physical
realization. The Simulation results show that satisfactory control performance can be

achieved.
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1. Introduction

In general, most of chemical plants are MIMO
systems. With increasing competition in market, the
manufacturers are forced to have higher product
quality with lower cost, and thus process naturally
need tighter control. In the past, multi-loop SISO
controllers are practically used to control a MIMO
system. However, designs of controllers for such a
system (Luyben, 1986; Shen and Yu, 1994)[1], [2]
are usually coupled due to the interactions. To
overcome the difficulties in design, Huang (2003) [3]
decomposed the multi-loop system into a number of
equivalent single loops for design. But this type of
multi-loop SISO  controllers  usually  brings
interactions to other loops. Theoretically, by
multivariable controllers, these interactions can be
eliminated as much as possible. Wang et al. (1997) [4]
proposed the fully cross-coupled multivariable PID
controllers and they (2003) [5], [6] also proposed a
method to design general multivariable controller. In
their method, the desired objective loop transfer
functions are targeted to obtain good performances
for step set-point changes. But, the resulting system
has sluggish responses for disturbance input. In
addition, the objective closed-loop transfer functions
are specified by some complex procedures.

In literatures, a 2-df control or relevant structures
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can achieve two objectives simultaneously within
one system. Nevertheless, the two controllers are
highly dependent in design. Tian and Gao (1998) [7]
proposed a double-controller scheme, a set-point
controller and a load controller. In their control
structure, the two controllers can be designed
independently to achieve good system performance
for both set-point tracking and load rejection. But,
direct using their structure to control multivariable
systems will cause some problems. For examples, the
resulting control system is complex and the dead-
time can’t compensate completely in loops. In this
paper, motivated by the double-controller of Tien and
Gao aforementioned, a new 2-df multivariable
control system with three controller elements is
presented. One of the elements as an inverse-based
controller in devised in the main loop for rejecting
disturbance. The design of this inverse-based
controller emphasizes on a systematic procedure to
obtain physically realizable controllers for practical
implementation. It can reject the disturbance
effectively under the desired robustness. The other
two elements (one as pre-filter and one as dynamic
preset), are designed to have a dead-time
compensated response as that of a Smith predictor.
The two elements mentioned have explicit functional
relations to the desired control specification and the
open-loop dynamics. Thus, they can be synthesized
very easily.

By making use of this 2-df system, simulations
using example processes have been applied to. The
results on both of set-point tracking and disturbance
rejection performances are satisfactory.
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Fig. 2. A multivariable decoupling control system

2. Two-degree-of-freedom multivariable
control structure

Consider a mxm system of the following:
Y(S)=G,, (s)U(s)+GL (S)L(s) )
where Y(s) and U(s) designate the output and
input vector, respectively. L(s) and G,(s) are the

disturbance and the dynamics from disturbance to
each loop. G,(s) is an open-loop transfer function

matrix (abbr. TFM) that represents the dynamics of
the plant. In general, G,(s) and G, (s) are given

as:
g (s) g (5)
G,(s)=| & . @)
&Em (S) Enm (S)
and
gu(9)
G (s)=| : (3)
8in(9)

where g, (s) are strictly proper, stable scalar

rational functions. To simplify the problem, the open-
loop TFM in Eq. (2) is rewritten as:

e 0 0
G,(s)=| 0 0 |G,(9)=e"G,o(s) (4
0 0 e™
where 0 is a diagonal matrix composing of each
6, (i=1,2,...,n) which is the shortest delay time in
each i-th row of G,(s). With the process transfer

function matrices given above, the 2-df control
system with three elements proposed is as shown in
Fig. 1.

2.1 Design of the inverse-based controller

In Fig. 2, the inverse-based controller consists of
three components: G (s), A(s), and Z(s) with
the definitions as follows:
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G.(s)= Diag{gc,l. (s), i=1, 2,...,m} ; (5)
A(s) = adj{G ,(s)} ; (6)

and
Z(s) = Diag{z,(s); i=1,2,...,m} (7)

The model of det{G,(s)} is divided into the
delay free term and delay term, and that is:

det{G,,(s)} = [det{Gpo(s)}]o et (8
where, 6" and [det{G ,,(s)}], are the dead time
and the other terms of the model of det{G,(s)}.

Furthermore, let us define:
0,(s) = Diag{[det{Gpo(s)}]O z(s); i= 1,2,...,n} )
D(s) = A(s)Z(s) (10)
Notice that z,(s) is a rational function to make
Z(s)A(s) is proper. By the definitions given above,
it is obvious to have the following result:

G,(5)As)Z(s) =¢ " 0, (5)

. (1)
=Diag{ef“)‘+9 M= l,...n} Diag{q,,(s);i =1,...,n}

Thus, the multivariable control system is thus
decoupled into m individual SISO parallel loops.
Noticed Z(s) is used to re-allocate the poles of

[det{G,,(s)}], and make all elements of D(s)
proper and physical realizable. By eliminating and

re-allocating the poles, the order of transfer functions
in G,(s)D(s) is reduced and the system can have

faster response. The closed-loop responses to the set-
point and to the load input, respectively, are then
given as:

Y(s)= {(1 +G, (s)D(s)GF(s))’l G, ()D(5)G.(5)O(s)¥ (5)

+(1+6, (s)D(S)GF(s))il G, (s)D(s)Q""(s)W(s)} Ris) (12)

=W (s)O(s)R(s)

and
-1

Y(5)=(1+G,(9)D($)G.(5)) G, (s)L(s) (13)
From Eq. (12) and Eq. (13), it is easy to find that
the responses of the system to the set-point and to the
disturbance are decoupled completely through design
of W(s) and G.(s). Since the system is decoupled,
multiple SISO controllers (g, (s), i=1---,m) can

be designed to control the m decoupled single loop
systems independently for disturbance rejection.

Design of G.(s). For each diagonal element of
G,(5)D(s) (ie. e""Vdet(G,(9},z(5) ), a SISO
controller (i.e. g,(s)) is design. It is thus desirable
to find an approximated model for det{G ,(s)} first.

In general, this transfer function can be described by
the form of the following:

n

ke'gw“‘H(T“s+l)

det{G,,(s)} ~ = (14)

)4

(as2 +bs +1)H(rg.,.s +1)

i=1

E| &

=5
ety

f"j%!r %F'IJ\%%LF;I A)fg



where n and p are the number of lag terms

and lead terms, respectively. k, 6, ¢

giv fris @

and b are the parameters of the approximated
model det{G,,(s)} . In general, n—p+2>0 and

has no RHP pole. To find det{G,(s)}, the following

optimization problem is formulated. That is:
o} 2
Arg{P} = min J;/ {Wu( Gpo(ja))|—¢(ja))|)
. . (15)
+W, ([I G, (jw) -0 ¢(ja))) }da)
where ¢(jw) is the model of det{G,(s)} and

p consists of parameters in ¢(jw). @, is the

frequency bandwidth concerned and, W, and W,

are the weight functions for the errors of magnitude
ratio and phase angle, respectively. The parameters of
the model can be obtained by minimum the objective
function in Eq. (15). The order of numerator of
z,(s) minus the order of denominator of z(s) is
defined as O(z,), which is chosen to make all
elements of A, (s)z,(s) proper. A, (s) means i-th

column of A(s).

Let:
e 0 0
Ois)=| 0 . 0 (16)
0 0 e

where d, =60, +0" . If the decoupling is perfect,

the closed-loop transfer functions between the
disturbance /(s) and the process variable Y(s)

can be rewritten as:
8u(s)

1+g,(s)q,(s)e

Having these ¢, (s) and g,(s), the g,(s)

yi(s)= R I(s), Vie [l,m] (17)

will be designed for rejecting the load disturbance.
For a step and scalar load disturbance, g,(s) is

determined by minimizing the integral of the
absolute value of the error, IAE. After we obtained
the optimal PID controllers, G.(s), the loop transfer

functions of main loops can be written as:
H(s)=G,(s)D(5)G,,(s) (18)

G.(s) 1is

approximated model of det{G}(s)}, it is necessary

Since designed based on the

to consider detuning the controller to ensure the
robustness of stability. A detune factor, 4,, is thus

given to detune the controller gain of g (s) to give
each loop has a proper gain margin. Thus, A, is
found by:
A ={4|GM (H,(s))=2} Vie[l,m]  (19)
Then, G,(s) can be obtained by the above
design steps.

2.2 Design of two-element controller for set-point
tracking

As mentioned, the inverse-based controller in the

main loop decouples the =~ Tomg praspar intg o
SISO processes, that is: - HP ﬁﬂ’"

G,()A(s)Z(s) =G ,(s)D(s) = 0y (s)O(s)  (20)
and

Y(s)=W(s)O(s)R(s) €2y

From Eq. (21), we can specify W(s) for set-
point performance, that is
diag{w,, i €[1,m]} . The desired set-point following

following

trajectory is closely related to decoupling results. In
order to be practically realizable w;(s)/q,,(s) must
be proper and stable. The ith closed-loop response
for set-point tracking can be expressed in terms of
the following closed-loop transfer function:

1
(a5 +1)" (rjzs°' +27,,¢s+ 1)

w,(s) = qy,(s) (22)

where 7, and ¢ are the time constant and
damping coefficient of our model. ¢, (s) is the non-
minimum phase zeros of ¢,,(s). Thus, there are no
RHP poles in w,(s)/q,(s) . Notice that, the
decoupler is synthesized as the product of A(s) and
Z(s) . As an adjoint matrix of G ,(s), each element

of A(s) consists of multiplication and summation

of fractional functions of s. Practically, when
dimension of G,(s) is higher than 2, it would be

easier to implement such elements with a simple
form of function like Eq. (14). Similar situation
happens to adj{GpO(s)} . In the other words,
elements of A(s) and det{G,(s)} need to be
approximated by Eq. (14). For this, modeling error
may be introduced. If A(s) are implemented with
approximations, perfect decoupling may not always
be possible. In that case, the G, (5)D(s) will not be

exactly diagonal, where, D(s)is the decoupler with

approximation. An analogous closed-loop TFM from
R(s) to Y(s) isthus defined as:

T(s)=G,(5)D(s)(Qy(s)) W (s) (23)
Based on T(s), a decoupling performance index

is defined:
7o)

or-ne{ i 1} voelom] @

where, @, is the

concerned and is taken as:
o, ={o|T,(jo) = 0.707} (25)

frequency bandwidth

D}, is the maximum magnitude ratio of the
diagonal element, 7)(s), to the off-diagonal element,
T i (s), for w< @, - For robustness, it is recommend
to assign each w,(s) tohave D} <eg, €[0.1,0.3].
In other words, w,(s) is selected to satisfy:

WI.(S)={W,»(S)|D;; <&, ‘v’je[l,m] and i;tj} 26)
Vie[l,m]
P S
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As above mentioned, the desired set-point
response must be selected to satisfy the decoupling
performance. Notice that the smaller value of ¢,
corresponds to the more stringent decoupling
performance, but the loop performance will be more
conservative. Similarly, modeling error exists due to
approximation for det{G,(s)} so that O, (s)O(s)

will not exactly equal to G, (s)D(s) . An index, Ey s

to measure the discrepancy between the desired
transfer function and the actual transfer function for
set-point tracking is defined as follows:

i) =T (j
=g o]

&, = max

[

where
q ~d;s .
T (5) = w(s)e™;

T (5) =[G, (D)W ()0, (5) ]
T (jo)| = 0.707}

(28)

2
1

o, = {a)|
The value of &, can be reduced by increasing

the order of the approximation model with the cost to
increase the complexity of the control system. When
the value of &, is large, the design of the system
must be more conservative (e.g. increase the gain
margin).

2.3 Overall controllers design procedure
Based on the theory given above, a systematic

design procedure is summarized in the following.
Give a stable mxm multivariable process G, (s)

and g, .
(1) Partition G,(s) into two parts, that is:
e 0 0
G,(s)=| 0 0 1G,(9) (29)
0 0 ™

(i) Get the approximated model of det{G ,,(s)} .

A(s) by adjiiG,(s)} . If the
process is more than 2x2 system, approximated
model of adj{G,,(s)} may be required for easy

(iii) Determine

implementation.

(iv) According to the order of 4, , determine O(z,) .

Notice that z(s) is used to cancel the sluggish
poles of det{G(s)} to accelerate the dynamic of
det{G,,(s)} . Then, We can obtain decoupler by
D(s)=A(s)Z(s) .

(v) Design the controller G, (s).

(vi) Choose W(s) by Eq. (22) to satisfy the
condition of Eq. (26) and determine W (s)(QO (s))_1 .

(vii) Calculate the error of Eq. (27). Determine the
desired gain margin and detune the controller gain of
G.(s) byEq. (19).
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3. ILLUSTRATIVE EXAMPLES

3.1 Example 1

Consider the Ogunnaike and Ray (1994) [8] 2x2
process. The transfer function matrices of this
process are given as follows:

22.89¢7"*  —11.64e "
Gp(s) _ 4.572s5+1 1.807s +1
4.689¢7"% 5.8¢7%
2.174s+1 1.801s +1 (30)
—4.24307%%
3.4455 +1
G, (s)=
’ ~0.601e "%
1.982s+1
First, partition G,(s) into two parts:
2289  —11.64e"*
4.572s+1 1.807s+1
GpO (S ) = y j)Zs
4.689 5.8¢™ 31
2.174s+1 1.801s+1 (1)
—0.2s
e—(iv — |:e 0 :|
O 67023‘
The approximated model of det{Gpo(s)} is:
187.34¢ "%
det{G (s)}~ 32
G (52} (422435 +1)(1.40265 +1) e

A(s) can be obtained from the adjoint of G, (s).
That is:

587  11.64¢"%
A(s) = 1.801s+1 1.807s+1 (33)
-4.689 22.89
2174s+1 4.572s+1

Each element of A(s) has one excess pole, thus
O(z,(s)) =0(z,(s))=1. Let

z,(8) =z,(s) = (1 40265 + 1) (34)
Then, the decoupler can be given as A(s)Z(s), that

18:

5.8(1.4026s +1)e*  11.64(1.40265+1)e™**

D= 1.801s +1 1.807s +1 (35)
~4.689(1.4026s+1)  22.89(1.4026s +1)
2.174s +1 4.572s5 +1
Hence, we have Q,(s) as:
187.34
—_— 0
(422435 +1) .
G(s)= 187.34 (36)
(422435 +1)

We select the desired closed-loop transfer function,
W(s).

0
W(s) = 0.1s+1 37)
1
0
0.1s+1
L = F] Fl
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Fig. 3. The comparison between the real set-point
response and desired set-point response.

Then, W (s)Q,'(s) and O(s) can be obtained as:

422435 +1 0
. 0.1s+1
w "(s) = 38
(5)2y'(s) 0 422435 +1 (38)
0.1s+1
and
e*OAS 0
@(s){ 0 } (39)

The comparison between the real set-point
response and desired set-point response is shown in
Fig. (3). Because the modeling errors for the
decoupler are small, a GM =2is assigned. By the
minimum [AE criterion, the optimal PID controllers

are:
. (s):0.046(l+ 1 )[ 0305 +1 ]
0.50s )\ 0.015s5+1 (40)
1 0.31s+1
=0.047| 1
2 () 7( +O,5]sj(0.0]5s+]j
At GM=2, the detune factors are found to be:
A =15 4, =152 (41)

The simulation results for unit step set-point
change and unit step disturbance input are given in
Fig. 4 and Fig. 5 respectively. The results compare
with the results of multi-loop controllers (Huang,
2003). In Fig. 4 and Fig. 5, we can find that the
performances for set-point tracking and load
rejection of our design are superior to the
performances of multi-loop controllers. In addition,
the interaction exists between the control loops in
multi-loop control system. However, the proposed 2-
df multivariable control structure results in
satisfactory responses without loop interactions.

3.2 Example 2

The Tyreus (1982) [9] 3x3 process as follows is
considered.

G,(s)=
1.986e %7 —524¢%%  _50984¢ 7
66.7s +1 4005 +1 14.29s +1
—0.0204¢ % 0.33¢7% 23807 | (42)
(7.14s+1)"  (2.38s5+1)° (1435 +1)
~0.374¢77 11377 9.811e”
L 22.22s+1 (21,745.,.1)2 11.36s+1 |
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Fig. 4. Set-point tracking responses for OR (2x2)
process.
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Fig. 5. Load rejecting responses for OR (2x2) process.

Assume the dynamic of disturbance is equal to the
first column of G, (s) , and that is:

1.986¢ 7"
66.75+1
~0.0204¢ "%
(7.145+1)’

~0.374¢77

22.225+1 |
First, we find the approximated models of
det{G,,(s)} and adj{G,(s)}. By following the

design procedure, we can obtain A(s) and Z(s),

G, (s)= (43)

and calculate D(s). Than, the desired decoupling
performances are defined as
e, =01 ¢,=02 ¢,=0.16 (44)

To satisfy the Eq. (26), we select the desired set-
point response as:

1

w (8) = ;

() 55+1

1

w,(s) = R 45

2(5) 8757 +2x8x%0.7s +1 (43)
w,(s) = ;

5 (5) 7s+1

Then, design the optimal PID controllers for load
rejection.

1 )(0.76s+1
(5)=0.60[ 1+ O.70s+1
ga(s) ( 1.143)(0.04s+1j

g.(s) = 24.15(1 +L)(Mj 46)

87.35 )\ 0.08s +1

1 1.47s+1

L(5)=0.32 1+ Py

8e5(s) ( 2_275j(o,o7s+1j
ik L L
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Fig. 6. Set-point tracking responses for Tyreus (3x3)
process.
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Fig. 7. Load rejecting responses for Tyreus (3x3)
process.

At GM=3, use Eq. (19) to determine the detune
factors:
A4 =69 4, =54, 4 =45 47)
Simulation results for unit step change in set-point
are given in Fig. 6. The results show that
performances are compatible to the other reported
design or even better. And the responses for load
rejection are shown in Fig. 7. It is found that the
conventional multivariable control system caused the
sluggish responses for load rejection. In the proposed
control system, it can get good performances for both
servo tracking and load rejection. And the acceptable
decoupling results are still maintained.

4. CONCLUSIONS

In this paper, a 2-df multivariable control structure
has been proposed. It is easy applied to deal with
both problems in servo tracking and load rejection.
The method of decoupling loop interactions is based
on fundamental linear algebra. For load rejection, the
multivariable controllers is designed to eliminate the
disturbance input with enough system robustness and
the non-minimum phase poles are avoided directly in

these controllers to guarantee the physical realization.

AT P
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defined under the desired performance of loop
decoupling, and it is easy applied in the proposed
control structure. Furthermore, the response of set-
point tracking is similar with the results of predictive
control system. Not only two objectives can be
achieved simultaneously while maintaining the
minimum loop interactions and desired system
robustness, but also the design of them are separable.
Examples have illustrated that our approach can be
achieved these objectives simultaneously.
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