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Abstract

This paper is concerned with the problem of robust stabilization for uncertain time delay systems subject
to saturating actuator. Under certain conditions, a dynamic compensator, which uses only the accessible
output variables, is synthesized. In contrast to the previous works, the global stabilization can also be
achieved even with an unstable system matrix. Last, an example is included to illustrate the results

developed in this paper.

1. Introduction

Since time delay is frequently a source of
instability and commonly exists in various
engineering, biological and economical systems
due to the finite speed of information processing,
the problem of stabilization of time delay systems
has received considerable attention over the past
years and has been addressed in numerous studies.
Numerous approaches, such as the pole placement
approach via spectral decomposition [3] [10], the
Riccati equation approach [7] [11] [14] and the
finite spectrum assignment [6] [13], have been
devoted to deal with this stabilization problem. In
all the studies referenced above, all the state
variables are assumed to be available for exact
measurement and the dynamic range of actuators
to be unlimited. Unfortunately, in practical control
systems, the state variables are not always
available for direct measurement and the practical
actuators may saturate and this may lead to serious
degradation of system performance and possibly to
instability [9].

Recently, the stabilization of time delay
systems with saturating actuators was investigated

in Chou et. al. [2] and Oucheriah [8]. In Chou et.
al. [2], a linear dynamic output feedback
compensator is designed. However, no conditions
to guarantee the existence of such compensator are
given. In Oucheriah [8], the global stabilization of
observer-based linear constrained uncertain time
delay systems is considered. But the author uses a
full order observer to estimate the state of the
system and assumes the systems matrix A is stable.
For the case of unstable matrix 4 , only local
stabilization can be achieved by linear feedback
control.

In this paper, global stabilization of time
delay systems subject to saturating actuator is
considered. In contrast to Oucheriah [8], the global
stabilization can also be achieved even with an
unstable matrix 4. Under certain conditions, a
dynamic compensator, which uses only the output
variables, is  synthesized. @ The dynamic
compensator is presented by employing the
Razumikhin-type theorem [5] and the concept of
quadratic stability. Finally, an example is given to
illustrate the results developed in this paper.

For simplicity, in the following section, j r denotes
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the transpose of W, and | represents the

Euclidean norm when W is a vector or the induced
norm when ¥ is a matrix. / is the identity matrix

of nxmn. 2r) denotes an eigenvalue of /¥ and
A, (W) Tepresents the eigenvalue of ' with the

maximum real part.

2. System description

Consider the constraint uncertain time-delay
systems described by the following linear
differential-difference equations:

%(t) = Ax(t) + A, x(t —7) + Ay (x(2),1) (1.a)
+A,(x(t —7),1) + Bsat(u(t))

W(0) = Cx(1) (1.0)
x() =y (@), te[-7,0] (1.0

where x(t) eR” is the state, u(z) e R" is the
control input and y(¢) € R" is the output of the
system. 7€ R" is the delay, and w(¢) is a

continuous vector-valued initial function. 4 , 4, ,

B and C are constant matrices of appropriate
dimensions. The uncertainties A, and A, are

unknown and represent the nonlinear parameter
perturbations with respect to the current state x()

and delayed state x(¢ — 7), respectively. In general
it is assumed  that A (x(¢),/) and

A (x(t — 7),t)are bounded, i.e.

(WO EVANG 2.2)
A (¢ =)0 < B x(e - )| 2b)

where B and B > 0 are given. The saturation

function sat (u (1)) is defined as follows

Uy if u(¢) > ul
sat(u, (1)) = u,(t) if —u) <u(t)<ul,
-u, if () < —uj

i=1.2,...,m 3)

sat(u(t)) = [sat(u().....sat(u, ()] and
uy,, u, € R*(i=1,...,m) are actuator limitations.
Since
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]sat(u, 0 -Lu (r))\ < %|u,. )| )
, one has
1 1
Hsat(u(t) - Eu(t))H < EHu(t)u : (5)

This property will be useful later.
For the sake of simplicity, we suppose

{A,B} is controllable and {C,A} is observable.

Assume that the state of system (1) cannot be
measured directly. Now we focus our attention on
the following linear dynamic output feedback
compensator.

xg (1) = Agxy (1) + Byy(1) (6.2)
u(t) = Sx; (1) + Ty(t) (6.b)
x4(0) = x40 ) (6.0)
where x,(1) € R" , n is

min(v, — Lv, —1), v.(v,) is the controllability
(observability) index of the system (1), and
A,;,B,,S,T have appropriate dimensions. Then

the problem becomes how to choose the control
parameter matrices of (6), 4,,B,,S,T, such that

the closed loop dynamic with saturation control
can be globally stabilized.

3 Main results

By substituting (6) into the system (1), we obtain
the closed-loop equations as

X(1) = AX (1) + AT (1 — 1)+ A (R (), 1)

| (7.a)
+ ARt —1),0) - E[Eﬁ(t) —sat(#(1))]

(1) = Cx(1) (7.b)
%(0) =%, =[x"(0) x;(0)] (7.)
where

PO aedere Las
X(t)= > d = 2 2 )
X4 (1) B,C 4,
40
=
0 0
_|B u(t)
B=| | @@= g
0 0
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- A,(x(0),1)
4umﬁ={ . }

A(x(t —17),t)
0

AR -1),0)=

Since [[x(¢)]| <[[v (1)] - it is obvious that

4,G@w.0

[AG -0

’s Bx @) (8.2)
< plEa-o) (8.b)

Remark 1: From the results of Brasch and
Pearson [1], it is seen that if (4,B,C) is
controllable and observable, a compensator is
sufficient to achieve arbitrary pole placement for
4 in the system consisting of the plant and the
dynamic compensator in cascade. It also shows
that a compensator of order

n= min(v_—1,v_—1) is sufficient to achieve this

result.

For the constrained uncertain time delay
system (7), sufficient conditions for robust
stability are described via the Razumikhin-type
theorem in the following theorem.

Theorem 1. Suppose the control
parameters , 4,,B,,S,T, are selected such that

(1) 4+ 4, is a stable matrix.

(i) The Hamiltonian matrix

- ,
(A+4) DD

H= S ©)
A —(A+4)

has no eigenvalues on the imaginary axis for
some y>0 , where ©=n+n and

D=ZI[Z ZI ﬂ"[ﬁ ﬂl I %"[TC S]HE]GRﬁxumm)

(i) 5 > 2Pl + po) +|PB|ITC  SY+57°5°-
(10)
Where P is the solution of
(A+ 4) P+ P(A+ 4, )+ PDD"P+yl. =0 (11)
and

5= /M (12)
ﬂ"min(P)

then the closed -loop system (7) is globally
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asymptotic stable.
To prove the theorem, we need the following
lemma and observation.
Lemma [4]: For ¥ € R", define the 277 x 27
Hamiltonian matrix as

(4+4) DD’
H= ! , (13)
-~
—A. —(A+4)

Assume that (i) 4+ 4, is a stable matrix, and (ii)

H has no eigenvalues on the imaginary axis. Then
the algebraic Riccati equation (ARE) of (11) has a
positive definite solution P.

Observation 1: Consider the positive definite
function

VE@) =% ()PF(), ¥()eR',teR

where P is the solution of ARE(11). Assume

VEE+0) < g VD), g>1, 0e[-7,0], (14.a)
then
V(X(+20)<qV (Xt +0)<q' V(X)) . (14.b)
g>1,0¢e[-7,0]

Equation (14) implies

[7 (¢ +0)] < g8l (1) (15.a)

and
[kt +20)| < sz @) ¢ > 1, @ €[~7, 0].,(15.b)

where O is as shown in (12).

,qg>1,0¢e[-7, 0],

Proof: of Theorem 1: First, the closed-loop
system (7) with saturation actuators can be
expressed as

F(O)=(A+ A)F() -4, [ F(AMA+R,(F(0)0)

+A(R(=1),0) - E[]Eﬁ(t) — sat(ii (1))]
=(A+4)3(t)- 4, _[;[Zx(/l) + AF(A-1)
+A,(F(A), ) + A (R(A—1),2) — E[%a(ﬂ) (16)
—sat(@ANdA + A, (F(0),0)+ A, (F(t - 7),1)

_ E[% (1) - sat (i (1))]
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Suppose A4 ,»B,.S. T are selected such that

(A+A4) is a stable matrix and H has no

eigenvalues on the imaginary axis, then ARE(11)
has a positive definite solution P by the above
lemma. Let the quadratic Lyapunov function be
constructed as

T R P R &

@1
25" OP|B O]+ BlEC -]

+[%" @rB|ire - siFo|
2 |PIEOL 28| PIRONEC -] (g0

S~ 2
VE®))=5"()PX(t), Xt)eR,teR" (17) Hlre S]mPBH”x(t)"
According to the concept of quadratic stability,
one knows that if the Lyapunov derivative
V(X(t))is small than zero, then the system (16) is
asymptotically stable.
Then the derivative of the quadratic Lyapunov
function (17) along the trajectory of system (16) is

Substituting (19)- (22) into (18) yields

VEW) <X (O[(A+ A) P+ P(A+ 4)+ PDD" P13 (1)
“2p Pl ire siPBliF@] 2 AR OllF -
" 2 s 2
+2r j L E) dasr j rl az
VE@O) =X OIA+4)" P+ P(A+ A)F(0) (23)
o~ e~ ~_ -~ where D is defined in theorem.
—2x ()P4, .L[Ax(ﬂ )+ AX(A-7)+ 8 (X(A).4) Applying the Razumikhin-type theorem with

assumptions of (14)-(15), and substituting them
into (23), we can obtain the following bound on

V(x(1))

VE@) < —wFO)| (24)
where
w=r=2ls + po)+|PEjirc s)+sesr @9

+A(F(A-1).4)— E[% i(A) - sat(ii (A))]dA

+ 2% () P[A,(R().0) + A, (R (t —7).1) - E[%ﬁ(z) — sat@O)N

<F (O[(A+A) P+ P(A+ A4)F(1)
w2 (& @PAA x|+ [ ()P4 AR~

+ ﬂonfr(l)l)zl ||||?7(ﬂb)||+ﬁ1”7€T(f)/’zl”")?(/1 -7)| If condition (iii) of the present theorem is satisfied,
then a sufficiently small g>1 exists such that w>0.
Thus according to the Razumikhin type theorem,
system (16) is asymptotically stable. This implies
that system (1) and (7) are all also asymptotically

(18) stable. W

+ %”E’ (z)PZ,1§||||[TC SilECONdA+ 25" @) Pl JE )
+ Bk - oI+ @PB|irC S|
where (2) and (5) have introduced.

Using the inequality, 2ab < ¢ 'a” +¢b° for any a,
b€ R and g > 0, one obtains

Remark 2: In the above analysis, the constraint
saturation which is considered inside the sector [0,
1] will bring about conservative results (Su et al.,
[12]). If the saturation nonlinearity, in actual
system, is inside a finite part, inside the sector [a,
< j{ir{%[f"'(t)PZ,AA"A,"?(t)]+zv?"'(ﬂ,)f(l)}dl L e D] 1

AL TmaX] o ,

u].H (or u,[’) a

2 & 0ypPa, Al

where

—5! (Z)PZIZZTZ,TY(Z)+TJ‘1 7! (D)F(A)dA 0<ac<l,and |ui(z)max‘ is the maximum absolute
1T
(19) value of each u () for all ., the results can be

much improved. From Fig. 2, it is obvious

2[ | @PA A - o)
’ |sat(ui(t))—%(l+a)u'(t)‘ < |%(l—a)u'(t)| (26)

<F (OPAAA AR+ 37’ (DF(A)dA

-2
(20)
VE@) <E (O[(A+ A) P+ P(A+ A)+ PDD' PIx(t)

+R2|P|+lre S|Pl + 24| PlFOlF -2

4
+ 22'_[
t-27

Thus we can recast (5) as follows
Hsat(u(t)) ~La+ a)u(t)” < Hg (- a)u(z)H @27)

We also recast the closed-loop equations (7) as

- 2 [ 2
F(A) da+ [ [FA) dA
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X(t) = AF () + AT (- 1)+ A (F(0), 1) (28)
+A Rt -1)t)— E[@ (1) = sat (i (1))
where
(1+a) (1+a)
7= A+=—=BTC ~—="BS (29)
B,C 4,

and we have the following improved corollary

Corollary 1:  Suppose the saturation
nonlinearity is inside a finite part, as shown in
Fig. 2, and the control parameters , 4,,B,.5,T,

are selected such that
(1) A+ A is astable matrix.

(i) The Hamiltonian matrix

(4 +4) pD"

(30)
A (A, +4)

has no eigenvalues on the imaginary axis for
some y>0 , where nm=n+n and

D= ZI[‘ZH Zl Bolz Bz %”[TC S”E] e R™(T

(iii) , . 2P|B, + pS) +1 -a)”P§||||[TC )| +57%6°

. 3D
Where P is the solution of

(A, +4) P+ P(A +A4)+PDD' P+yl_=0 (32)

then the closed -loop system (1) is globally
asymptotic stable.

The proof of Corollary 1 is similar to the one in
Theorem 1. Thus is omitted here

4. An Example

Consider the following linear constrained time
delay system

@ =3 0 x@
L0 10 02]x0

02 0.1|x,@-7) 0 e
ot 2| w—n)|T]1 [HEO

+ A (X)) + A (x(1 — 7),0)

IR AP &

0
yn=[o 04] o
2

Where 7 = 0.1 and perturbations AO and AI are
assumed to be bounded by B, =01 and B =02

respectively. It is found that the system matrix 4 is
unstable. Since v, =v,=2, according to Brash

and Pearson (1970), it is sufficient to achieve

arbitrary pole placement for 4 by only using a
first-order compensators. Thus, let the first-order
compensator as

5, (1) = 3%, (1) - y(0)
u(t) = 05x, (1)~ 39(1)

such that A is stable and

28 01 0
A+ 4 =| 01 -24 025
0 -04 -3

is also stable. Then the ARE of (11) with » = 0.25
has a positive definite solution P as

0.0449 0.0025 0.0001
P =[00025 00717 00003 |>and

0.0001 0.0003 0.0417

y=2Pl(B,+ )+ |PBJIiTC  SY|+57°6> =0.0184>0

Therefore, the stability conditions in the Theorem
1 are satisfied and the stability of the closed loop
system with saturating actuator can be guaranteed.

5. Conclusion

In this paper, a dynamic compensator to stabilize a
class of uncertain constrained time delay systems
is developed. In contrast to the previous work, the
system matrix 4 can be unstable. For the case of
unstable system matrix 4, the globally stabilization
can also be achieve by our results.
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