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Abstract

In this paper, a novel sliding mode control (SMC) scheme is developed for continuous stirred
tank reactors (CSTRs) in the presence of simultaneously the non-minimum phase behavior and
process uncertainties. For circumventing the negative effect of the inverse response, in the control
scheme a statically equivalent output map (SEOM) is incorporated. Based on utilizing a
zero-placement method, an effective algorithm for synthesizing the SEOM is presented. Through the
help of the SEOM, a gain adaptive sliding mode controller is constructed to provide stable and
robust closed-loop performance. In addition, the potential use of a sliding observer along with the
proposed scheme is investigated in this work. Extensive simulation results reveal that the proposed
design methodology is applicable and promising for the regulation control of CSTRs in the presence
of non-minimum phase and process uncertainties.

1. Introduction

In chemical industry, continuous stirred tank reactor
(CSTR), which is commonly used to convert reactants into
products, is the central part of the whole process. For the
purpose of achieving high conversion and economic
benefits, CSTRs are usually operated around some certain
equilibrium points which correspond to an optimal yield or
an optimal productivity of the process [1]. A typical model
for an exothermic reaction in a CSTR would incorporate
Arrhenius reaction rates in a multi-dimensional set of
coupled nonlinear ordinary differential equations.
However, owing to the complexities of the consecutive
and side reactions inside, the CSTR may exhibit a variety
of exotic behavior as a function of the parameters of the
system. These strongly pronounced nonlinearity and
variety of the process dynamics such as inverse response
and parameter uncertainties can make the control of
CSTRs a challenging problem for process control
engineers.

In the recent years, there has been a growing interest in
the development of diversified control systems for the
operation of CSTRs and significant developments have
been made in the field of nonlinear process control [2-7].
Generally, one of the most difficult control problems arose
from the operation of the CSTR would be the treatment of
the inverse response behavior [8]. An inverse response
means that the initial response of the process is in a
direction opposite to its final response during a dynamic
testing. For CSTRs, it can be caused by competing effects
of two reaction dynamics. A process having inverse
response behavior is often called the non-minimum phase
process in the literature. As for nonlinear, non-minimum
phase processes like many CSTRs, there has been
attracted considerable attention during the past decade

[8-14].

Despite the significant progress and remarkable
interest in nonlinear, non-minimum phase processes, the
control of CSTRs with the existence of simultaneously the
nonlinearities, uncertainties and inverse response behavior
has been rarely addressed [15-17]. This is because that the
mathematical model for CSTRs could be inaccurate owing
to that in the reaction systems there will unavoidably face
with unmodeled side reaction dynamics, unknown internal
or external noises and environmental influences, etc. The
presence of these uncertainties could lead to the
discrepancy between the true process and the formulated
mathematical model used for controller design. Especially,
the presence of model uncertainties can induce additional
difficulty in obtaining an inverse of the process and can
thus make many existing schemes fail to control the
nonlinear uncertain CSTRs. Some exceptional successes
in the design of a robust control system for a certain class
of nonlinear, uncertain, non-minimum phase processes are
reviewed as follows. Based on the approximate
input/output  linearization and a special state
transformation, Jo et al. [15] investigated the problem of
robust stabilization for a class of nonlinear systems with
non-minimum  phase behavior and mismatched
uncertainties. Utilizing the framework of Hauser et al. [10],
Wu [16] introduced an approximate state output feedback
control scheme for asymptotic output regulation of an
uncertain non-minimum phase system. Using the method
of system center, Shkolnikov and Shtessel [17] employed
some linear algebraic methods and sliding mode control
approach to develop a method for asymptotic output
tracking control of a class of causal non-minimum phase
uncertain nonlinear processes.

In this paper, we consider the design of a sliding mode
control (SMC) scheme for the nonlinear regulation of
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CSTRs whose dynamics present simultaneously the
non-minimum phase behavior and process uncertainties.
Based on the concept of statically equivalent minimum
phase output, an auxiliary output along with a new design
algorithm is proposed such that the zero offset
performance and minimum phase behavior can be ensured
under process variations and uncertainties. By means of
the designed auxiliary output and the input-output
feedback linearization, a sliding mode controller which is
able to curb the effect of uncertainties and can thus
provide robust control performance is proposed.
Additionally, the potential use of a sliding observer along
with the proposed scheme for practical implementation is
also explored in this paper.

2. A sliding mode control scheme for nonlinear,
uncertain, non-minimum phase CSTRs

2.1 Control system configuration and system description

Consider an open-loop stable single-input/single-
output nonlinear uncertain CSTR described by

X = (F(x) + Af(x)) + (g(x) + Ag(x)) u (1a)
y=h(x) (1b)

where x is the #-dimensional state vector, and y and
u are, respectively, the output and manipulated input of
the process. f(-), g(), Af() and Ag() are smooth

vector fields on an open set U € R" and A(-) a smooth

function on U . Without loss of generality, we assume
that the origin x=0 is a uniformly asymptotically stable
equilibrium point of the unforced nominal system and
h(x) vanishes at that equilibrium point. In other words,

f(0)=0 and A(0)=0. This means that y represents

the tracking error. It should be noted that a given model
could be easily rewritten in this form by defining
appropriate deviation variables.

The system under consideration is assumed to be a
non-minimum phase one, i.e., it has unstable zero
dynamics in the sense defined in Byrnes and Isidori [18].
To control this kind of processes, in this paper we propose
a sliding mode control system configuration as shown in
Fig. 1. For clear presentation, we describe the design of
the whole control scheme through individual parts.

2.2 Design of a statically equivalent output map (SEOM)

To compensate the undesirable inverse response, in the
proposed scheme the auxiliary output A (x) should be
statically equivalent to the original output A(x), i.e
h (x) should have the same static gain as the actual
process output /(x) and make a u—y, system in the

minimum phase despite of the influence of process
uncertainties. Before embarking on the design of a

statically equivalent output map (SEOM), 4 (x), for
nonlinear uncertain processes, we first review a

zero-assignment method.
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2.2.1 An auxiliary output design method using zero
assignment technique

Consider the following nonlinear non-minimum phase
system

x=f(x)+g(x)u (2a)

y = h(x) (2b)
An auxiliary process which is statically equivalent to the
nonlinear system of Eq. (2) can be given by

x=f(x)+g(x)u (3a)
=h (x) (3b)

u/ eq

where £ () is an auxiliary output to make the system

eq

locally minimum phase. A formulation for 4, (-) using

eq

the original system dynamics can be given by [13]:

-1

he,,(x)=h(x)+Zﬂ,.(x)cD,(x) “4)
where
f,(x) g,(x)
(0] =d j=12,...,n—-1 5
/) tL‘,,(x) g,,(x)} " ©)

are functions vanishing on the equilibrium curve and
A,(x),j=12,...,n—1, are functions being chosen such

that 4, (x) is statically equivalent to A(x). Because the

selection of A (x) are arbitrary, for simplicity we

consider in this paper the subclass of Eq. (4) with constant
weights 4, i.e

-1

h, () =h(x)+ > 2@ (x) (6)

The adjustable weights A, can be obtained by the

assignment of zeros. Let (x,,u,) be a reference

then we can define the zeros
and @ (x) ,

dg(x, )ﬂ gx)

equilibrium point,
polynomials corresponding to  A(X)

Jj=12,...,n—1, respectively, as

P(s) = ;)Ad[ [af(xs)

ax ox O]
=p,+ps++p, s
and
0,(s )——i )Ad[ (af;i") +u, aga(;")ﬂg(xx)
=q,s+-+q,,.s", j=12,...,n-1
(®)

Furthermore, let z ,j=1,2,...,n—1, be the desirable zeros

for A (x) at the reference equilibrium point. The given

eq

values of z, and the requirement of static equivalence
with  A(x)
polynomial for 4, (x) as[13]:

eq

completely specifies the desirable zero

-1
Pd(S)poH(l_Ziszo +plstt plis” ©)

J=1 Jj

The necessary values of the adjustable weights 4, which
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will make the zeros polynomial of /4 (x) equal to

eq

P“(s), can be obtained by solving the following equations
n-1

P(s)+ Zﬂ/Qf (s)=P'(s) (10)

or explicitly from the following system of linear equations
6711 (7;1 /11 p ld - D

~

qn—],]
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~ d
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It should be noted that the solution of the above linear
equations will admit a unique solution as long as

[8f(x_‘,) fu og(x,)

A

n-1

Oox boox

ie., the columns [¢,,9,,,....q,,,]" is linear independent.

} and g(x,) from a controllable pair,

Also, the presented technique for the design of a statically
equivalent minimum phase output is based on a perfect
nominal model of the process. If the process model is
perfect, the designed auxiliary output, 4, (x), is statically

equivalent to the actual process output, A(x), and thus
makes u—y, system minimum phase. However, as the

process model is not so perfect or the process is subject to
model uncertainties, the minimum phase behavior would
not be ensured perfectly. In other words, if the controller is
designed on the base of the auxiliary output, the
closed-loop system may hardly guarantee zero offset
performance when facing with process uncertainties. To
overcome the drawbacks, in the next subsection we will
propose a new algorithm and a modified synthetic output
for uncertain non-minimum phase process having
uncertainties.

2.2.2 Synthesis of a statically equivalent output map
(SEOM) for use under process uncertainties

The purpose of this subsection is two folds. The first
one is to ensure the minimum phase behavior under the
influence of process uncertainties and the other one is to
guarantee the statically equivalent output property of y, .
To meet the first goal, a new algorithm for redesign of 4,

is proposed. The idea is based on shifting the desired zeros
to make the constructed minimum output invariant despite
the influence of the process uncertainties. The design
procedure is summarized as follows:

Initialization: Choose the desired zeros, z'; e LHP , at

the reflections of the RHP zeros with respect to the
imaginary axis. Also, set Az, >0 for pole shifting.

Let i=1 and z|=2z.

Step 1: Set P’(s) based on the zeros z, . Calculate
A
h,,(x) according to Eq. (6).

=1,2,...,n—1, from Eq. (11) and then construct

Step 2: Check whether £, (x) is minimum phase or not

under process uncertainties by Monte Carlo
simulations. If yes, stop. Otherwise, go next step.
Step 3: Shifting the desired zeros by z|" =z| —Az,, then
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set i=i+1 and go back to step 1.

Once the present design procedure has converged, one
can construct a minimum phase output map for the
original uncertain process. However, the obtained output
map, though is minimum phase, may not assure that the
output is statically equivalent to the actual output under
process uncertainties. To gain the statically equivalent
property for the second goal, we suggest the following
auxiliary output for control:

Y =hX)=y+(, -ye” (12)
where y, =h, (x), y=h(x) and A >0 is the tuning
constant. The role of A in this auxiliary output map is to

make a smooth transition from the minimum phase one to
actual process output. Actually, the selection of A

depends on the process dynamic characteristics. From Eq.
(12), it is clear that, for small ¢, y, is approximately
equal to the minimum phase output map, y, . While for a
larger ¢, y, is approaching to the actual process output.
That is, y, appears to be a statically equivalent output

map (SEOM) to the actual process output, which ensures
no steady state offset and minimum phase behavior despite
of the influence of process uncertainties.

2.3 Design of a sliding mode controller

Based on the synthesized auxiliary output y , the
nonlinear uncertain model used for controller design is

given by
X = (F(X) + Af(x)) + (g(X) + Ag(x)) u (13a)
y, =h(x) (13b)

It should be noted here that the present system is minimum
phase under uncertainties and the auxiliary output y, is

statically equivalent to the actual process output y . Let
the Lie derivative of a smooth function A4 (x) along a
vector field g(x) be defined as:

Oh, (X) 5 Oh (X)
é—:g(x)=;7fgl(x) (14)

In terms of Lie derivative, the relative degree of the
system (13) is defined as

p= min{m (L Lh (x) # O}

Lh (x)=

(15)
h(x)#0}  and

w=min{m:LAgL;f”'hs(x)¢O} be the relative degrees of

_ : . m=1
K= mm{m (L Ly

Similarly, let

the uncertainties Af and Ag, respectively. Also, in the

paper, we assume the uncertainties satisfy the generalized
matching condition, i.e., w> p=x . Under the above-

mentioned assumptions, there exists coordinate

transformation of
] =T
= [ 0Lk ), 2, (07, (0o, 0]
(16)
By applying on this coordinate transformation, we can

transfer the nonlinear uncertain system of Eq. (13) to its
normal form as
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§=6u i=12,0p-1 (17a)
&, =[bEn) +AbE )] +[a(€n) + Aa(G )] u (17b)
n=q@En)+oeEmn) (17¢)
v, =¢ (17d)

where a(&,m), Aalmn), bEmM),
and ¢ (&,m) are given, respectively, by

AbE,) , qEm)

a@m) =L, "h o T (Em) (18)
Aa@m)=L,L7"h o T ' (En) (19)
bEm) =Lih o T (Em) (20)
Ab@Em) =L, L7h oT (&) (21)
q; (g’n) = Lo'Tp+f(x)’ i= 192"">n_P (22)
$.(Em) = L\1T,>+i(x)+ L\ngﬂ(x) u ,i=L2..,n-p (23)

and

x=T"(&n) (24)

The nonlinear state feedback control law that provides
input-output linearization of the nominal system can be
expressed as
L _v=b&m) &
a@€,m)

where v is the new controller to be designed for various
purpose of control. In this paper, we propose the use of the
sliding mode controller of Chen and Dai [19]. The sliding
mode controller design procedure is stated as follows. First,
define a sliding surface S(f) as

5=c"g=zc,<§,, c =L (26)

where the coefficients ¢, are chosen such that the

polynomial ['(1)=A""+c, A" +---+c,A+c, has all
roots in the open left-half complex plane. Based on the
sliding surface being selected, the next step is to
synthesize the control law for achieving some certain

robust stability and system performance. In this paper, we
adopt a gain adaptive sliding mode control law v as[19]

v =—k& —sat(8/ B)b,s, ([ +|5] 27)
where

fo= sup [AbGEm)—Aa(gm 2E (28)

(&meT() a(&,m)
Aa(&,m)

h =1- —— > 29
e <é,rS|ERU> a€,m) @
(S8 3/, if |5/p<1 3
sat(d/ ) = sign(6/8), if |6/p|>1 30)

and the gain k is adaptively tuned by k =78> (7 >0).
Also, in the control law, S is the user-specified boundary
layer thickness used to eliminate the input chattering.

By using the sliding mode control law of Eq. (27), the
closed-loop system can be represented by

E=AL+B [v+b](f, +¢'8)] (31a)
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n=q&n+eEn (31b)
where
[0 0 0 0 0]
0 0 1 0 0 0
A=l 0 0 o .. 1 0|®?
0O 0 0 0 .. 0
|—¢ —¢ —¢ —¢ ¢, —1]
B, =[0 0 b1 (33)
1= £ = Ab(E ) - Aa(g,m 21 (34)
a(&mn)
and
Aa(&,m)
b =bEq=1+—2V 35
,=b(Em) +a(&,n) (35)

Following the similar analysis procedure as stated in
Chen and Dai [19], the closed-loop control system is
robustly stabilized and possesses the robust properties of
uniform ultimate boundedness and uniform stability.
Essentially, the sliding mode control law in Eq. (27)
consists chiefly of the four parameters: ¢, 7, k(0) and

p . The coefficient vector, ¢, can be viewed as the
weighting factor for the state vector &. The parameter »
is a positive constant related to the tuning rate of the
adaptive gain. In the light of the tuning rule k= 75, a
non-negative initial setting of k£, k(0), is sufficient to

guarantee the negative feedback. Notice again that the
parameter [ is introduced to eliminate the input

chattering.

3. Regulation control of a nonisothermal Van de
Vusse reactor in the presence of non-minimum
phase behavior and process uncertainties

Consider a Van de Vusse reactor in which the
following series/parallel reactions [20, 21] are taking
place:

A—*4>B—%55C (36a)

24—%>D (36b)
where A is the reactant, B the desired product, and C
and D are unwanted by-products. An industrial example
is the production of cyclopentenol ( B ) from
cyclopentadiene ( 4 ) by acid-catalyzed -electrophilic
addition of water in dilute solution, where
cyclopentanediol ( C ) and dicyclopentadiene ( D ) are
produced as side products [22]. The reaction rates of A
and B are assumed to be

ry= _kl (T)CA _k3 (T)Cj (37a)

= kl (T)CA _kz(T)Cn (37b)
where the rate coefficients &, (I') are given by Arrhenius
expressions:

k(T) =k, exp(—E,/RT) (38)
In the rate equations, C, and C, represent, respectively,
the concentrations of the species 4 and B inside the
reactor. The volume of the CSTR, V', is assumed to be

E| &
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constant during operation. The feed stream consisting of
pure A is fed to the CSTR at an inlet flow rate of F'.
Besides, the concentration of 4 in the feed stream is

C,=5gmol-L""  and the feed temperature is
T, =403.15 K. By means of the material balances for

species A and B and the energy balance for the reactor,
the dynamics of this CSTR can be modeled as follows:

L (1)C, -k (T)C (€= C (392)
dC

Ttﬁ = kl (T)CA _kz (T)C/; _Cnum (39b)
dT 1

a@_ “AH )k (T)C, +(~AH, )k, (T)C,

T AT, AT,

+(=AH )k (T)C} +Q,1+(T, = Tu
where T is the reactor temperature, u, = F/V denotes

m

the dilution rate, AH, is the reaction heats, p, and C,

are the density and specific heat of the reaction mixture,
respectively, and —Q, the cooling rate per unit volume.

The wvalues for the model parameter constants and
operation conditions are listed in Table 1. The control
objective is to maintain the process output C, as close as

possible to the set point (steady-state value) by adjusting
the dilution rate, u, = F/V .

From an open-loop test as shown in Fig. 2, it can be
easily observed that the equilibrium curve of this
nonisothermal Van de Vusse reactor consists of two
branches: a high temperature-high production rate branch,
and a low temperature-low production rate branch.
Considering the fact that there are always limits on the
flow rate and the operating temperature, the high
temperature-high production rate branch seems to be more
desirable and economical for the operation of the reactor.
Thus, in this paper the CSTR operation along the high
temperature-high  production rate branch of the
equilibrium curve is considered. Let the reference

steady-state be chosen as C,,=125molL’, C,,=0.90mo} L

Bd

and 7, =40715K, we have the steady state dilution rate of

u, =19.5218hr" this the

linearization model of this process is given by the
following transfer function as

—-0.95* +100.36365 +1233.0296

s* +162.8s” +7592s +115300
This shows that the process exhibits locally asymptotically
stable and locally non-minimum phase owing to no RHP
pole (-96.518 and -33.141+9.8118) and the presence of

a RHP zero (-11.1673 and +122.6824). Since this Van de
Vusse reactor presents non-minimum phase behavior
around the reference steady-state, the conventional
feedback linearization cannot be directly applied to this
nonlinear process.

To apply the proposed scheme to this Van de Vusse
reactor, we first define the deviation variables:
x=C,-C,, x,=C,-C,,, x,=T-T,, u=u,-u,
and let x,=C x,=Cy, x,=T,, x,=C

x,, =T, . It is further assumed that in this reaction system

Around steady-state,

G(s) = (40)

and

Ad > A0

there exists an unmodeled first-order side reaction from

-5-
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A and an error in measuring the inlet flow rate, F .
Under such a situation, the process is described by the
following uncertain model:

x = (f(x) +Af(x)) +(g(x) + Ag(x)) u (41a)
y = h(x) (41b)
where
Si(x)
f(x)=| f,(x) |=
Si(x)
=k, (X, +x,) - (X, Fx,) =k (x, +xg,) - (xn +xy,)?
+k () x,, Fhy(x,) X =X, u,
k(x, +x,,) - (x, +x,,) =k, (x, +x,,) - (x, +x,,)
=k (x,) x,, k(X)) x,, — X, u,
L[—AHlkl (y +x,,) - (x, +x,,)—AH Kk, (x, +x,,)
p,C,
S(x, +X,,) = AH K, (x, +x,,) - (x, +x,,)° + AH K, (x,,)
Xy, FAH K (x,) - x,, + AH K (x,,) - x0T =X, -0,
(42)
X=X, — X,
g(x)=| —-x,, —x, (43)
Xy =Xz =Xy
h(x) = x, (44)
Af(x)=[-e,x, 0 0] (45)
and
Ag(x)=[e, e, e (46)

of which 0.1<e, <0.3 and 0.1<e, <0.3. To design a

statically equivalent output map (SEOM) for the proposed
SMC scheme, we calculate ®, and @, from the
process model as
O, (x) =k, (x, +x,,) - (x, +x,,) =k, (x; +x,,)-(x, +x,)°

k() Xy, () Xk =X, 1(xy, — Xy, — X))

1
{pst
(X, +X,,) = AH K (x, +x,,) - (x, +x,)° +AH K (x,,)
Xy AH Kk (xy,) X, AH K (x,,) X 1= X, w3 (g, — X, — X))
(472)

[_AHlkl(x”. +xw)‘(x| +xld)_AH2k2(x”. +xw)

q)z(x)z[kl(xz +x,)- (%, +x14)_kz(xz +xu)'(xz +x,,)

- kl (x3d ) Xyt kz(x.w) Xy TXy ud](xtw Xy T X )

1
- {p_C[_AHlkl (, +x,,)-(x, +x,)—AH Lk, (x, +x,,)
s P

: (xz + Xy )— AH3k3 (X3 +X5, ) (x1 + xld)z + AHlkl (x3d ): X4
+ Aszz(xu) “ Xyt Aszs(xw) : xlzd ] XUy, }(_xzfl - xz)
(47b)
The zeros polynomial for the process output is obtained

from the Eq. (40) to be  P(s)=-09s* +100.3636s
+1233.0296. Then, we also obtain the zeros polynomials
of @, and ®,, respectively, as follows:

0,(s) =-654.7228s* —173130.6147s (48a)

0, (s) = —535.3284s" +33842.4452s (48b)

Based on the previous information and process model,
one can synthesize an auxiliary output as

ety
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Vg = h@,,(x) =X, + ﬂ“lq)l (X) + ﬁ'zq)z (X) (49)

It should be mentioned again that the zeros polynomial
around the given steady-state, ie.
P(s)+ 4,0, (s)+ 4,0,(s), can be made equal to a given

polynomial P’(s) by appropriately adjusting the weight
parameters 4, and A,. Let z”=[-11.1673 1226824
and Az = [0.2 2], and following the proposed searching
A, =-6.2415-10"

A, =-2.5991-10". The open-loop simulations shown in

algorithm, we have and

Fig. 3 reveal that the obtained weights of A, and A, are

yi“l
uncertainty variations. However, this figure also shows
that the synthetic output y, is still unable to give

able to make the minimum phase under the

statically equivalent to the actual process output. Therefore,
it is desirable to design a SEOM, y,, for the CSTR. Now,

by using the auxiliary output of y, designed based on Eq.

(12), we simulate the open-loop system response with
various values of A . From Fig. 4, it is evident to observe

that the constructed auxiliary output y, constitutes a

statically equivalent output for the actual process despite
of the influence of process uncertainties. Also observed is
that the parameter A controls the transition behavior of

v, . The larger the values of A , the faster transition
response of y, .
Having constructed y , we are ready for the design of

a sliding mode controller. Based on the auxiliary output
v, , it is easily verified that the characteristic indexes for

f, Af and Ag are to be p=x=w=1, which satisfy
the condition of w> p=x. To implement the sliding
and b__ should be

predetermined. With the values of e, =e;+7 and

mode controller, the value of f,

nax min

e, =e 7, where 7=0.1, e, =02 and e, =02, we
=7 and

=0.3 for the sliding mode controller. The other

use the estimated maximum bound values of f,
b

parameters are set as A4, =03, ¢ =10, k(0)=1.0,
7 =3 and the boundary layer thickness £ =0.01.
order to verify the regulation ability of the proposed
strategy, we suppose that the system states are perturbed to
move away from their steady states to be x,(0)=1.0,
x,(0)=0.2 and x,(0)=1.0 initially. Up to this point, we
are ready to investigate the following important issue
regarding the application of the proposed scheme.

In

3.1 The role of the SEOM

Fig. 5 shows that, without the aid of y,, the sliding
mode controller of Chen and Dai [19] is unable to control
this non-minimum phase CSTR, resulting an unstable
closed-loop system. Once y, is incorporated in the

control scheme as that shown in Fig. 1, the SMC system is
stabilized and the control performance is satisfactory. A
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reason for this is that the incorporated SEOM is able to
eliminate the undesirable inverse response and therefore
the SMC is able to reach robust stability and system
performance.

3.2 The presence of extra disturbances

The extra disturbances introduce significantly
additional modeling errors, which leads the uncertainty
vector Af to be

Af(x):[—e/.x] d, dz]r (50)
For simulation, we let d, =0.6 and d, =2. In designing

SMC to deal with this extra disturbance, the value of
b =0.3 is still suitable for this case, but f_ _ should

min max
be increased. With increasing f,  to 10, the simulation

result is depicted in Fig. 6. From this figure, it is clear to
observe that the SMC control system simply using y

eq
results in a small offset on the steady state exists because
the design of y _ does not consider the influence of

eq

uncertainties. In contrast, owing to that the proposed SMC
is designed on the base of the modified synthetic output,
y,, the SMC control system is capable of driving the

process output gradually to achieve zero steady state offset
performance even though diversified and extra
uncertainties are imposed on the CSTR.

3.3 Parameter variations

When the kinetic parameters change and/or the model
is not so accurate to present the actual process, there is
considerable discrepancy between the actual process and
the process model. To explore the plant uncertainties on
the essential behavior of the control system, we assume
that the process’s kinetic parameters k,,, k, and £k,

have +25% variation from their nominal values after time
of 0.5 hr while these parameter values in the model remain
unchanged. In designing SMC to deal with these parameter
variations, the value of f is set as 10 for

accommodating these exceptional uncertainties. The
closed-loop system performance is shown in Fig. 7,
demonstrating that the proposed scheme is robust despite
of the presence of the parameter variations.

10 2 20

3.4 Implementation with a sliding observer

In practice, it is often not possible to obtain all states
of chemical processes via on-line measurements. In this
paper, we propose the use of a sliding observer [23] for
estimating the states of this nonlinear CSTR. To proceed,

we assume that only the process output X, is measured, i.e.
the states, x, and x,, are unmeasured. Following the

design methodology of Wang et al. [23], a nonlinear
sliding observer is constructed based on the nominal
system and the output measurement x, as follows:

)_.Cl ==k (% +x,) (X +x,) -k +x,)- (X +xu)2

(51a)

+k1(xsd)'x1d+k3(x3d)'x12d _)_Cl U, +(x10 X _;1)

U+ k01sa‘(~iz /ﬂob)

&
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X, =k (X, +x,,) & +x,)—k,(X, +x,,)

ld

(X, +x,,) =k, (x,,) X, + K, (x,) (51b)
Xy =X, Uy —(%,, +X,) u+kysat(x,/S,)
X, = %[—AH,/{I (%, +x,) (X +x,,)
—~AH k (X, +x,,)- (%, +x,,) —AH k (X, +x,,)
(X +x,)° +AH K (x,)- X, +AH k,(x,,)- X, (51¢)

+ Aszz(xw ) : ‘xlzd ] - )_Cx u, + (xm Xy )?, ) u
+ kﬂf‘sat('il /ﬁ«»b)
where

X, =x,—X, denotes the error between the

measured output x, and the estimated output value X, .

The observer boundary layer thickness, £, , and the
switching gain, k,,, are set as S, =0.05 and k, =2,
respectively. With the desired observer poles of

p,=p,=-4 and following the design procedure of

Wang et al. (1997), we have the remaining gains as
ky, =-29132 and £k, =6.1208.

Fig. 8 depicts the schematic diagram of the proposed
scheme for this uncertain CSTR where the sliding observer,
the modified synthetic output and the sliding mode
controller are integrated as a whole. For simulation, we set
the initial conditions of the estimated states as x,(0) = 0.8,

X,(0)=0.2 and Xx,(0)=1.3 for the sliding observer. The

closed-loop system performance is shown in Fig. 9. From
this figure, it is clear to show that the nonlinear observer is
capable of estimating system states despite of the influence
of model uncertainties. Based on the above simulation
results, it is evident that the proposed scheme with a
sliding observer appears to be an effective and promising
approach to control of nonlinear, uncertain, non-minimum
phase chemical processes, providing excellent control
performance without the need of full state measurements.

4. Conclusions

In this paper, a robust and systematic sliding mode
strategy has been proposed for the regulation control of an
uncertain CSTR in the presence of inverse response. To
overcome the negative effect of inverse response behavior
and eliminate the steady state offset, a new algorithm has
been proposed such that the designed auxiliary output is
statically equivalent to the actual output and makes the
resultant system minimum phase despite the influence of
the process uncertainties. With the incorporation of the
constructed statically equivalent output map, a robust SMC
scheme can be easily established to tackle with the difficult
control problem of uncertain non-minimum phase CSTR.
In addition, the potential use of a sliding observer along
with the proposed scheme has also been investigated in
this work. Extensive simulation results reveal that the
proposed sliding mode control scheme for nonlinear,
non-minimum phase, uncertain CSTRs is promising,
which is able to overcome the negative effects of inverse
response, unmodeled side reaction, measuring error,
unmeasured disturbance and plant/model mismatch.

-7-

P TR Y 5
Acknowledgement

This work was supported by the National Science
Council of Taiwan (ROC) wunder Grant NSC
93-2214-E-035-003.

References

[1] Luyben, W. L.; Process modeling, simulation, and
control for chemical engineers, McGraw-Hill,
Singapore (1990).

[2] Iyer, N. M. and A. E. Farell; “Adaptive input-output
linearizing control of a continuous stirred tank
reactor,” Computers chem. Engng., 19, 575-579
(1995).

[3] Lagerberg, A. and C. Breitholtz; “A study of gain

scheduling control applied to an exothermic CSTR,”

Chemical Engineering and Technology, 20, 435-444

(1997).

Ge, S. S., C. C. Hang and T. Zhang; ‘“Nonlinear

adaptive control using neural networks and its

application to CSTR systems,” Journal of Process

Control, 9, 313-323 (1999).

[5] Alvarez-Ramirez, J. and A. Morales; “PI control of
continuously stirred tank reactors: stability and
performance,” Chemical Engineering Science, 58,
5497-5507 (2000).

[6] Wu, F.; “LMI-based robust model predictive control
and its application to an industrial CSTR problem,”
Journal of Process Control, 11, 649-659 (2001).

[7] Gopaluni, R. B., I. Mizumoto and S. L. Shah; “A
robust nonlinear adaptive backstepping controller for
a CSTR,” Industrial and Engineering Chemistry
Research, 42, 4628-4644 (2003).

[8] Kravaris, C., P. Daoutidis and R. A. Wright; “Output

feedback control of non-minimum phase nonlinear

processes,” Chemical Engineering Science, 49,

2107-2122 (1994).

Kravaris, C. and P. Daoutidis; “Nonlinear state

feedback control of second-order non-minimum phase

nonlinear systems,” Computers and Chemical

Engineering, 14, 439-449 (1990).

[10] Hauser, J., S. Sastry and G. Meyer; “Nonlinear control
design for slightly nonminimum phase systems:
application to V/STOL aircraft,” Automatica, 28,
665-679 (1992).

[11] Wright, R. A. and C. Kravaris; “Non-minimum phase

compensation for nonlinear processes,” AIChE J., 38,

26-40 (1992).

Aoyama, A., F. J. Doyle III and V.
Venkatasubramanian; “Control-affine neural network
approach for non-minimum-phase nonlinear process
control,” J. Proc. Cont., 6, 17-26 (1996).

[13] Kravaris, C., M. Niemiec, R. Berber and C. B.
Brosilow; Nonlinear model-based control of
nonminimum-phase processes. In R. Berber and C.
Kravaris (Eds.), Nonlinear Model Based Process
Control. Dordrecht: Kluwer, pp. 115-141 (1998).

[14] Niemiec, M. P. and C. Kravaris; “Nonlinear
model-state feedback control for nonminimum-phase
processes,” Automatica, 39, 1295-1302 (2003).

[15] Jo, N. H., J. Byun, H. Shim and J. H. Seo; “Robust

E| &

(4]

(9]

[12]

ety

f"j%!r %F'IJ\%%LF;I A)fg



stabilization of nonminimum phase nonlinear
systems,” Proceedings of the American Control
Conference, PP- 3359-3363, Philadelphia,
Pennsylvania (1998).

[16] Wu, W.; “Approximate feedback control for uncertain
nonlinear systems,” Ind. Eng. Chem. Res., 38,
1420-1431 (1999).

[17] Shkolnikov, I. A. and Y. B. Shtessel; “Tracking in a
class of nonminimum-phase systems with nonlinear
internal dynamics via sliding mode control using
method of system center,” Automatica, 38, 837-842
(2002).

[18] Byrnes, C. I. and A. Isidori; “Global feedback
stabilization of nonlinear systems,” Proc. IEEE CDC,
pp. 1031-1035, Ft. Lauderdale, Florida, USA (1985).

[19] Chen, C. T. and C. S. Dai; “Robust controller design
for a class of nonlinear uncertain chemical processes,”
Journal of Process Control, 11, 469-482 (2001).

[20] Van de Vusse, J. G; “Plug-flow-type reactor versus
tank reactor,” Chem. Eng. Sci., 19, 994-998 (1964).
[21] Kantor, J. C.; “Stability of state feedback
transformations for nonlinear systems- Some practical
considerations,” Proceedings 1986 American Control

Conference, pp. 1014-1016, Seattle, WA (1986).

[22] Engell, S. and K. U. Klatt; “Nonlinear control of a
nonminimum-phase CSTR,” Proceedings 1993
American Control Conference, pp. 2341-2945, San
Fransico, CA (1993).

[23] Wang, G. B., S. S. Peng and H. P. Huang; “A sliding
observer for nonlinear process control,” Chemical
Engineering Science, 52, 787-805 (1997).

Table 1. Model parameters and operating conditions.

AH, =4.2KkJ-mol”
p. =0.9342kg-L"
AH, =-11kJ-mol!

k,=1.287-10"h"
k, =1.287-10" h™
k, =9.043-10° L(mol-h)"'

E /R=9758.3K AH, =-41.85k]-mol™
E,/R=97583K C, =3.01kJ(kg-K)"
E,/R=8560K 0, =-451.509kJ(L-h)"
"I’l‘i‘(j}:‘f L v—b(&.n) u - uncertain CSTR
controller a(gm) Fo(+aD+(e+hgu
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surface
A
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4
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Fig. 1. Schematic diagram of the proposed sliding mode
control scheme.
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Fig. 2. An open-loop test of the CSTR.
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Fig. 3. Open-loop simulation under process parameter
variations.
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Fig. 4. Open-loop simulations using SEOM with
designed values of 4, .
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Fig. 6. Closed-loop system performance in face with the
unmodeled side reaction, measuring error and extra
disturbances.
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Fig. 7. Closed-loop system performance in face with

parameter uncertainties.
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Fig. 8. Schematic diagram of the proposed sliding mode
control scheme with a sliding observer.
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Fig. 9. System response under sliding observer with
observer poles p, =p, =-4 for the case of existing

unmodeled side reaction and measuring error.
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