

逢甲大學學生報告 ePaper

報告題名:

在 CMOS 製程下探討 Stripline 的波導特性

作者: M9625277 王亮程

M9602722 李岱昀

D9323812 何紹安

開課老師:陳志強

- 課程名稱:微波工程(一)
- 開課系所:電機所

開課學年: 96 學年度 第一學期

2007年12月

中文摘要

本研究主要觀察夾心帶線(Stripline)的波導特性,並設計出特性阻抗所需之尺寸的夾心帶線,其製程方式為互補式金屬氧化層半導體(Complementary Metal-Oxide-Semiconductor, CMOS),研究的方法則使用全波三維電磁模擬軟體(Ansoft HFSSTM)之有限元素法(Finite-Element Method)來設計分析相關電路,操作頻率為1~60 GHz的頻段範圍作觀察,將HFSS分析結果匯入製電路設計模擬軟體(Agilent Advanced Design SystemTM, ADS),最後再將得到的數據使用數學軟體Matlab做整理。

關鍵字:夾心帶線(Stripline)、特性阻抗(Characteristic Impadence)、S 參數(S- parameter)、慢波係數(SWF)

目 次

中文摘要

目次

圖目錄

表目錄

第一章 序論

1.1 研究動機

1.2 研究方法

1.3 內容提要

第二章 夾心帶線介紹

2.1 夾心帶線結構

2.2 夾心帶線的特性阻抗

2.3 其他型態的夾心帶線

第三章 夾心帶線的波導特性

3.1 由 CMOS 製程之夾心帶線

3.2 操作頻段 1~20 GHz

3.3 操作頻段 21~40 GHz

3.4 操作頻段 41~60 GHz

第四章 各阻抗的夾心帶線設計

4.1 設計 35Ω、50Ω與 70Ω特性阻抗之夾心線帶

第五章 結論

参考文獻

圖目錄

- 圖 2-1 夾心線帶結構
- 圖 2-2 均匀對稱夾心帶線
- 圖 2-3 平移式夾心帶線
- 圖 2-4 懸吊式夾心帶線
- 圖 3-1(a) CMOS 結構示意圖
- 圖 3-1(b) CMOS 結構側面圖 1
- 圖 3-1(c) CMOS 結構側面圖 2
- 圖 3-2 Stripline 結構示意圖
- 圖 3-3(a) SL(6,4,2)之 Re(Zc)(ohm)波導特性(1~20 GHz)
- 圖 3-3(b) SL(6,4,2)之 SWF 波導特性(1~20 GHz)
- 圖 3-3(c) SL(6,4,2)之 Loss(dB)/λg 波導特性(1~20 GHz)
- 圖 3-3(d) SL(6,4,2)之 λ g(mm)波導特性(1~20 GHz)
- 圖 3-3(e) SL(6,4,2)之Q 波導特性(1~20 GHz)
- 圖 3-3(f) SL(6,4,2)之 R(ohm/m)波導特性(1~20 GHz)
- 圖 3-3(g) SL(6,4,2)之 L(nH/m)波導特性(1~20 GHz)
- 圖 3-3(h) SL(6,4,2)之 C(pF/m)波導特性(1~20 GHz)
- 圖 3-4(a) SL(6,4,2)之 Re(Zc)(ohm)波導特性(20~40 GHz)
- 圖 3-4(b) SL(6,4,2)之 SWF 波導特性(20~40 GHz)

圖 3-4(c) SL(6,4,2)之 Loss(dB)/λg 波導特性(20~40 GHz) 圖 3-4(d) SL(6,4,2)之 λ g(mm)波導特性(20~40 GHz) 圖 3-4(e) SL(6,4,2)之 Q 波導特性(20~40 GHz) 圖 3-4(f) SL(6,4,2)之 R(ohm/m)波導特性(20~40 GHz) 圖 3-4(g) SL(6,4,2)之 L(nH/m)波導特性(20~40 GHz) 圖 3-4(h) SL(6,4,2)之 C(pF/m)波導特性(20~40 GHz) 圖 3-5(a) SL(6,4,2)之 Re(Zc)(ohm)波導特性(40~60 GHz) 圖 3-5(b) SL(6,4,2)之 SWF 波導特性(40~60 GHz) 圖 3-5(c) SL(6,4,2)之 Loss(dB)/ λg 波導特性(40~60 GHz) 圖 3-5(d) SL(6,4,2)之 λ g(mm)波導特性(40~60 GHz) 圖 3-5(e) SL(6,4,2)之 Q 波導特性(40~60 GHz) 圖 3-5(f) SL(6,4,2)之 R(ohm/mm)波導特性(40~60 GHz) 圖 3-5(g) SL(6,4,2)之 L(nH/mm)波導特性(40~60 GHz) 圖 3-5(h) SL(6,4,2)之 G(mS/mm)波導特性(40~60 GHz) 圖 3-5(i) SL(6,4,2)之 C(pF/mm)波導特性(40~60 GHz) 圖 3-6(a) 面電場強度分布圖(M2 與 M4 間,W=1.5 μm) 圖 3-6(b)截面電場分布圖(W=1.5 μm) 圖 3-6(c)截面電場分布圖(W=7.5 μm)

圖 3-6(d)截面電場分布圖(W=13.5 μm)

- 圖 3-6(e)截面磁場分布圖(W=1.5 μm)
- 圖 3-6(f)截面磁場分布圖(W=7.5 μm)
- 圖 3-6(g)截面磁場分布圖(W=13.5 μm)
- 圖 3-6(h) Ground M2 表面電流分布圖(W=1.5 μm)
- 圖 3-6(i) Ground M2 表面電流分布圖(W=4.5 µm)
- 圖 3-6(j) Ground M2 表面電流分布圖(W=7.5 μm)
- 圖 3-6(k) Ground M2 表面電流分布圖(W=10.5 µm)
- 圖 3-6(l) Ground M2 表面電流分布圖(W=13.5 μm)

表目錄

表一. 在頻率 10GHz 下各個結構的特性阻抗値

表二. 在頻率 30GHz 下各個結構的特性阻抗値

表三. 在頻率 50GHz 下各個結構的特性阻抗値

表四. 在頻率 1~20GHz 中,35Ω、50Ω與 70Ω特性阻抗的分佈

表五. 在頻率 21~40GHz 中,35Ω與 50Ω特性阻抗的分佈

第一章 序論

1.1 研究動機

由於現代互補金屬氧化半導體積體電路(Complementary Metal Oxide Semiconductor Integrated Circuit, CMOS IC)有簡單製程、低功率 耗損、易於尺寸微縮化和高性能化、與高可靠度等優點,因此已爲目 前電路製造的主流。而在高頻電路方面因爲追求體積小且高效能,因 此設計高頻電路已經廣泛的使用 CMOS IC 的技術做製程,高頻傳輸 線又有分為微帶線(Microstrip line)、共平面波導(Coplanar waveguide line)、溝槽帶線(Slot line)、夾心帶線(Stripline, 線帶)等幾種,其中 Stripline 是橫向電磁(TEM)傳輸線媒介,比如同軸電纜,代表它非分 散性,而且沒有截止頻率,一般我們可以使用微帶線製作任何電路 (quasi-TEM),但是利用 Stripline 可以把電路做得更好,比如說做一個 濾波器或耦合器,與微帶線做相似的電路比較,Stripline 總是可以提 供較好的帶寬。另外,因為 Stripline 的信號線被緊緊包在介質裡,信 號線上下都有接地面,所以和微帶線相較之下 Stripline 受到外接的干 擾較小,隔離度比較高,因此 Stripline 經常被使用於射頻(Radio Frequency, RF)信號路線,因此本研究以探討 Stripline 的波導特性為目 標,了解如何應用 Stripline 來設計傳輸線。

8

1.2 研究方法

本實驗使用 Ansoft HFSS[™]作為設計電路模型的軟體,並用其中的 wave port 做分析的工具以取得相關的 S 參數、場型分佈,之後再使 用 Agilent ADS[™]做電路的模擬得到所需的參數,最後將所有得到的 數據用 Matlab 數學工具軟體做整理完成所要的結果。

1.3 內容提要

本報告內容係研究 CMOS 製程下 Stripline 的波導特性,並設計 出 35 Ω、50 Ω、70Ω 特性阻抗及 50 Ω 終端 open 、short 、load 之所 需的尺寸。其中依研究設計的理念與發展過程,分爲以下四個章節討 論與說明:

第一章是序論,簡要說明從事本論文研究的動機、相關的研究、 研究的方法以及本報告研究的內容。

第二章是夾心帶線介紹,說明傳輸線及線帶(Stripline)的結構和工作原理。

第三章是夾心帶線的波導特性,對研究Stripline各種規格的S參 數、Zc、SWF、loss、Q、λg、R、L、G、C……等做說明,並且觀 察各結構之E場(電場)、H場(磁場)及J電流分佈。

第四章是各阻抗的夾心帶線設計,依各種特性阻抗的需求設計該 需求的線帶尺寸。 第五章是結論,為本研究之結論,對這整篇報告的研究做一個總結以及對本報告未來可以應用的地方。

第二章

夾心帶線介紹

2.1 夾心帶線結構

夾心帶線(Stripline, 線帶), 是 20 世紀 50 年代的 R.Barrett 所發 明,在真空儀器實驗室 (Airborne Instruments Labs, Long Island New York)製造出夾心帶線的結構,而當時的其他人使用"Tri-plate"這個 名子,至今 Stripline 已經可以用印刷電路板(Printed Circuit Board, PCB)、積體電路(Integrated Circuit, IC)或低溫共燒多層陶瓷 (Low-Temperature Cofired Ceramics, LTCC)等製程來製作。

夾心帶線是一種平面式的傳輸線,和微帶線傳輸線大致相同,唯 一差別在三明治夾層結構,用照相蝕刻方式就可以做,也容易與其他 微波電路連接而且積體化。因爲夾心帶線有兩個導體(上下接地的金 屬板電位相同,視爲同一個導體),又稱爲均勻介質結構(圖 2-1),所 以可有 TEM 波,也是電路運作時的波模。但是其結構很接近平行導 電板,所以也會有 TE 與 TM 的高階模;當然,在使用時應該盡量避 兒這些波模的產生。直覺上,可將夾心帶線想成是內金屬被壓成平板 的同軸電纜線,因爲兩者的中心導體均完全被外導體包圍,且兩導體 之間塡滿介質。

圖 2-1 夾心帶線結構

圖 2-1 的中心導體 A 為信號線向三明治一樣被接地導體面 B 和 D 夾在中間,這結構由介質 C 來支撐起來,而信號線 A 被緊緊包在介 質 C 裡面。

2.2 夾心帶線的特性阻抗

一般上下對稱的夾心帶線中間的信號線與上下兩接地面的距離 相同且三者平行,介質是均勻分布(圖 2-2),而它和微帶線一樣在金屬 厚度 *t* 不變的情況下,信號線的寬度 *W* 越寬則特性阻抗越小。

圖 2-2 均匀對稱夾心帶線

其特性阻抗公式爲

$$Z_{c} = \frac{30}{\sqrt{\varepsilon_{r}}} \ln \left\{ 1 + \frac{A}{2} \left[A + \sqrt{(A^{2} + 6 \cdot 27)} \right] \right\}$$

其中

$$A = \frac{16}{\pi(W'/h)}$$

$$\frac{W'}{h} = \frac{W}{h} + \frac{\Delta W}{h}$$

$$\frac{\Delta W}{h} = \left(\frac{t}{h}\right)\frac{1}{\pi}$$

$$\times \left\{1 - \frac{1}{2}\ln\left(\left[\frac{1}{4h/t + 1}\right]^2 + \left[\frac{1/4\pi}{w/t + 1\cdot 10}\right]^m\right)\right\}$$

$$m = \frac{6}{3 + t/h}$$

令t=0 時,則W'=W,且在W'/h<20 時表示關係誤差小於 0.5%。影響的參數有信號線寬W、金屬厚度t、介質厚度h,我們必 須將它化簡爲只有受參數t和參數h影響,爲下式:

$$\frac{\Delta W}{h} = \frac{1}{3 \cdot 2} \left(\frac{t}{h} \right) \ln \left(10 \ \frac{h}{t} \right)$$

t/h < 0.2, *W/t* > 2.5, *W/h* > 0.2

綜合前面的特性阻抗公式

 $\frac{W}{h} = \frac{16}{\pi} \frac{\sqrt{(B+1.568)}}{B} - \frac{\Delta W}{h}$

其中

$$B = \exp\left(\frac{\sqrt{(\varepsilon_r)Z_c}}{30}\right) - 1$$
$$\frac{\Delta W}{h} = \frac{1}{3 \cdot 2} \left(\frac{t}{h}\right) \ln\left(10\frac{h}{t}\right)$$

2.3 其他型態的夾心帶線

除了之前介紹的均匀對稱的夾心帶線,其他還有平移(offset)、懸 掛(suspended)等夾心帶線。平移式的夾心帶線信號線到兩接地面的距 離不一樣(圖 2-3),因為所有的場必須在相同的介電性,所以有效介電 常數等於有關介電常數被選擇的非導電性材料。

圖 2-3 平移式夾心帶線

懸掛的夾心帶線介質和接地面間有空氣(圖 2-4),故為不均勻介 質,計算有效介電常數時,要考慮空氣的部份,會使有效介電係數趨 近於1。

第三章

夾心帶線的波導特性

3.1 由 CMOS 製程之夾心帶線

CMOS 製程結構由六層金屬層(M1 ~ M6)、SUB、ILD 和 PASS 所 構成(圖 3-1),而本研究之夾心線帶之操作頻段為 1 ~ 60 GHz,分別用 L = 1500 µm (1 ~ 20 GHz)、L = 500 µm (21 ~ 40 GHz)、L = 1000µm (41~60GHz)這三段頻段的長度分別作分析,並適當改變 Ground 使其 分佈在 M1 ~ M4 層(令一個 Ground 為 M6),夾心帶線(圖 3-2)的信號 線為兩金屬層之間每一層改變,線寬 W 由 0.3 µm~ 15 µm 去做改變, 以探討其波導特性。

圖 3-1(a) CMOS 結構示意圖

圖 3-1(c) CMOS 結構側面圖 2 (M1~ M5 層別示意)

3.2 操作頻段 1~20 GHz

圖 3-3(b) SL(6,4,2)之 SWF 波導特性

圖 3-3(d) SL(6,4,2)之 λg(mm)波導特性

(報告題名)

圖 3-3(f) SL(6,4,2)之 R(ohm/m)波導特性

圖 3-3(h) SL(6,4,2)之 C(pF/m)波導特性

圖 3-3 (a)~(h)為全波模擬的各項波導特性

Frequency = 10GHz										
W(um)	SL(6.2.1)	SL(6.3.1)	SL(6.3.2)	SL(6.4.1)	SL(6.4.2)	SL(6.4.3)	SL(6.5.1)	SL(6.5.2)	SL(6.5.3)	SL(6.5.4)
1.5	24.2980	52.3758	56.3500	71.8972	61.0508	50.6583	61.2350	40.4508	58.0311	47.4045
4.5	26.7822	20.3463	27.5098	19.9362	34.4132	26.4322	15.5089	27.2677	16.4441	11.7692
7.5	11.2703	24.1395	10.7378	16.3902	21.3255	9.9898	13.3516	12.0432	10.3617	8.2022
10.5	9.2462	13.7126	8.9566	15.3048	12.6760	8.3347	9.9948	9.1923	8.6508	7.0243
13.5	8.3813	12.1835	8.1517	11.9781	11.0284	7.5142	8.3496	8.0353	7.0322	6.0952

表一. 在頻率 10GHz 下各個結構的特性阻抗値

3.3 操作頻段 21~40 GHz

圖 3-4(b) SL(6,4,2)之 SWF 波導特性

(報告題名)

圖 3-4(d) SL(6,4,2)之λg(mm)波導特性

(報告題名)

圖 3-4(e) SL(6,4,2)之 Q 波導特性

圖 3-4(f) SL(6,4,2)之 R(ohm/m)波導特性

(報告題名)

圖 3-4(h) SL(6,4,2)之 C(pF/m)波導特性

圖 3-4(a)~(h)為全波模擬的各項波導特性

	Frequency = 30GHz									
W(um)	SL(6.2.1)	SL(6.3.1)	SL(6.3.2)	SL(6.4.1)	SL(6.4.2)	SL(6.4.3)	SL(6.5.1)	SL(6.5.2)	SL(6.5.3)	SL(6.5.4)
1.5	46.0253	60.1947	42.3947	61.2692	56.5817	43.1701	49.1161	47.9515	42.5737	36.4302
4.5	22.0215	35.1974	20.1290	32.8446	31.2448	17.3365	24.0921	23.8926	21.7561	15.2425
7.5	22.0215	21.9223	12.0211	20.6341	18.0195	11.4098	10.3139	8.2163	8.0191	5.3790
10.5	10.7182	16.6343	6.7805	17.3380	14.4281	7.4133	8.3327	8.6020	6.6795	5.3668
13.5	6.1972	10.4785	6.1211	14.2930	11.8946	5.3581	6.5104	6.3491	5.8205	4.3571

表二. 在頻率 30GHz 下各個結構的特性阻抗値

3.4 操作頻段 41~60 GHz

圖 3-5(b) SL(6,4,2)之 SWF 波導特性

(報告題名)

圖 3-5(d) SL(6,4,2)之λg(mm)波導特性

圖 3-5(f) SL(6,4,2)之 R(ohm/mm)波導特性

圖 3-5(h) SL(6,4,2)之 G(mS/mm)波導特性

圖 3-5(i) SL(6,4,2)之 C(pF/mm)波導特性

圖 3-5 (a)~(i)為全波模擬的各項波導特性

Frequency = 50GHz										
W(um)	SL(6.2.1)	SL(6.3.1)	SL(6.3.2)	SL(6.4.1)	SL(6.4.2)	SL(6.4.3)	SL(6.5.1)	SL(6.5.2)	SL(6.5.3)	SL(6.5.4)
1.5	40.0228	58.1435	41.9451	57.8606	50.7581	40.4349	45.8781	44.2345	42.3596	34.3126
4.5	20.8749	32.9592	20.8780	36.3572	25.1924	15.2699	17.8805	17.6733	16.2028	11.9909
7.5	12.6690	21.3312	9.34758	24.2449	18.5192	11.0204	12.6607	10.3683	12.1648	6.0723
10.5	8.0904	17.9368	7.2410	17.4206	14.5241	6.6649	8.7537	8.3038	6.8764	5.3486
13.5	6.8588	11.8664	6.3123	12.7021	10.4165	5.9503	7.6817	6.9636	6.3695	4.3996

表三. 在頻率 50GHz 下各個結構的特性阻抗値

3.5 E、H、J 場形圖 (SL(6.4.2) 41~60 GHz)

圖 3-6(b)截面電場分布圖(W=1.5 μm)

圖 3-6(d)截面電場分布圖(W=13.5 μm)

圖 3-6(f)截面磁場分布圖(W=7.5 μm)

圖 3-6(j) Ground M2 表面電流分布圖(W=7.5 µm)

圖 3-6(l) Ground M2 表面電流分布圖(W=13.5 μm)

第四章

各阻抗的夾心帶線設計

4.1 設計 35Ω、50Ω與 70Ω特性阻抗之夾心線帶

	name	Freq(GHz)	W (um)
	SL(6.4.1)	1	10.5
35Ω	SL(6.4.2)	9	4.5
	SL(6.4.3)	4	4.5
	SL(6.3.2)	15	1.5
500	SL(6.5.2)	6	1.5
5022	SL(6.5.3)	17 17	1.5
	SL(6.5.3)	18	1.5
70Ω	SL(6.4.1)	11	1.5

表四. 在頻率 1~20GHz 中,35Ω、50Ω與 70Ω特性阻抗的分佈

	name	Freq(GHz)	W(um)
250	SL(6.3.1)	32	4.5
5522	SL(6.5.4)	37	1.5
	SL(6.5.1)	25	1.5
500	SL(6.5.1)	26	1.5
5022	SL(6.5.2)	22	1.5
	SL(6.5.2)	23	1.5

表五. 在頻率 21~40GHz 中,35Ω與 50Ω特性阻抗的分佈

	name	Freq(GHz)	W (um)
35Ω	SL(6.5.4)	43	1.5
50Ω	SL(6.4.2)	60	1.5

表六. 在頻率 41~60GHz 中,35Ω與 50Ω特性阻抗的分佈

第五章

結論

Stripline 是一種平面式的傳輸線,和微帶線傳輸線大致相同,唯 一差別在三明治夾層結構,比微帶線可以做更多的排列組合結構,以 調出我們所需的特性阻抗。另外,因為 Stripline 的信號線被緊緊包在 介質裡,信號線上下都有接地面,所以和微帶線相較之下, Stripline 受到外接的干擾較小,隔離度比較高。

現在設計電路主要趨向體積小且高效能,在高頻中剛好可以符合 這樣需求,而設計高頻電路已經廣泛的使用 CMOS IC 的製程技術, 因此在這次作業中模擬頻段選用 1~60GHz,相信其波導特性結果在 日後可以有更一進步的研究。

參考文獻

- [1] D.M. Pozar, Microwave Engineering, 3nd ed.
- [2] William R. Eisentadt and Yungseon Eo, "S-Parameter-Based IC Interconnect Transmission Line Characterization," *IEEE Trans.on components, hybrids, and manufacturing technology, vol. 15, No. 4,* pp. 483-489, AUG. 1992
- [3] http://www.microwaves101.com/encyclopedia/stripline.cfm
- [4] http://en.wikipedia.org/wiki/Stripline

工作分配:

報告製作、參考文獻蒐集:何紹安

模擬分析、圖表製作、口頭報告:王亮程

模擬分析、圖表製作、報告製作:李岱昀

