

逢甲大學學生報告 ePaper

報告題名:

應用於無線區域網路(WLAN)之雙頻前端電路

Dual-Band front-end Circuit for WLAN Applications

作者:盧盈維 系級:通訊四乙 學號:D9532335 開課老師:尤正祺 課程名稱:專題研究 開課系所:通訊工程學系

開課學年: 98 學年度 第二學期

中文摘要

近年來由於筆記型電腦的日漸普及,以及追求行動通訊所帶來的 便利性,無線區域網路的需求量大增。不同於以往被線路束縛的有線 上網,使用者只要有PCMCIA、PCI 等無線網路卡就能隨時隨地連上 網路,無須再受地點或線路的限制,同時也節省許多佈置線路的人力 及成本。也由於現代使用者對於產品品質的要求,微小攜帶化和極高 的清晰度是電路設計所追求的目標,因此本專題主要設計的即是接收 無線區域網路的前端電路。

本專題報告以三頻天線(antenna)、雙頻低雜訊放大器(LNA)以及 雙頻濾波器(filter)之前端模組為研究主題,三個電路皆實作於FR4 基 板上。本天線研究研製適用於WLAN/WiMAX 之多頻天線,採用共 平面波導(CPW)型態。實驗結果顯示,天線具有全向之輻射場型,並 符合WLAN 2400/5800 MHz 以及WiMAX 3500 MHz 之操作頻段。 在雙頻低雜訊放大器設計上,則是在輸入級與輸出級,利用電感與電 容串、並聯與微帶線組成的雙頻帶通濾波器,來達到過濾出WLAN 操作頻帶信號的目的。濾波器則是以近年熱門的 SIR 微帶線架構,製 作出可帶通 WLAN 頻帶的微小化濾波器,實測與模擬具有相當的吻 合度。 **關鍵字**: 天線,濾波器,低雜訊放大器,Wireless Local Area Network (WLAN)

目錄

第一章 序論	<u>1</u>
1-1專題研究動機	1
1-2 WLAN系統發展簡介	2
1-3章節介紹	5
第二章 微带線理論	<u>6</u>
2-1傳輸線理論分析	6
2-1.1 傳輸線方程式	6
2-1.2 有負載之傳輸線	10
2-2傳輸線之元件等效電路	13
2-3 頻散效應	16
2-4 微帶線的不連續性	17
2-4.1 終端開路之傳輸線	
2-4.存在於微帶線間之間隙	18
2-4.3 直角彎曲、弧線式偏折和斜削式彎折	19
2-4.4微帶線寬度改變之不連續性	21
第三章低雜訊放大器設計概論	
3-1重要定義與理論	23
3-1.1 諧波失真	23

3-1.2 1-dB 增益壓縮點	24
3-1.3 交互調變失真	26
3-1.4 雜訊指數	
3-1.5穩定性	29
3-2阻抗匹配網路原理	30
3-3 電路架構分析與設計	31
第四章 WLAN/WiMAX 多頻天線設計	34
4-1 貼片天線各尺寸參數對 S11 影響之探討	35
4-1.1 天線主體長度	36
4-1.2 天線主體寬度	37
4-1.3 天線主體與接地平面距離	39
4-1.4 天線整體寬度	40
4-1.5 天線接地面長度	42
4-1.6 天線接地面長度與天線主體長度的互換	43
4-2 增加低頻共振臂之貼片天線	45
4-2.1 最佳化天線接地面長度與天線主體長度的互換	49
4-2.2 最佳化天線槽孔(slot)寬度探討	50
4-2.3 最佳化天線槽孔(slot)位置探討	52
4-2.4 最佳化天線槽孔彎折處探討	53

4-3最佳化天線之場型	
4-4多頻天線模擬量測比較與結論,	56
第五章 WLAN 雙頻低雜訊放大器設計	58
5-1 2.4 GHz 的單頻低雜訊放大器	58
5-2 2.4 及 5.8 GHz 雙頻低雜訊放大器	63
5-3 2.4 及 5.8 GHz 雙頻低雜訊放大器	67
5-4 雙頻 LNA 模擬量測比較與結論	70
5-5 Murata、TOKO 與理想元件的比較	73
第六章 WLAN 雙頻帶通步階阻抗濾波器設計	77
6-1 調整等線寬微帶濾波器各尺寸參數對 S11影響之探討	77
6-2 調整微帶線寬為 1.75 mm 和 2.25 mm 的 SIRs 濾波器尺	寸對 S11 影
響之探討	
6-3 調整微帶線寬為 1.5 mm 和 3 mm 的 SIRs 濾波器尺寸對	S ₁₁ 影響之
探討	
6-4 最佳化 SIRs 微帶濾波器	93
6-5 雙頻微帶濾波器模擬量測比較與結論	96
第七章結論與未來研究方向	99
参考文獻	101

圖目錄

圖 1-1 無線通訊技術發展重點	4
圖 1-2 無線通訊技術發展方向	4
圖 2-1 單位長度之傳輸線 a. 電壓與電流的定義 b. 集總等效電路	7
圖 2-2 末端負載為阻抗 ZL 的傳輸線	10
圖 2-3 a. 負載阻抗為零(短路)的傳輸線 b. $Z_{in} = jZ_0 \tan \beta d$ 隨長度(βd)而改	文變14
圖 2-4 a. 負載阻抗為無限大(開路)的傳輸線 b. $Z_{in} = -jZ_0 \cot \beta d$ 隨長度而i	改變15
圖 2-5 a. 微帶線幾何結構圖 b. 結構剖面圖及線內的電場分佈圖 c. 等效	邊際電
容之等效電路圖	18
圖 2-6 以間隙耦合方式串聯兩條含終端開路之傳輸線 a. 幾何結構圖 b. 音	则示圖及
其電場分佈情形 c. 等效電路圖	19
圖 2-7 直角彎曲之微帶傳輸線 a. 幾何結構圖 b. 等效電路	20
圖 2-8 斜削式彎曲之微帶傳輸線 a. 幾何結構圖 b. 等效電路圖	21
圖 2-9 弧形偏折之微带線的幾何結構圖	21
圖 2-10 微帶傳輸線因線寬做對稱式改變所形成的不連續性 a. 幾何結構圖	ab.
等效電路圖	22
圖 3-1 非線性放大器輸入與輸出頻譜	23
圖 3-2 1-dB 增益壓縮點	25
圖 3-3 三階非線性示意圖	
圖 3-4 三階互調截斷點示意圖	
圖 3-5 放大器之雜訊模型	
圖 3-6 n 級串接放大器雜訊模型	
圖 3-7 史密斯圖	
圖 4-1 貼片天線尺寸參數圖	
圖 4-2 探討 L1 變化對 S11之影響	
圖 4-3 探討 W1 變化對 S11之影響	

圖 4-4 探討 G 變化對 S11之影響	40
圖 4-5 探討 W3 變化對 S ₁₁ 之影響	41
圖 4-6 探討 L2 變化對 S ₁₁ 之影響	43
圖 4-7.1 共振出 2.4 GHz 所需之天線長度	44
圖 4-7.2 共振出 2.4 GHz 所需之天線長度	45
圖 4-8 以純貼片天線共振出 3.5GHz 及 5.8GHz 頻帶	46
圖 4-9 未加槽孔之最佳天線	47
圖 4-10 最佳化天線之尺寸	48
圖 4-11 天線主體尺寸取捨之尺寸圖	50
圖 4-12 天線主體尺寸取捨之模擬結果	50
圖 4-13 天線槽孔寬度比較之尺寸圖	51
圖 4-14 天線槽孔寬度比較之模擬結果	51
圖 4-15 天線槽孔位置比較之尺寸圖	52
圖 4-16 天線槽孔位置比較之模擬結果	52
圖 4-17 天線槽孔彎折處比較之尺寸圖	53
圖 4-18 天線槽孔彎折處比較之模擬結果	54
圖 4-19 天線量測 H-plane (a) 2.4GHz (b) 3.5GHz (c) 5.8GHz	55
圖 4-20 天線量測 E-plane (a) 2.4GHz (b) 3.5GHz (c) 5.8GHz	55
圖 4-21 天線輸入返回損失之模擬與量測結果	56
圖 4-22 最佳化天線實體圖	57
圖 5-1 單頻低雜訊放大器電路結構圖	58
圖 5-2 閘極電組 R1= 50Ω 的響應圖	61
圖 5-3 閘極電組 R1= 3300Ω 的響應圖	62
圖 5-4 理想元件雙頻 LNA 電路結構圖	63
圖 5-5 理想元件的最佳化雙頻 LNA 之模擬響應圖	66
圖 5-6 Murata 元件雙頻 LNA 電路結構圖	67
圖 5-7 Murata 元件的最佳化雙頻 LNA 之模擬響應圖	69

VII

啚	5-8 模擬與實測之 S21	.72
圖	5-9模擬與實測之S11	.72
圖	5-10 模擬與實測之 S22	.72
圖	5-11 LNA 實體圖	.73
圖	5-12 模擬元件響應之電路	.74
圖	5-13 1.2 nH 元件的 S ₁₁ 比較	.74
圖	5-14 1.2 nH 元件的 S ₁₂ 比較	.74
圖	5-15 47 nH 元件的 S ₁₁ 比較	.75
圖	5-16 47 nH 元件的 S ₂₁ 比較	.75
圖	5-17 100 nH 元件的 S ₁₁ 比較	.75
圖	5-18 100 nH 元件的 S ₁₂ 比較	.76
圖	6-1 等寬微帶濾波器尺寸參數	.78
圖	6-2 探討 L1 變化對 S11 之影響	.79
圖	6-3 探討 L2 變化對 S11之影響	.80
圖	6-4探討S1變化對S11之影響	.81
圖	6-5探討S2變化對S11之影響	.82
啚	6-6探討W1變化對S11之影響	.82
圖	6-7 微帶線寬為1.75 / 2.25 mm 的 SIRs 濾波器尺寸參數	.83
圖	6-8 探討L3 變化對 S11之影響	.84
圖	6-9 探討 W3 變化對 S11 之影響	.84
圖	6-10探討S3變化對S11之影響	.85
圖	6-11 探討 S4 變化對 S11之影響	.85
圖	6-12探討L4變化對S11之影響	.86
圖	6-13 微帶線寬為 1.75 / 2.25 mm 的 SIRs 濾波器尺寸參數(2)	.86
圖	6-14 探討 W1 變化對 S11 之影響	.87
圖	6-15 探討 L5 變化對 S11之影響	.88
圖	6-16 微帶線寬為 1.5 / 3 mm 的 SIRs 濾波器尺寸參數	.89
圖	6-17 探討 L7 變化對 S11之影響	.90

啚	6-18探討L5變化對S11之影響	.90
圖	6-19探討L5變化對S11之影響	.91
圖	6-20 微帶線寬為 1.5 / 3 mm 的 SIRs 濾波器尺寸參數(2)	.92
圖	6-21 探討L5 變化對S11之影響	.92
圖	6-22 最佳化 SIRs 微帶線濾波器尺寸參數	.93
啚	6-23 最佳化 SIRs 微帶線濾波器尺寸參數	.94
啚	6-24 探討 S6 變化對 S11之影響	.94
啚	6-25 最佳化 SIRs 微帶線濾波器尺寸參數	.95
啚	6-26 S ₁₁ 與 S ₂₁ 的模擬結果	96
啚	$6-27$ 最佳化濾波器的 S_{21} 量測與模擬比較	.97
啚	$6-28$ 最佳化濾波器的 S_{11} 量測與模擬比較	97
置	6-29 最佳化濾波器實體圖	.98

表目錄

表 2-1 傳輸線之等效電路模型	16
表 3-1 史密斯圖應用原則	
表 3-2 五種可同時雜訊與功率匹配之優缺點比較	
表 4-1 WLAN/WiMAX 多頻天線基板參數表	
表 4-2 WLAN/WiMAX 多頻天線尺寸參數表	
表 4-3 探討 L1 變化之 WLAN/WiMAX 多頻天線尺寸參數表	
表 4-4 探討 L1 變化之 WLAN/WiMAX 多頻天線尺寸參數表	
表 4-5 探討G 變化之 WLAN/WiMAX 多頻天線尺寸參數表	
表 4-6 探討 W3 變化之 WLAN/WiMAX 多頻天線尺寸參數表	41
表 4-7 探討 L2 變化之 WLAN/WiMAX 多頻天線尺寸參數表	42
表 5-1 WLAN/WiMAX 多頻天線基板參數表	
表 5-2 不同 R1 值所對應模擬結果	63
表 5-2 模擬與量測結果比較	73
表 6-1 WLAN 雙頻品濾波器基板參數表	77
表 6-2 頻寬比(FBW)的實測與模擬比較	97

第一章 序論

1-1 專題研究動機

1990 年代末期掀起的網際網路熱潮,改寫了全世界人類的生活 型式,網際網路破除了地理空間的束縛,資訊的高速流通,進而造就 了一個嶄新的世界。關於網路通訊技術,過去固網通訊和行動通訊固 網通訊範圍分明,而導致網路通訊的環境出現空隙,由於新興網路通 訊技術,行動、無線、寬頻等技術不斷地融合創新,因而發展出多種 新興的網路通訊應用技術,例如WLAN、3G 和WiMAX,進而促成 無縫隙網路通訊環境。

在目前所有無線網路技術中,發展最蓬勃的就屬WLAN 技術, 根據預測,到了2008 年,超過八成的筆記型電腦都將具有WLAN 功 能。3G 也屬於較新的無線傳輸技術,全球主流的3G 制式有三種, 分别是COMA 2000、WCDMA、TD-SCDMA,目前世界上大部分擁 有3G 許可證的運營商都選擇WCDMA。3G 是設計於手機上的應 用,是一種能提供高品質以及多種類型多媒體服務的全球漫遊移機通 訊網路。WiMAX (Worldwide interoperability for Microwave Acess)

是一個使用寬頻的無線傳輸接取之網路技術,不必經由傳統電話線 (PSTN)或有線電視(Cable)傳送,讓使用者寬頻接取網路,並提 供使用者隨時隨地,皆可使用無線網路來高速連接上Internet,收發所 需資料。談到行動、無線、寬頻此三種技術運用,WLAN、3G 網路 都認為自身能夠擔當無線寬頻行動解決方案的重要任務。為了使電路 設計配合產業的需求,本專題研究將設計出適用於WLAN的前端接收 電路系統,尺寸方面也為了配合通訊設備輕薄短小的市場需求,做了 一些限制。

1-2 WLAN系統發展簡介

由於 WLAN 的相關配備的價格不斷下跌,以及行動通訊業者的爭 相投入,2003 年之後 PDA 和 Notebook 配備 WLAN 已漸漸變成標準 配備,包括 IBM、Toshiba、Dell、HP、Compaq、SONY 及 NEC 等 終端設備業者的新推產品已經可見此潮流。尤其隨著 Centrino 在體 積、省電、無線通訊技術多元化等方面更加優異,除各式 PDA、NB, 更進一步推廣到 Smartphone、3G、4G 的手機,以期成功過渡到通訊 領域。而 Intel 在內建了 WLAN 以後,整合 3G 或 GPRS 的方向發展 可能是一條必經之路,整體 WLAN 的產業將會因而受到幫助,所以 Intel 這一次行為,對 WLAN 的全體產業而言,造成了強力的外部效 果,WLAN 產業也將會因為 Centrino 的出現產生極大的變化,新的產業生態正在醞釀。

因此WLAN 相關思維也應有所調整,將以往區分為企業、家庭、 公眾市場的切入點,轉變成哪種終端配備適於WLAN 技術、何種價 位級距會導致內建WLAN 為思考的方向。在PDA 及 Notebook 內建 WLAN 比率漸增之後,熱點業者及行動通訊業者將因而擁有更大的 潛在市場,增加投資金費,也只有熱點業者、行動通訊業者、設備商 及 ISP 的完全合作,才可以使得以往所強調的無線「區域網路」,漸 漸地成為在公眾範圍轉向「無線」的區域網路,使 WLAN 由設備轉 成服務的領域。

除公眾網路,未來數年之內,隨著 WLAN 的新規格陸陸續續地 製定,企業用戶將會一直帶動無線區域網路的市場成長,扮演關鍵角 色。除了在辦公大樓內佈建無線區域網路外,垂直市場(如零售業、 醫療業、倉儲以及製造業……等等)引入 WLAN 整體解決的辦法, 因而提昇生產力的影響更值得推廣與重視。希望透過對 WLAN 的分 析,瞭解此產業對於未來趨勢與技術之應用。圖 1-1 及 1-2[3]為無限 通訊技術發展相關重點。

圖 1-1、無線通訊技術發展重點

圖 1-2、無線通訊技術發展方向

1-3 章節介紹

第一章將研究動機與近年新興的無線通訊系統的發展做個簡單 說明,了解無線通訊和目前發展趨勢及設計價值。第二章簡單介紹微 帶線理論,並討探微帶線使用所產生之寄生效應及改善方法。第三章 介紹對於放大器的相關理論以及定義作介紹。第四章探討三頻微帶天 線的設計過程以及比較實體量測與模擬結果。第五章介紹所設計的雙 頻低雜訊放大器(LNA),從單頻設計到雙頻設計、從理想元件模擬到 實際元件模擬,最後還有實測值的討論。第六章設計 SIRs 架構之雙 頻微帶濾波器,對於多種尺寸參數的改變皆有探討。第七章為最後總 結以及未來研究目標。

第二章

微帶線理論

傳輸線理論與基本電路學最大的不同點,在於元件的電氣特性大 小。在基本電學中,所使用的是低頻訊號,均假設整體電路比訊號波 長小很多,對於電路上任一點,其電氣特性可視為一致。相反的,而 傳輸線的大小長短則不受任何限制,可以短於一個波長,也可以長到 數個波長。因此,傳輸線是一個散佈式的網路,也就是說,在傳輸線 上不同的位置,電流與電壓的大小與相位均可能不相同。而分散式電 路理論發源於電磁學的馬克斯威爾方程式,然而通訊的目的是將電磁 能量之訊號藉由微波電路傳輸以達到功率傳輸或資料傳送,如果當電 路較複雜時,若以電磁學理論求解,其計算將將過於複雜,不利於一 般工程運用。故在微波電路學中將微波電路視為理想之傳輸線,並運 用傳輸線之等效電路求解,如此一來,可將繁瑣復雜的電磁波問題簡 化成較易計算的電路學問題,也更方便於使用電腦模擬設計電路。

2-1 傳輸線理論分析

2-1.1 傳輸線方程式

傳輸線通常皆以兩條等長的導線表示(圖 2-1a),因為是 TEM

圖 2-1、單位長度之傳輸線 a. 電壓與電流的定義 b. 集總等效電路

波的傳輸線一定至少有兩個導體。假設有一小段的傳輸線 Δz ,可用 圖 2-1b 的集線元件電路模型描述,圖中傳輸線之物理量分別定義為 單位長度的電阻 $R(\Omega/m)$ 、單位長度的電感 L(H/m)、單位長度的電導 G(S/m)及單位長度的電容 C(F/m)。在<math>z處及 $z + \Delta z$ 處的瞬間電壓分別 為v(z,t)及 $v(z + \Delta z, t)$ 。i(z,t)及 $i(z + \Delta z, t)$ 則分別表示在z處及 $z + \Delta z$ 處的瞬間電流。在圖 2-1b 的電路中,利用柯希荷夫電壓及電流定律 分別可得:

$$v(z,t) - R\Delta z i(z,t) - L\Delta z \frac{\partial i(z,t)}{\partial t} - v(z + \Delta z,t) = 0$$
(2-1)

$$i(z,t) - G\Delta zv(z + \Delta z, t) - C\Delta z \frac{\partial v(z + \Delta z, t)}{\partial t} - i(z + \Delta z, t) = 0$$
(2-2)

將式(2-1)及(2-2)除以 Δz ,取極限 $\Delta z \rightarrow 0$ 時,可得如下的微分方程式:

$$-\frac{\partial v(z,t)}{\partial z} = Ri(z,t) + L\frac{\partial i(z,t)}{\partial t}$$
(2-3)

$$-\frac{\partial i(z,t)}{\partial z} = C \frac{\partial v(z,t)}{\partial t} + G v(z,t)$$
(2-4)

此為一般傳輸線方程式(general transmission-line equation)。對於交流 穩態電壓、電流訊號,其對時間變化之函數均可表為e^{iox}之形式,

$$\omega = 2\pi 為 角頻率 \circ 於是可令 v(z,t) = v(z)e^{j\omega t} , m$$

$$i(z,t) = i(z)e^{j\omega t} , 則式(2-3) \cdot (2-4)則可表示為$$

$$\frac{dv(z)}{dz} = -(R+j\omega L)i(z) \qquad (2-5)$$

$$\frac{di(z)}{dz} = -(G+j\omega C)v(z) \qquad (2-6)$$

即為時域諧波的傳輸線方程式(time-harmonic transmission-line equation),將式(2-5)兩邊對z微分可得

$$\frac{d^2 v(z)}{dz^2} = + (R + jwL)(G + jwC)v(z)$$
(2-7)

在此定義 $\gamma \equiv \sqrt{(R + j\omega L)(G + j\omega C)}$ 為複數傳播常數(complex propagation constant)。因此,式(2-7)可表為交流電壓之波方程式

$$\frac{d^2 v(z)}{dz^2} - \gamma^2 v(z) = 0$$
 (2-8)

同理,將式(2-6)推導得交流電流之波方程式

$$\frac{d^2 i(z)}{dz^2} - \gamma^2 i(z) = 0$$
 (2-9)

由式(2-8)及(2-9)行進波方程式可求得交流電壓、電流之解如下:

$$v(z) = v_f e^{-\gamma z} + v_b e^{+\gamma z}$$
(2-10)

$$i(z) = i_f e^{-\gamma z} + i_b e^{+\gamma z}$$
(2-11)

上面兩式中,下標f是表示向+z方向移動之電壓及電流,而e^{-rz}則是 表示向+z方向移動的波函數;反之,下標b式表示向-z方向移動之 電壓及電流,而e^{+rz}則式表示向-z方向移動的波函數。

此時,將式(2-10)代入式(2-5)得
$$i(z) = \frac{\gamma}{R + j\omega L} (v_f e^{-\gamma z} - v_b e^{+\gamma z}), 並與式$$

(2-11)比較可得
$$i_f = \frac{\gamma}{R + j\omega L} v_f \mathcal{B} i_b = \frac{-\gamma}{R + j\omega L} v_b$$
,在此定義特徴阻抗

(characteristic impedance)為

$$Z_0 = \frac{R + j\omega L}{\gamma} = \frac{\gamma}{G + j\omega C} = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}}$$
(2-12)

則 $Z_0 = \frac{v_f}{i_f} = -\frac{v_b}{i_b}$ 。因此,對於向+z方向移動的波而言, $Z_0 = \frac{v_f}{i_f}$,對

於向-z方向移動的波而言, $Z_0 = -\frac{v_b}{i_b}$ 。再將波函數的時間部分考慮

進來,則交流電壓、電流之解可寫成下面形式:

$$v(z,t) = \left(v_f e^{-\gamma z} + v_b e^{+\gamma z}\right) e^{j\omega t}$$
(2-13)

$$i(z,t) = (i_f e^{-\gamma z} + i_b e^{+\gamma z}) e^{j\omega t} = \frac{1}{Z_0} (v_f e^{-\gamma z} - v_b e^{+\gamma z}) e^{j\omega t}$$
(2-1)

而 $\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}$ 亦可寫作為另一形式 $\gamma = \alpha + j\beta$ 。其中 α 是衰減常數,由於電磁波在傳輸線中行進時,能量被吸收所造成,單 位為奈/米(neper/m)或分貝/米(decibel/m),其單位不同是就所採用的電 壓或電功率比值之不同所致。另外 β 則是相位常數(phase coefficient) 或傳播常數(propagation constant),及無損失時傳輸線之傳播常數,其 單位為徑度/米(rad/m)。波長 λ 與 β 之關係如下:

$$\beta = \frac{2\pi}{\lambda} \tag{2-15}$$

電磁波傳播時之相位速度可表為

$$v_p \equiv \frac{\omega}{\beta} = \lambda f \tag{2-16}$$

至於特徵阻抗及複數傳播常數的表示式都相當複雜,但如果傳輸線是 無損失或損失可忽略不計的情況下,則R = 0, G = 0。因此傳播常數為 $r = \alpha + jB = \sqrt{(R + j\omega L)(G + j\omega C)} = j\omega\sqrt{LC}$, 也就是 $\alpha = 0$ 且 $\beta = \omega\sqrt{LC}$,相位速度為 $u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$, 特徵阻抗則為 $Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = \sqrt{\frac{L}{C}}$ 。 i(z,t)

圖 2-2、末端負載為阻抗 ZL 的傳輸線

2-1.2 有負載之傳輸線

Z=-d

圖 2-2 所示為一傳輸線,其終端連接一個阻抗為 ZL 的負載。 假設由 z < 0 處的波源所產生的入射波為 $V_f e^{-j\beta z}$ 。已知行進波的電壓

Z=0

與電流之比值為特性阻抗 Z0,傳輸線的末端是一個任意的阻抗 ZL≠Z0。在負載端,電壓與電流的比值必為 ZL,所以,在傳輸線的負 載端必產生反射波,才能同時滿足這兩個條件。故在圖 2-2 的負載側 (z=0)處,可得到:

$$v(z=0,t) = (v_f + v_b)e^{j\omega t}$$
$$i(z=0,t) = \frac{1}{Z_0}(v_f - v_b)e^{j\omega t}$$

因此由負載端看進的負載阻抗應為:

$$Z_{L} = \frac{v(z=0,t)}{i(z=0,t)} = Z_{0} \frac{v_{f} + v_{b}}{v_{f} - v_{b}}$$

將公式整理後,可得反射波電壓v,與入射波電壓v,的關係為:

$$v_b = \frac{Z_L - Z_0}{Z_L + Z_0} v_f$$

經由轉換後可定義反射係數之關係公式:

$$\Gamma_{L} = \frac{v_{b}}{v_{f}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}$$
(2-17)

若負載 Z_L 所接上之傳輸線長度為d,假設由傳輸線輸入端看進 去的反射係數為 Γ_{in} ,在圖 2-2 輸入端的位置z = -d;因此,將z = -d代入式(2-15)、式(2-16)中可得:

$$v(z=-d,t) = (v_f e^{+\gamma d} + v_b e^{-\gamma d}) e^{j\omega t}$$

$$i(z = -d, t) = \frac{\left(v_f e^{+\gamma d} - v_b e^{-\gamma d}\right)e^{j\omega t}}{Z_0}$$

將上兩式相除,可得到輸入阻抗:

$$Z_{in} = \frac{v(z = -d, t)}{i(z = -d, t)} = Z_0 \frac{v_f e^{+\gamma d} + v_b e^{-\gamma d}}{v_f e^{+\gamma d} - v_b e^{-\gamma d}}$$
(2-18)

在經簡化後,於是可知由傳輸線輸入端看進去的反射係數為:

$$\Gamma_{in} = \frac{v_b e^{-\gamma d}}{v_f e^{+\gamma d}} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}$$
(2-19)

若改以 Γ_L 來表示,則:

$$\Gamma_{in} = \frac{v_b}{v_f} e^{-2\gamma d} = \Gamma_L e^{-2\gamma d}$$
(2-20)

當傳輸線為無損耗線,因此 $\alpha = 0 \pm \gamma = j\beta$,則式(2-20)可化簡為 $\Gamma_{in} = \Gamma_L e^{-2j\beta d}$,正說明了任一負載 Z_L 經任一長度d的傳輸線,則反射 係數的絕對值相等,同理可知其反射損耗(RL)亦相等;此外,由式(2-17) 得知:

$$Z_L = Z_0 \frac{1 + \Gamma_L}{1 - \Gamma_L} \tag{2-21}$$

另由式(2-18)與式(2-19)得知:

$$Z_{in} = Z_0 \frac{1 + \Gamma_{in}}{1 - \Gamma_{in}} = Z_0 \frac{1 + \Gamma_L e^{-2\gamma d}}{1 - \Gamma_L e^{-2\gamma d}}$$
(2-22)

$$Z_{in} = Z_0 \frac{Z_L + Z_0 \tanh \gamma d}{Z_0 + Z_L \tanh \gamma d}$$
(2-23)

通常理論上會將傳輸線段視為無損耗線,因此在 $\alpha = 0$ 時, $\gamma = j\beta$,

12

式(2-23)可改成:

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta d}{Z_0 + jZ_L \tan \beta d}$$
(2-24)

因 $\beta = 2\pi/\lambda$,所以當 $d' = d + \lambda/2$ 時,則式(2-24)中的 tan $\beta d' = tan \beta d$; 其物理意義為任一負載 Z_L 經長度分別為 $d \ Q d + \lambda/2$ 的傳輸線後,其 阻抗相同;或是任一負載 Z_L 經長度 $\lambda/2$ 的傳輸線,輸入阻抗 Z_{in} 仍為 Z_L ,也就是史密斯圖上的任一負載 Z_L ,經特性阻抗 Z_0 長度為 $\lambda/2$ 傳 輸線,仍回到史密斯圖上的 Z_L 點。

2-2 傳輸線之元件等效電路

由 2-1.2 公式(2-24)討論在電路應用設計上,可假設重要的三 種特殊傳輸條件狀況:

(a)終端短路傳輸線:當負載端為短路時, $Z_L = 0 \mathcal{D} \Gamma_L = -1$,則由式 (2-24)可得:

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta d}{Z_0 + jZ_L \tan \beta d} = jZ_0 \tan \beta d$$
(2-25)

在式(2-25)中,設以βd為自變數,可以繪出線路阻抗Z,隨βd而變的 阻抗圖,如圖 2-3 所示。

圖 2-3、a.負載阻抗為零(短路)的傳輸線 b. $Z_{in} = jZ_0 \tan \beta d$ 隨長度(βd)而改變

由圖 2-3(b)所示,在 $0 < d < \frac{\lambda}{4}$ 或是 $\frac{\lambda}{2} < d < \frac{3\lambda}{4}$ 的長度範圍內,線路阻抗 Z 為電感性者(+j)。實際應用上,若以一組 $\lambda/4$ 的傳輸線,一端接以短路棒,在長度為 $0 \sim \lambda/4$ 的範圍內移動,可用以設計為一可變電感;其等效電感 L_{eq} 為:

$$j\omega L_{eq} = jZ_0 \tan\beta d \quad \theta < d < \frac{\lambda}{4}$$
$$L_{eq} = \frac{Z_0}{\omega} \tan\beta d, \quad \omega = 2\pi f \quad (2-26)$$

同理, $d\lambda_4 < d < \lambda_2$ 或是 $3\lambda_4 < d < \lambda$ 等的長度範圍內, 接收端為短路的傳輸線,將會呈現電容性的阻抗。其等效電容 C_{eq} 為:

$$-j\frac{1}{\omega C_{eq}} = -jZ_0 \tan\beta d \qquad \frac{\lambda}{4} < d < \frac{\lambda}{2}$$
$$C_{eq} = \frac{1}{\omega Z_0 \tan\beta d}, \quad \omega = 2\pi f \qquad (2-27)$$

(b)終端開路傳輸線:當負載端為開路時, $Z_L = \infty \mathcal{D} \Gamma_L = +1$,則由式

(2-20)可得:

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta d}{Z_0 + jZ_L \tan \beta d} = -jZ_0 \cot \beta d$$
(2-28)

圖 2-4 所示,為式(2-28)以 βd 為自變數,繪出阻抗 Z 的變化關係。由 圖 2-4(b)所示,在 $0 < d < \frac{\lambda}{4}$ 的長度範圍內,開路傳輸線呈現電容性的 阻抗。而在 $\frac{\lambda}{4} < d < \frac{\lambda}{2}$ 的範圍內,則為電感性阻抗。

圖 2-4 a.負載阻抗為無限大(開路)的傳輸線 b. $Z_{in} = -jZ_0 \cot \beta d$ 隨長度而改變 (c)、四分之一波長傳輸線:當傳輸線的長度為 $d = \frac{\lambda}{4}, \beta d = \frac{2\pi}{\lambda} \cdot \frac{\lambda}{4} = \frac{\pi}{2}$ 時,由式(2-20)可知:

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta d}{Z_0 + jZ_L \tan \beta d} = Z_0 \frac{1 + \Gamma_L e^{-j\pi}}{1 - \Gamma_L e^{-j\pi}} = Z_0 \frac{1 + \Gamma_L}{1 - \Gamma}$$
$$= Z_0 \cdot \frac{Z_0}{Z_L} = \frac{Z_0^2}{Z_L}$$
(2-29)

式(2-29)說明, 若取一長度為 $\lambda/4$ 的傳輸線, 可用以設計為阻抗轉換網路, 以使接收端的負載阻抗 Z_L , 轉換為 $Z_0^2/Z_L \circ \lambda/4$ 傳輸線又稱為 1/4 波長轉換電路(quarter-wave transformer)。綜合上述, 傳輸線之負載端

為短路或開路時,不同的長度會產生出不同的等效電路效應,其長度 與電路的關係整理如表 2-1 所列。

表 2-1 傳輸線之等效電路模型

2-3 頻散效應(Dispersion effect)

頻散效應即是相位常數不再如靜態 TEM 傳送模態一般,會和頻 率成線性關係(linear dependence)。如一個單一頻率的電磁波在微帶中 傳送時,會激起其他高頻的整倍頻信號產生,但實際相位常數或波數 $\beta(=2\pi/\lambda)$ 不會正好成倍比關係,而會偏離倍比整數值一些,這就 是頻散效應;此效應有時亦稱為色散效應。

在所有的微帶傳輸線中都有頻散效應存在,故在其中傳送的電磁 波的波長和頻率之間的關係不再是簡單的固定波速,而是很複雜的關 係。在導波管中和在週期性的 TEM 傳輸線上,傳遞電磁波時也會產 生不同方式頻散現象。這兩傳輸線的頻散效應目前尚未有很詳細且精 確的分析方法,但微帶線的頻散分析已有多種精確的方法被用於設計 中。

2-4 微帶線的不連續性(Microstrip discontinuities)

通常一條直線無任何彎曲且不中斷的微帶線,而且其橫切面也必 須要固定的傳輸線,即能視之為具有連續性的傳輸線,一般電磁波在 其內傳遞時所產生的電磁場也必為連續性場。但實際應用在電路時, 很少單純地只使用完全連續性的直線傳輸線,在所有實用的分佈電路 中,不論是同軸線、導波管、或是任何傳輸結構中,都必然存有幾種 具不連續性的接合面。此不連續的截面會導致電磁場的分佈改變,進 一步在電路中因寄生效應產生出其他的阻抗。以下將簡述在射頻及微 波頻段內常見到的一些不連續截面對傳輸線電路的影響,及其相對的 等效電路。

2-4.1 終端開路之傳輸線(Open-ended microstrip)

如圖 2-5 所示,原為一均勻的直線形傳輸線其終端突然結束形成 一個開路狀態的電路,此種傳輸線常應用於匹配電路、濾波器或共振 電路中,以開路型態作為傳輸線的終端則會產生以下三種的寄生效應: (1)在傳輸線的終端處,由於邊界效應的影響會導致一些散射場 (scattering fields)亦可稱為邊緣電磁場(fringing fields)延伸至傳輸線 外。此效應可視為在傳輸線終端之開路點連接一個等效邊際電容 (equivalent fringing capacitance)C,對於傳輸線之影響最為重要。(2) 微帶的開路端會引發出表面波(surface wave)產生。(3)開路端的存在, 使得電磁波能量會經由縱向邊緣場的路經輻射出能量,類似於微帶天 線之作用。

際電容之等效電路圖

2-4.2 存在於微帶線間之間隙(gap between two series microstrip)

如圖 2-6 所示,兩條相等寬度之微帶線平行而未直接接合在一

起,中間存在著一小段的間隙,此種結構亦會使電磁波形成不連續的 分佈,故稱為間隙不連續(gap discontinuity)。為了使能量能夠跨 過兩微帶間的間隙,而將能量從一微帶線上耦合到另一微帶傳輸線 中,則會在介質隙兩側之開路微帶線的個別終端上,分別感應出相同 電量但極性相反的電荷體,而形成一對類似平行電容板的情形,所以 在間隙中將會明顯地產生一電容效應,可以一等效電容 Cg 表示此間 隙電容(gap capacitance)效應。除此之外,如 2-4.1 所描述,在微帶 線之開路終端亦會有邊界效應,使邊緣電磁場產生電容效應,其可等 效於兩個接地電容(圖 2-6)。

圖 2-6、 以間隙耦合方式串聯兩條含終端開路之傳輸線 a.幾何結構圖 b. 剖 示圖及其電場分佈情形 c. 等效電路圖

2-4.3 直角彎曲(Right-angled bend)、弧線式偏折

(Curved bend)和斜削式彎折(Mitred bend)

在許多複雜的電路中,常常因佈線的限制而需要在單一的電路基

板上利用一段彎曲的微帶線連接兩個子電路或元件,而其中最常使用 的便是彎角為 90 度的直目彎曲。經常碰到的情形是彎角兩端所接傳 輸線的線寬是相同的,如圖 2-7a 所示,而圖 2-7b 為其等效電路圖。 一行進波沿著寬度均匀的直線形傳輸線行進,當碰到微帶線的彎曲部 份時,行進波將部份反射,且導致電力場線不均勻地分佈,並在拐角 處累積出一些額外的電荷量,進而在彎曲部份感應出一些電容效應存 在,特別是彎曲線的外圍部份所威應的寄生電容效應尤其明顯。此 外,也會因電流的不連續性結果而導致電感效應產生,特別值得注意 的是大部份電流是沿著微帶線彎曲部份的外圍邊界流動。雖然電感性 電抗的值仍可算極小於傳輸線的特性阻抗,但電容性電抗的值卻比微 带線的特性阻抗值還大三倍以上,如此大的電抗值將使得傳輸線間的 阻抗產生嚴重的不匹配現象,進而使得傳輸線的電壓駐波比(VSWR) 大為增加。這樣的結果對於整個網路的電性特性將會有極明顯的影 蠁。

圖 2-7、直角彎曲之微帶傳輸線 a. 幾何結構圖 b. 等效電路 進一步探討降低由直角彎曲所造成的電容性電抗,並改進其 VSWR

值的方法,其中特別值得注意的是 Anders 和 Arndt 兩人運用 moment method,計算含有不同切削角度之斜削角彎曲(mitred bends)微帶傳 輸線(圖 2-8),和含不同弧周之弧形式彎曲(curved bend)微帶傳輸 線(圖 2-9),並求取其等效偏折電容和電感值。從計算結果中發現即 使頻率高達 10 GHz 以上,含有斜削角的 90 度彎折傳輸線所產生的電 抗效應比圓弧形式的 90 度彎折所引生電抗量小很多,且電路性能也 較佳。這兩種補償技術亦可適用到需做 30 度到 120 度角度偏折的微 帶傳輸線中。

圖 2-9、 弧形偏折之微带線的幾何結構圖

2-4.4 微帶線寬度改變之不連續性

在許多電路中常會需要改變微帶線的線寬,像是在電晶體的放大 電路中常要做多次線寬改變,或是在耦合器和濾波器中也常見到此種 改變,而此種因為線寬改變所造成的電磁場不連續性,也會由於彎角 的存在而引生出並聯式電容效應,此電容值是其等效電路中非常主要 的參數。此除之外,亦會造成邊界電流的擾動,而產生一等效電感(圖 2-10)。

圖 2-10、微帶傳輸線因線寬做對稱式改變所形成的不連續性 a. 幾何結構圖 b. 等效電路圖

第三章

低雜訊放大器設計概論

低雜訊放大器(Low Noise Amplifier, LNA)是接收機的第一級放 大電路,其主要目的是提供接收來自天線信號所需的增益(Gain)與靈 敏度(Sensitivity)。由於 LNA 是接收機的前端部分,一個接收機模組 雜訊指數(Noise Figure)的好壞將決定於 LNA 的雜訊指數。所以低雜 訊放大器設計時須注意下列幾項考量:穩定度(Stability)、雜訊指數 (Noise Figure)、增益(Gain)、輸入返回損耗(Input Return Loss)......等。

3-1 重要定義與理論

3-1.1 諧波失真 (Harmonic Distortion)

在非線性系統中,如圖3-1,設一輸入信號fc 經過放大器後,除 了主要的信號外,還會產生多次項的諧波稱為諧波失真。

圖3-1、非線性放大器輸入與輸出頻譜

$$Vin = A\cos\omega t \tag{3-1}$$

...(3-3)

在非線性系統中會產生多次項的諧波則輸出信號

$$Vout = a_1 Vin + a_2 Vin^2 + a_3 Vin^3 + \dots$$
(3-2)

將輸出信號式(3-2)展開

$$Vout = a_1 A \cos \omega t + a_2 A^2 \cos^2 \omega t + a_3 A^3 \cos^3 \omega t + \dots$$

$$= a_1 A \cos \omega t + \frac{a_2 A^2}{2} (\cos 2\omega t + 1) + \frac{a_3 A^3}{4} (\cos 3\omega t + 3\cos \omega t) + \dots$$

$$=\frac{a_2A^2}{2} + (a_1A + \frac{3a_3A^3}{4})\cos \omega t + \frac{a_2A^2}{2}\cos 2\omega t + \frac{a_3A^3}{4}\cos 3\omega t + \dots$$

由(3-3)得知^{*a*2*A*²} 為直流常數項,而 cosωt 為主要輸入之頻率信號,其他的 cos2ωt、cos3ωt......等項則為二倍與三倍的諧波項,若諧波項 之大小過大,導致影響主要頻率信號稱之為諧波失真。

3-1.2 1-dB 增益壓縮點 (1dB Compression Point)

1-dB增益壓縮點為評估線性度的關鍵指標,放大器的增益在輸入訊號為較小的功率時其特性為線性放大,當輸入信號功率大到某個 程度時,放大器不會持續維持線性放大的特性,最終必會進入飽和狀 態,稱為非線性放大,由於此效應的關係,增益就會逐漸被壓縮減小, 直到放大器飽和為止。為了表示放大器的信號功率的線性工作

圖3-2、1-dB 增益壓縮點

範圍,定義以輸出增益比線性時增益小1-dB時的位置,稱為1-dB增益 壓縮點(1-dB compression point)。如圖3-2所示,Pin為輸入信號功率, Pout為輸出信號功率,而1-dB增益壓縮點在圖3-2中可以由P1dB,out與 P1dB,in兩點之值來表示之。若用數學式表示可利用式(4-3)可知主要頻 率信號放大輸出項為

$$(a_1A + \frac{3a_3A^3}{4})\cos\omega t \tag{3-4}$$

若暫不考慮諧波失真則信號增益可表示為式(3-4)/式(3-1)

$$\frac{Vout}{Vin} = \frac{(a_1A + \frac{3a_3A^3}{4})\cos\omega t}{A\cos\omega t} = a_1 + \frac{3a_3A^2}{4}$$
(3-5)

若a₃<0,則主要信號增益將會下降。原因是當輸入信號功率很大時, 輸出的三階諧波功率幾乎為零,輸出功率不再隨著輸入信號功率而線 性的增加。

3-1.3交互調變失真 (Inter-Modulation Distortion, IMD)

在多頻道的系統或是無線通訊的環境中,如圖3-3所示,當放大 器的輸入端有兩個或兩個以上頻率很接近的信號,圖中之ω₁與ω₂,同 時輸入放大電路時,由於電路元件的非線性效應,在輸出信號頻譜 中,會造成不同頻率的信號產生交互調變作用,是為交互調變衍生出 的信號,圖中之(2ω₁-ω₂)與(2ω₂-ω₁),若此交互調變的非線性項位於在

圖3-3、三階非線性示意圖

所要的頻道內,圖中之(2ω2-ω1),且此信號大小足以影響此頻道內之 辨識度則會造成訊號的干擾,增加訊號解調後的位元錯誤(BER),無 法由濾波器完整濾除的兩個鄰近干擾訊號,經過非線性放大器時,其 三階交互調變失真的諧波會落在所要的頻道內,惡化訊號品質。若使 用數學式表示時,假設輸入信號為
$$Vin = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t \tag{3-6}$$

(3-7)

代入式(3-2)得

$$Vin = a_1 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t) + a_2 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^2 + a_3 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^3 + \dots$$

將(3-7)式展開,可得知輸出主要頻率信號為

$$\omega = \omega_1, \omega_2 : (a_1A_1 + \frac{3}{4}a_3A_1^3 + \frac{3}{2}a_3A_1A_2^2)\cos\omega_1 t$$
$$+ (a_1A_2 + \frac{3}{4}a_3A_2^3 + \frac{3}{2}a_3A_2A_1^2)\cos\omega_2 t$$

$$\omega = \omega_1 \pm \omega_2 : a_2 A_1 A_2 \cos(\omega_1 + \omega_2)t + a_2 A_1 A_2 \cos(\omega_1 - \omega_2)t$$

= $2\omega_1 \pm \omega_2 : \frac{3a_3 A_1^2 A_2}{4} \cos(2\omega_1 + \omega_2)t + \frac{3a_3 A_1^2 A_2}{4} \cos(2\omega_1 - \omega_2)t$
= $2\omega_2 \pm \omega_2 : \frac{3a_3 A_1^2 A_2}{4} \cos(2\omega_2 + \omega_1)t + \frac{3a_3 A_1^2 A_2}{4} \cos(2\omega_2 - \omega_1)t$

在此三階截斷點(third intercept point, IP3)為衡量電路線性度的一項 重要參數,定義上如圖3-4為主頻功率與三階非線性項的功率延長線 的交點。此時的輸入功率定義為輸入三階截斷點(IIP3),相反的,輸 出功率定義為輸出三階截斷點(OIP3)。

圖3-4、三階互調截斷點示意圖

3-1.4雜訊指數 (Noise Figure, NF)

雜訊因素(noise factor)和雜訊指數(noise figure),都是用來評估 接收系統或是放大電路中雜訊的參數。雜訊因素是表示訊號雜訊比 (signal-to-noise ratio)在經過電路後的變化程度。對於一個雙埠放大器 電路如圖3-5,輸入訊號Si及輸入雜訊Ni,經過一增益為G的放大電 路,產生輸出信號So及輸出雜訊No,在輸出端雜訊不僅將訊號放大, 同時也放大了輸入雜訊,更會增加額外的雜訊(N_{add})於輸出端,這額 外的雜訊通常是由電路中的熱雜訊(thermal noise)及主動元件之雜訊 等所引起,導致訊號雜訊比下降。雜訊因素定義為式(3-8),而雜訊指 數為雜訊因素的dB值,定義為式(3-9)。

圖3-5 放大器之雜訊模型

$$F \equiv \frac{SNRi}{SNRo} = \frac{\frac{Si}{Ni}}{GSi/(GNi + N_{add})} = \frac{GNi + N_{add}}{GNi}$$
(3-8)

$$NF = 10\log F(dB) = 10\log \frac{GNi + N_{add}}{GNi}(dB)$$
(3-9)

若有n 級串接如圖3-6, F_n 為第n級本身雜訊指數, G_n 為第n 級本身的有效功率增益。

圖3-6、n級串接放大器雜訊模型

其串階n級之雜訊指數可由式(3-10)所示,若第一級的增益G1夠大,則 總雜訊指數(Ftot)可由F1來決定, F2、F3.....可忽略,也就是說雜訊 指數的大小主要由第一級放大器所決定,在串接放大器中第一級通常 以最低雜訊方式為目標以降低雜訊指數。當訊號到達第二級後,其雜 訊指數影響已經縮減至G1倍,所以在設計串接型態放大器時,各級應 當分別設計,最後再加以整合。第一級以達到較低的雜訊為目的,以 控制整體的雜訊指數大小,第二級以後是以提高增益為設計重點。

$$F_{tot} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots + \frac{F_n - 1}{G_1 G_2 G_3 \dots G_n - 1}$$
(3-10)

3-1.5穩定性 (stability)

設計射頻放大器時穩定性參數是一項重大指標,一定要讓電路盡 可能保持無條件穩定,當電路因不穩定而造成振盪之情形,此電路即 無法正常工作,所以穩定性在設計放大電路時為關鍵之考量因數。在 雙埠網路中只要輸入或輸出端有一端呈現負電阻時就可能使電路產 生振盪,所以要讓雙埠網路達到無條件穩定的情況必須滿足下面所列 之條件式(3-11)與式(3-12):

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |S_{11}S_{22} - S_{12}S_{21}|^2}{2|S_{12}S_{21}|} > 1$$
(3-11)

$$|\Delta| = |S_{11}S_{22} - S_{12}S_{21}| < 1$$
(3-12)

3-2 阻抗匹配網路原理

在高頻電路設計中,阻抗匹配是很重要的一環。從直流電路的基 本理論中可知,若信號源的電阻與輸出之負載電阻相同時,就可在輸 出端得到最大的功率輸出。但在交流電路中,除了電阻,尚有電容、 電感等電抗性元件,故若要求得最大功率輸出,除了兩端的電阻相等 外,還需信號源的電抗與負載的電抗互成共軛才行。阻抗匹配網路一

30 逢甲大學學生報告 ePaper(2010 年)

般可分為三種:L型、T型及 π型三種。選用何種匹配端視情況而 定,除非有特別需求,一般都是以最少的零件來完成匹配。圖3-7所 示為ZY史密斯圖,它是由阻抗史密斯圖及導納史密斯圖所組成,圖 中的實線圓為常電阻圓;實線弧為常電抗圓;虛線圓為常電導圓;虛 線弧為常電納圓;實線半圓所代表的是為常Q值圓。

加入元件總類	行走路徑	行走方向
串電感	常電阻圓	順時針
串電容	常電阻圓	逆時針
並電感	常電導圓	逆時針
並電容	常電導圓	順時針

表3-1、史密斯圖應用原則

圖3-7、史密斯圖

3-3 電路架構分析與設計

在射頻放大器中,增益與雜訊指數往往是一體兩面,如何權衡適 當增益以獲得最佳雜訊指數乃是設計低雜訊放大器之第一步驟。在電 晶體放大器設計時,為取得最低的雜訊度,在線性網路中必定有一最 佳信號源反射係數(Γopt)。在設計低雜訊指數放大器時,必須先由技 術資料或以實驗方式求得對應於偏壓條件下之最佳信號源阻抗,然後 在將實際的信號源阻抗轉換為此一最佳值,然而最佳信號源阻抗作匹 配時,未必能同時獲得最佳之增益或是輸入返回損耗,因此對於雜訊 與增益匹配之方式顯得很重要。因此,我們舉出五種可同時雜訊與功 率匹配之電路架構,並將各架構之優缺點及適用頻帶歸納整理如表 3-2 所示。

電路架構	優點	缺點	適用頻帶
CCPF	堆疊目的:	雜訊指數於高頻	L(1.12~1.7GHz)
	高增益、	時會有稍微明顯	
	頻寬較寬、	的增加	
	增益之可控性。		
	回授電阻目的:		
	較佳之線性度、		
	可提升無條件穩		
	定之頻率範圍、		
	可同時增益與雜		
	訊匹配。		
CGPF	电感並聯負回授	線性度較差些。	C(3.95~5.85GHz)
	的目的:		X(8.2~12.4GHz)
	可降低在高頻時		
	之雜訊指數會稍		

32

	微增加的現象、		
	可提升增益、		
	可提升無條件穩		
	定之頻率範圍、		
	可同時增益與雜		
	訊匹配。		
CCPF	有最高之增益。	電路設計較複雜。	L(12GHz)
+	有較好之線性度。		
CGPF			
CCSF	具有高單向性之	來自CG之雜訊會	L(1.12~1.7GHz)
	特性。	增加	LS(1.7~2.6GHz)
	輸出負載不會影		
	響輸入匹配。		
	可同時增益與雜		
	訊匹配。		
CSSF	將 CSSF 與 CGPF		L(1.12~1.7GHz)
+	之優點結合		6GHz
CGPF			12GHz

表 3-2、五種可同時雜訊與功率匹配之優缺點比較

第四章

WLAN/WiMAX 多頻天線設計

本文中所設計之天線的模擬及實作基板板材皆使用玻璃纖維板 (FR4),其規格如表 4-1 所示:

基板材質	FR4
介電係數 (Er)	4.4
基板厚度 (h)	1.6 mm
介電損失 (δ)	0.022
表面金屬厚度	0.02 mm

表 4-1、WLAN/WiMAX 多頻天線基板參數表

以下要探討的是以單純貼片天線(patch antenna)的形式,調整 各個長度。如下圖所示,欲探討的尺寸參數變化,分別為W1、W2、 W3、L1、L2和G。饋入微帶線寬,以及饋入微帶線與接地面距離的 設定是使用 AppCAD 計算,當基板介電係數(*ɛ_r*)為4.4、厚度 1.6 mm、 表面金屬厚 0.02 mm,採用饋入微帶線寬 3 mm,以及饋入微帶線與 接地面距離 0.4 mm,在頻率為2.4 GHz 及 5.8 GHz 時,饋入微帶線分 別有 50.36 Ω和 51.04 Ω的特性阻抗(characteristic impedance), 雨者 皆非常接近匹配所需的 50 Ω, 因此以下 4-1 節的天線參數調整, 饋入 微帶線寬,以及饋入微帶線與接地面距離皆為固定值。

4-1 貼片天線各尺寸參數對 S11 影響之探討

圖 4-1、貼片天線尺寸參數圖

天線貼片主體的寬度	\mathbf{W}_1
天線接地面寬度	W_2
天線整體寬度	W_3
主體貼片的長度	L ₁
天線接地面長度	L2
天線主體與接地平面距離	G

饋入微帶線寬	3 mm	
饋入微帶線與接地面距離	0.4 mm	
表 4-2、WLAN/WiMAX 多頻天線尺寸參數表		

4-1.1 天線主體長度

首先要探討的是以單純貼片天線的形式,其他參數固定,改變 L₁(主體貼片的長度)所造成的輸入返回損耗 S₁₁(return loss)變化情形。

天線貼片主體的寬度	W1=14 mm
天線接地面寬度	W2=10.1 mm
天線整體寬度	W3=24 mm
主體貼片的長度	L_1
天線接地面長度	L2=14 mm
天線主體與接地平面距離	G=1 mm
饋入微帶線寬	3 mm
饋入微帶線與接地面距離	0.4 mm

表 4-3、探討 L1 變化之 WLAN/WiMAX 多頻天線尺寸參數表

圖 4-2、探討 L1 變化對 S11 之影響

由圖 4-2 的模擬結果得知,L1(主體貼片的長度)值越大則共振頻 率越往低頻偏移,其原因不難推測,因為增加 L1 會使得電流路徑增 加,造成共振點的低頻頻偏現象。對於兩個共振點間的隔離度也有影 響,L1 愈大則隔離度愈佳。貼片天線本為寬頻天線的形式,由4-2 的模擬結果得知,若善加調整 L1 長度來改變頻帶中的輸入返回損 耗,則貼片天線就可以變成是雙頻天線。

4-1.2 天線主體寬度

其次,要探討的是其他參數固定,改變 W₁(天線貼片主體的寬度) 所造成的輸入返回損耗 S₁₁(return loss)變化情形。

天線貼片主體的寬度	W1
天線接地面寬度	W2=10.1 mm
天線整體寬度	W3=24 mm
主體貼片的長度	L ₁ =17.5
天線接地面長度	L2=14 mm
天線主體與接地平面距離	G=1 mm
饋入微帶線寬	3 mm
饋入微帶線與接地面距離	0.4 mm

表 4-4、探討 L1 變化之 WLAN/WiMAX 多頻天線尺寸參數表

圖 4-3、探討 W1 變化對 S11之影響

由上圖的模擬結果得知,改變 W1(天線貼片主體的寬度),影響的

38

主要是匹配程度,對於頻偏的影響相當微小。在調整尺寸的過程發現,雖然上圖顯示 W₁為 12 mm 實有最佳的匹配程度,但當 L1(主體 貼片的長度)改變,最佳匹配所對應的 W₁並非固定為 12 mm,這也是 值得注意的一點。

4-1.3 天線主體與接地平面距離

第三,要探討的是其他參數固定,改變G(天線主體與接地平面 距離)所造成的輸入返回損耗S₁₁(return loss)變化情形。

天線貼片主體的寬度	12 mm
天線接地面寬度	W2=10.1 mm
天線整體寬度	W3=24 mm
主體貼片的長度	L ₁ =17.5
天線接地面長度	L2=14 mm
天線主體與接地平面距離	G
饋入微帶線寬	3 mm
饋入微帶線與接地面距離	0.4 mm

表 4-5、探討 G 變化之 WLAN/WiMAX 多頻天線尺寸參數表

圖 4-4、探討 G 變化對 S11 之影響

由如圖 4-4 模擬結果得知,改變 G(天線主體與接地平面距離), 其主要影響為高頻與低頻的輸入返回損耗交換,以及高頻共振點的頻 偏,對於低頻的頻偏影響較小。藉由改變 G 值可犧牲低頻匹配來加 強高頻匹配,或是犧牲高頻匹配來加強低頻匹配,亦可同時讓高低頻 的匹配較平衡、均勻。因為 G = 1.5 mm 時,高、低頻的輸入返回損 耗的表現較為平均,故先選擇 G = 1.5 mm。

4-1.4 天線整體寬度

第四,要討要探討的是其他參數固定,改變 W3(天線整體寬度) 所造成的輸入返回損耗 S₁₁(return loss)變化情形。

天線貼片主體的寬度	12 mm
天線接地面寬度	W2=10.1 mm

天線整體寬度	W3
主體貼片的長度	L ₁ =17.5
天線接地面長度	L2=14 mm
天線主體與接地平面距離	2 mm
饋入微帶線寬	3 mm
饋入微帶線與接地面距離	0.4 mm

表 4-6、探討 W3 變化之 WLAN/WiMAX 多頻天線尺寸參數表

圖 4-5、探討 W3 變化對 S11之影響

由上圖的模擬結果得知,改變 W3(天線整體寬度),其主要影響

的是高頻的匹配,W3 過大或過小對匹配都會造成不良影響。對於低頻的影響甚小。由於W3=30 時高頻共振點有較小的輸入返回損耗,故選擇W3=30 mm。

4-1.5 天線接地面長度

第五,要討要探討的是其他參數固定,改變L2(天線接地面長度) 所造成的輸入返回損耗 S₁₁(return loss)變化情形。

天線貼片主體的寬度	12 mm
天線接地面寬度	W2=10.1 mm
天線整體寬度	W3=30mm
主體貼片的長度	L ₁ =17.5
天線接地面長度	L2
天線主體與接地平面距離	2 mm
饋入微帶線寬	3 mm
饋入微帶線與接地面距離	0.4 mm

表 4-7、探討 L2 變化之 WLAN/WiMAX 多頻天線尺寸參數表

圖 4-6、探討 L2 變化對 S11 之影響

由上圖的模擬結果得知,改變 L2(天線接地面長度),其主要影響的是整體共振頻率的偏移,但也對於高、低頻的匹配程度造成影響。但 L2 = 15 mm 時高頻的匹配較好,故先選擇 L2 = 15 mm。

4-1.6 天線接地面長度與天線主體長度的互換

經由上面五點,觀察到主要影響共振頻偏之參數的是 L1(主體貼 片的長度)以及 L2(天線接地面長度),其他尺寸參數對於頻偏的影響 較小。然而本文所設計天線是接收 WLAN 及 WiMAX 頻帶(2.4、3.5 及 5.8 GHz),其中最低的共振頻率是 2.4 GHz,最低的共振頻率所對 應的是最長的電流路徑。故尺寸設計的考量上必須夠大,使之有足夠 長的電流路徑,以共振出 2.4 GHz。實驗的考量上分兩組進行,作法 一是增加L2(天線接地面長度),而L1(主體貼片的長度)不變(L1=17.5 mm);作法二是增加L1(主體貼片的長度),而L2(天線接地面長度) 不變(L2=14 mm)。模擬結果發現,當上述的兩種作法的天線總長度 L1+L2+G(天線主體與接地平面距離)皆為 53 mm (作法一:L1= 17.5 mm,L2=23.5 mm,G=2 mm 及作法二:L1=27 mm,L2=14 mm,G=2 mm)時,低頻會分別約共振出 2.5 GHz 和 2.3 GHz 的共振 頻率(如下圖所示),這意味著若要以單純的貼片天線為基楚結構,製 作出接收 2.4GHz 頻帶的天線,不論是藉著增加貼片長度或增加接地 長度,光是整體天線的長度可能必須達 50 mm 以上。且從模擬的結 果得知,L2(天線接地面長度)+L1(主體貼片的長度)為固定值之前提 下,改變 L2 及 L1 對於第一與第二共振點的頻傷影響不大。

圖 3-7-1、共振出 2.4 GHz 所需之天線長度 (天線尺寸單位:mm)

圖 4-7-2、共振出 2.4 GHz 所需之天線長度 (天線尺寸單位:mm)

4-2 增加低頻共振臂之貼片天線

鑑於縮小天線整體尺寸,設計的構想上就以貼片共振出中(3.5 GHz)、高頻帶(5.8 GHz),然後再增加低頻共振臂使產生可共振出 2.4 GHz 頻帶的電流路徑,藉以達成縮減天線尺寸之目的。圖 4-8 為共振 出中(3.5 GHz)、高頻帶(5.8 GHz),未增加低頻共振臂的純貼片天線。 圖 4-8 的天線設計方式,參考 4-1 節的參數調整比較,主要是由整體 天線的長度(L1+L2)控制中頻共振點(3.5 GHz)。因為貼片天線本為寬 頻天線的形式,但是藉由貼片主體長度(L1)調整中、高頻間的隔離 度,使之不低於-10dB,再經由天線主體與接地平面距離(G)來調整 高頻位置以及中高頻的匹配程度。圖 4-8 的模擬結果顯示,以純貼片 天線共振出 3.5 Ghz 以及 5.8 GHz 的方法確實可行。

45 逢甲大學學生報告 ePaper(2010 年)

圖 4-8、以純貼片天線共振出 3.5GHz 及 5.8GHz 頻帶 (天線尺寸單位:mm)

但若是將圖 4-8 之天線直接增加低頻共振臂,對於整體的模擬 S₁₁ 也會造成影響,中、高頻的 S₁₁表現並不會像圖 4-8 那麼完整。貼片 主體加上低頻共振臂後,仍須對天線的尺寸參數作一些微調,才能得 到接近 2.4 GHz、3.5 GHz 及 5.8GHz 三個設計的共振頻率點,以及可 接受的輸入返回損耗值,微調的方式同樣是參考 4-1 節的參數調整比 較。增加低頻共振臂,並且適當調整尺寸參數後,其最後的尺寸設計 和模擬 S₁₁ 如圖 4-9 所示。

由圖 4-9 的 S11 模擬結果所示,雖其三個共振頻率都非常接近設 計需求的 2.4 GHz、3.5 GHz 及 5.8 GHz,但是高頻的操作頻寬過大, 將使得接收過多的雜訊而不符合實際的設計需求。為此,採用的解決 方法是額外增加一個槽孔(slot)來帶拒掉非操作頻帶。不過額外增加一 槽孔,也會造成高頻的電流路徑增長,而讓高頻帶有往低頻偏移的情 況,為解決高頻頻偏問題,採用貼片主體長度增加1mm(22.5mm+1 mm = 23.5 mm), 而天線主體與接地平面距離減少 1mm (2 mm - 1mm =1mm),在不改變整體天線長度,使中頻電流路徑不改變前提下,調 整天線主體與接地平面距離(G)所造成的 S₁₁變化可參考 4-1.3 小節, 雖然增加一段低頻共振臂,但主要由貼片主體所控制的中、高頻,其 S11 變化在 4-1 節所探討的純貼片天線參數調整,仍具相當的參考價 值。圖 4-10 即是增加槽孔後的最佳化天線,及其模擬 S11 圖。其槽孔

47

逢甲大學學生報告 ePaper(2010 年)

長度以式(4-1)計算[4]:

$$L = \frac{c}{2f_{notch}} \sqrt{\frac{2}{\varepsilon_r + 1}}$$
(4-1)

其中fnotch為帶拒中心頻率, c為真空中光速;以帶拒中心頻率6.5 GHz 設計,所需之槽孔長度L為14 mm,經微調後,槽孔長為16 mm於此設 計達到所需之帶拒特性。模擬的S₁₁顯示,不論是共振頻率點或頻寬, 與設計需求的符合度都很高。模擬共振頻率分別為低頻2404 MHz,, 頻帶2329~2474MHz,中頻3484MHz頻帶3102~4057 MHz,以及高頻 5764 MHz,頻帶5135~6086 MHz。

本文為貼片形式作基礎的天線,其貼片尺寸所造成的輸入返回損 耗變化在 4-1 節中都有多方面的探討,由模擬的比較都能夠很清楚地 掌握尺寸改變造成的 S11 變化趨勢。在 4-2 節中,主要討論的是最佳 化天線不論在尺寸微調方面或是槽孔的寬度、長度變化所造成的變 化,藉此變化的趨勢來找尋最佳化的輸入返回損耗響應。

4-2.1 最佳化天線接地面長度與天線主體長度的互換

整體天線尺寸是指能夠包含整個天線之矩形的長度乘以寬度,如 圖 4-10,本文之最佳化天線尺寸為 39×30 mm²,除了整體天線尺寸之 外,有時在設計上也會在意『主體天線』的尺寸。在 4-1.6 小節中, 得到了純貼片天線的接地長度與貼片主體長度互換,對於主要由貼片 所產生的第一共振頻率(3.5 GHz)與第二共振頻率(5.8GHz)的頻偏影 響並不大,因此接著要探討的是用圖 4-10 的最佳化天線,來討論其 長度互換所造成的 S11 變化情形,藉以觀察縮小天線主體尺寸,但不 縮小整體天線之尺寸(因縮小整體尺寸會造成中頻的頻偏)的可行性。 圖 4-11 的模擬結果顯示,此作法的確對三頻帶的共振頻偏之影響不 大,其主要之影響在於低頻匹配以及中、高頻間的隔離度和 6.5 GHz 的帶拒效果。貼片主體長度較長,優點是會得到較佳的中、高頻間的 隔離效果以及 6.5 GHz 帶拒效果;缺點是低頻匹配會變差,該怎麼取 捨,就得看設計上的考量。本文主是考慮到低頻匹配以及中、高頻間 之隔離效果不要太差。由模擬的整體 S11 特性考量,主體貼片的長度 實在不宜再作縮減,故選用貼片主體長度為 23.5 mm。

4-2.2 最佳化天線槽孔(slot)寬度探討

接著要討論的是,最佳化的天線在其他尺寸參數皆固定,槽孔寬 度對於 S₁₁ 的變化情形。天線各部份尺寸如圖 4-13,定義槽孔寬為 W4,而圖 4-14 為 W4 在各種數值所對應的模擬 S₁₁ 圖形比較,其模

0

擬結果可看出槽孔寬度愈小,模擬 S₁₁在 6GHz 以上的帶拒非操作頻帶的效果愈好,推測其原因應為槽孔寬度愈小,則槽孔兩側之反向電流相離愈近,造成強度較大的電流相消,因此有較佳之帶拒效果。

圖 4-14、天線槽孔寬度比較之模擬結果

4-2.3 最佳化天線槽孔(slot)位置探討

槽孔位置也是個值得討論與研究的議題,本小節主要探討的是 槽孔位置改變,所造成 Sui 變化的趨勢,選出最符合設計需求的槽孔 位置。天線各部份尺寸如圖 4-15,將天現主體之底部到槽孔底部的距 離設成 L3,而圖 4-16 為不同 L3 對應的 Sui 圖形之比較。

圖 4-15、天線槽孔位置比較之尺寸圖

圖 4-16、天線槽孔位置比較之模擬結果

根據圖 4-16 所示,L3 值愈大(槽孔距離饋入愈遠),則 6.5 GHz 的隔離效果愈差。推測其原因應是L3 愈小,則槽孔離饋入愈近,造 成槽孔周圍有較強的電流,而槽孔的兩側是方向相反的電流,故L3 愈小,電流相消的強度也愈大。本文選擇L3=1mm,除了因為有不 錯的 6.5 GHz 隔離效果,另外也有較好的高頻帶(5.8 GHz)匹配。

4-2.4 最佳化天線槽孔彎折處探討

因為槽孔長定為 16mm,而貼片主體寬僅 14mm,故槽孔必定須 要彎折。將槽孔的水平長度設成 4+2L4,兩段鉛直長度皆設為 6-L4, 如此三段長加總為 4+2L4+2×(6-L4) = 16,即不論 L4 值為何槽孔總長 皆固定,L4 改變僅是改變槽孔的彎折處而本節要討論的就是在長度 不變,且槽孔水平與貼片主體底部距離(即圖 4-15 的 L3)如同 4-2.1 得 到的較佳結論相同,定為 1mm。天線各部份尺寸如圖 4-17。

圖 4-17、天線槽孔彎折處比較之尺寸圖

3 逢甲大學學生報告 ePaper(2010 年)

53

圖 4-18、天線槽孔彎折處比較之模擬結果

根據圖 4-18 所示,高頻除了匹配深度外,共振點頻率也有很大的改變,推測其頻率改變之原因,應是槽孔水平長度越長,則共振出高頻的電流須要繞得更遠,如此便造成高頻共振點往低頻移動。

4-3 最佳化天線之場型

圖 4-19 與 4-20 為此多頻天線之量測輻射場型,在對應的操作頻 率均有良好的全向性。

圖4-19、天線量測H-plane (a) 2.4GHz (b) 3.5GHz (c) 5.8GHz

圖4-20、天線量測E-plane (a) 2.4GHz (b) 3.5GHz (c) 5.8GHz

4-4 多頻天線模擬量測比較與結論

本天線以高頻電磁模擬軟體IE3D進行天線模擬設計,使用介電係 數為4.4 之FR4基板,厚度為1.6 mm,介電損失(tanδ)為0.022。圖3-22 所示分別為原始貼片天線(天線A)、加入低頻共振臂天線(天線B)與再 加入U形槽孔天線(天線C)的輸入返回損失(return loss)模擬比較,以及 天線C的量測結果,若以輸入返回損失-10dB作基準,實測阻抗頻寬分 別為低頻帶2212~2505MHz,中頻帶2910~4375 MHz,以及高頻帶 5222~6339 MHz,符合WLAN 2400/5800 MHz 以及WiMAX 3500 MHz之操作頻段需求。由於使用的是適於操作在較低頻的FR4基板, 介電系數也會隨頻率升高而下降,故電路操作於較高的頻率,恐造成 天線接收的頻帶往高頻偏移,因此高頻操作頻帶略往高頻偏移也屬於 正常的現象。

圖4-21、天線輸入返回損失之模擬與量測結果

56

	低頻頻帶	中頻頻帶	高頻頻帶
	低頻共振點	中頻共振點	高頻共振點
模擬	2329~2474MHz	3102~4057 MHz	5135~6086 MHz
	2404 MHz	3484MHz	5764 MHz
實測	2212~2505 MHz	2910~4375 MHz	5222~6339 MHz
	2440 MHz	3610MHz	6010 MHz

表 4-5、最佳化天線量測與模擬的頻帶範圍與頻率共振點

圖4-22、最佳化天線實體圖

第五章

WLAN 雙頻低雜訊放大器設計

本文中所設計之 LNA 的模擬及實作基板板材皆使用玻璃纖維板 (FR4),其規格如表 5-1 所示:

表 5-1、WLAN/WiMAX 多頻天線基板參數表

5-1 2.4 GHz 的單頻低雜訊放大器

圖 5-1、單頻低雜訊放大器電路結構圖

58

如圖 5-1 所示,剛開使先模擬的是操作頻帶為 2.4 GHz 的單頻 LNA。輸入及輸出皆使用微帶線匹配。首先簡單介紹圖 5-1 中各個元 件的功能:

- (1)此電路以微帶線作輸入阻抗匹配,M2、M3為輸入級單頻2.4 GHz 阻抗匹配網路。
- (2)此電路以微帶線作輸入阻抗匹配,M6、M7為輸出級單頻2.4 GHz 阻抗匹配網路。
- (3)為了焊接SMA接頭,M1及M8皆為寬度1.5 mm與長度3 mm的微帶 線段。
- (4)R1、R2為提供偏壓的電阻。
- (5)C3、C4、C5、C6為兩組by-pass電路,可讓直流電壓源較穩定,同一組的兩個電容,通常容值使用一大一小,且對於輸出、輸入阻抗匹配幾乎無影響。
- (6)以微帶線M9的電感性作主要的RF Chock,使高頻信號不干擾直流 電壓源,其長度與寬度對於增益也有一定程度的影響。
- (7)其他微帶線主要為連接元件用,使用寬為1.5mm之微帶線,以達成 阻抗匹配之目的。此寬度在焊接或貫孔也不至於因寬度太小而發 生困難。
- (8) 源級(Source)的M4與M5兩段微帶線主要功能為利用其微帶線之電

感性,增加整體電路的穩定度,但對於匹配及增益也會造成影響, 故長寬也須作微調來得到良好的結果。源級在模擬時使用兩段微帶線並聯是由於本電路使用之電晶體NE3210S01有兩個源級接腳。
(9)電晶體使用NE3210S01,電感及電容元件皆採用理想元件來進行此 電路模擬。

單頻 2.4 GHz LNA 電路的調整過程中我們發現,在相同的偏壓與偏 流,且輸出及輸入的阻抗匹配皆非常接近 50Ω,满足這兩個先決條 件,嘗試使用不同數值的偏壓電阻 R1,其值越大則 2.4 GHz 的增益 也會越大,且雜訊指數也越低,如表 5-1 所示。但並非能夠無窮盡地 不斷加大,當 R1 越大,穩定度的表現也會逐漸變差,最後將變成有 部分頻帶的K值會小於 1,造成沒有全頻帶穩定。雖然源極的兩段微 帶線也會對穩定度造成影響,但這邊為了瞭解 R1 造成的穩定度改 變,將此兩段微帶線的長固定為 1 mm,寬固定為 1.5mm。結果發現, 當 R1 使用 Murata 3300 Ω,模擬的最低 K 值只剩 1.001,若 R1 再繼 續增加,將無法滿足全頻帶穩定的條件。雖然表 5-1 顯示 R1 值愈大 增益及雜訊指數的表現愈佳,但礙於要達到全頻帶穩定度,R1 最大 只能達到 3300 Ω。

圖 5-2、R1= 50Ω

圖 5-3、R1= 3300 Ω

圖 5-2 和 5-3 是 R1= 50 Ω 及 3300 Ω 的模擬結果響應。表 5-2 是满足 相同的偏壓、偏流以及輸出、輸入接近 50Ω 阻抗匹配,比較不同的 R1 值所造成的模擬結果變化。
應用於無線區域網路(WLAN)之雙頻前端電路

	V _{DS}	I _{DS}	K _{min}	Gain	NF
R1= 50	≒2 V	≒10 mA	1.122	3.076	5.454
R1=1K	≒2 V	≒10 mA	1.004	14.219	2.256
R1= 3.3K	≒2 V	≒10 mA	1.001	16.908	1.706
R1=40K	≒2 V	≒10 mA	0.976	18.902	0.808

表 5-2、不同 R1 值所對應模擬結果

表 5-2 中的 V_{DS} 為電晶體的偏壓, I_{DS} 為電晶體的偏流, K_{min} 為 1 到 10GHz 頻帶中 K 的模擬最小值, Gain 為頻率在 2.4 GHz 的增益, NF 為頻率在 2.4 GHz 的雜訊指數。V_{DS} 及 I_{DS} 分別使用接近 date sheet 上 寫的典型(TYP, typical)偏壓 2V, 及典型偏流 10 mA。

5-2 2.4 及 5.8 GHz 雙頻低雜訊放大器

圖 5-4、理想元件雙頻 LNA 電路結構圖

首先簡單介紹圖 5-2 中各個元件的功能:

(1)為控制 LNA 的電路尺寸,此雙頻帶 LNA 使用理想的電容與電感

元件作雙頻匹配網路[10],而非用微帶線匹配。L1、L2、C1、C2 為輸入級雙頻帶阻抗匹配網路。不加微帶線的理想雙頻匹配網路 如圖 5-1 的 C1'、C2'、L1'、L2 所示。

(2)L3、L4、C5、C6 為輸出級雙頻帶阻抗匹配網路,匹配架構和輸

入雙頻匹配網路相同。

(3)C3、C4 為 DC block, 用以阻絕直流訊號。

- (4)R1、R2為提供偏壓的電阻。
- (5)C7、C8、C9、C10為兩組bypass電路,可讓直流電壓源較穩定,

同一組的兩個電容,通常容值使用一大一小,且對於輸出、輸入 阻抗匹配幾乎無影響。

- (6)L5為RF Chock,使高頻信號不干擾直流電壓源。
- (7)使用寬為1.5mm之微帶線,以達成阻抗匹配之目的。此寬度在焊 接或貫孔也不至於因寬度太小而發生困難。
- (8)因為所設計的頻率大小已經足以讓微帶線對於阻抗匹配以及增益 有顯著的影響,故設計時須仔細微調每段微帶線長度,以達良好 的阻抗匹配及增益效果。並且微帶線長度也要考慮實作上的可行 性,倘若微帶線長度太小,勢必造成焊接或貫孔上的困難。此外, 輸出輸入端的第一段微帶線由於須焊上SMA接頭,其長度也必須 大於3 mm。電路微帶線如遇到彎角之情況,彎角的地方應以截角

或彎曲的設計方式,以避免大量的電流囤積。

- (9)源級(Source)的兩段微帶線主要功能為利用其微帶線之電感性,增加整體電路的穩定度,但對於匹配及增益也會造成影響,故長寬 也須作微調來得到良好的結果。源級使用兩段微帶線並聯是由於 本電路使用之電晶體NE3210S01有兩個源級接腳。
- (10)最佳化低雜訊放大器之各理想元件數值:L1=100 nH、L2=2.5
 - nH、L3 = 1.3 nH、L4 = 3.85 nH、L5 = 82 nH、C1= 2.7 pF C2=0.6 pF、C3 = 1000 pF、C4 = 3.8 pF、C5 = 0.84 pF、C6 = 0.81 nH、C7 = 1 pH、C8 = 100 pF、C9 = 1 pF、C10 = 100 pF、R1 = 3000 Ohm、 R2 = 1 Ohm。某些數值較大的元件,已經使用實際元件有的數值, 避免實作時以Murata元件取代上列理想元件,發生Murata元件與 理想元件值差距太大而難以實現。
- (11)最佳化低雜訊放大器直流電壓源:V1 = 0.24V、V2 = 1.3V。電晶 體偏壓1.27V,偏流25.9 mA。

圖5-5、理想元件的最佳化雙頻LNA之模擬響應圖

5-3 2.4 及 5.8 GHz 雙頻低雜訊放大器

圖 5-6、Murata 元件雙頻 LNA 電路結構圖

圖 5-6 是使用 Murata 元件的雙頻 LNA,其電路架構、元件功能皆與 理想元件的雙頻 LNA(圖 5-4)相同,因此以下只介紹 Murata 元件的雙 頻 LNA 與之理想元件的雙頻 LNA 不同處:

(1)如用同理想元件模擬的LNA,微帶線寬度使用1.5 mm,然而由於 實際元件值的種類有限,並不像理想元件的值可以任意設定,但 LNA所操作的頻率已足以讓微帶線對於阻抗匹配以及增益有顯著 的影響,因此可用微帶線長度較能調整的特性,彌補元件數值種 類的不足,藉以達到良好的雙頻匹配及增益效果,因實際元件值 種類有限,微調微帶線長度更顯重要。微帶線長度也不可太短, 否則恐造成元件焊接或貫孔等實作上的困難,太長又可能加大電 路的尺寸,故不可只看模擬響應的優劣,仍須考慮實作的可行性。 微調各微帶線的長度是此電路設計上一個很主要的重點。 (2)模擬最佳化低雜訊放大器之各元件(採用Murata元件)數值:L1=82

nH \ L2 = 2.7 nH \ L3 = 1.2 nH \ L4 = 0.75 nH \ L5 = 82 nH \ C1= 2.2 pF C2=2.7 pF \ C3 = 1000 pF \ C4 = 3.3 pF \ C5 = 0.5 pF \ C6 = 0.75 nH \ C7 = 1 pH \ C8 = 100 pF \ C9 = 1 pF \ C10 = 100 pF \ R1 = 5600 Ohm \ R2 = 1 Ohm \

(3)偏壓電阻R1同樣有跟5-1節、5-2節一樣的情況,R1愈大則可以犧 牲穩定度(K值)跟輸出、輸出匹配來換取高增益及低雜訊指數,本 電路架構經嘗試不同R1值,最大約值約可到5.6 KOhm,若再增加 則1到10 GHz就會有部分的模擬K值小於1,無法達到全頻帶穩定。
(4)模擬最佳化低雜訊放大器直流電壓源:V1=-0.24V、V2=1.3V。電 晶體偏壓1.27V,偏流25.9 mA。

圖5-7、Murata元件的最佳化雙頻LNA之模擬響應圖

69

根據以上各元件值,可以發現以上元件使用的數值大部分皆與用

理想元件模擬的最佳化LNA接近,因為作法上是將理想元件模擬的最 佳化LNA所設定的元件數值,找數值接近的Murata元件取代,再微調 各微帶線長度,來得到Murata元件模擬的最佳化LNA。由於實際的 Murata元件有別於5-2節電路模擬時用的理想元件,會有內雜訊、內電 阻......等等相較理想元件不利的因素,使實際元件和理想元件的響應 有所不同,造成使用實際元件的模擬結果可能會比用理想元件來得 差,故模擬時須代入Murata元件模擬,而非採用理想元件,如此模擬 結果與實測會較接近。由於實驗室有比較多的Murata跟TOKO兩種廠 牌的元件,因此也藉由ADS模擬,觀察Murata跟TOKO兩個廠牌與理 想元件的響應比較,藉此比較此兩種實際元件與理想元件的差異。

5-4 雙頻 LNA 模擬量測比較與結論

此LNA之模擬結果可見圖5-7,其S₂₁在2.4 GHz及5.8 GHz分別為 19.031 dB及11.388 dB。S₁₁在2.4 GHz及5.8 GHz分別為-18.12 dB及 -8.652 dB。S₂₂在2.4 GHz及5.8 GHz分別為-12.819 dB及-10.254 dB;量 測結果S₂₁在2.4 GHz及5.8 GHz分別為13.6 dB及1.8 dB。S₁₁在2.4 GHz 及5.8 GHz分別為-17.5 dB及-5.5 dB。S₂₂在2.4 GHz及5.8 GHz分別為 -4.9 dB及-2.7 dB。圖5-8到5-10為S₂₁、S₁₁、 S₂₂的模擬比較圖,圖中 不難察覺,低頻率的模擬與量測的吻合度較高,而當頻率達到3.5~4 GHz以上,相較於模擬就會開始有明顯的頻偏現象,造成3.5~4 GHz

- 以上的頻率,實測結果的特性上,不論是增益或是輸入及輸入匹配, 皆比模擬變差許多。推測其可能原因:
- (1) 電路所用板材FR4,本身就是適用於較低頻率板材,當頻率愈高

時,就會有愈大的損耗,可能因此造成不良的高頻響應特性。 (2)製程上的誤差。曝光、顯影、蝕刻、貫孔、接地、焊接......等等, 或多或少都會有誤差產生,這些部分的誤差只能靠練習及儀器將 其降到最低。不過因為本電路的成品外觀上並沒有太大的瑕疵, 這方面的誤差已經盡可能降至最低。

(3)本電路所用電晶體NE3210S01之資料表(data sheet)中,本電晶體的 典型(TYP, typical)為偏壓2V及偏流10 mA。然而本電路在設計時, 發現偏壓2V加上偏流10 mA,模擬結果在所要的2.4 GHz與5.8 GHz 皆無法達到較好的增益效果。經偏壓與偏流的微調,得到當偏壓 1.27V與偏流25.9 mA,有較佳的增益效果。雖然偏流已超過資料 表上的偏流最大值20 mA,但偏流25.9 mA仍算不大的電流量,應 該也不至於過大而使電晶體燒壞毀損,因此無法確定該第三項的 推測因素是否造成量測與模擬上的差異。

	2.4GHz	2.4GHz	5.8GHz	5.8GHz
	Simulation	measurement	Simulation	measurement
S11	-18.1 (dB)	-1 7.5 (dB)	- 8.7 (dB)	-5.5 (dB)
S21	19.0 (dB)	13.6 (dB)	11.4(dB)	1.8 (dB)
S22	-12.8 (dB)	-4.9 (dB)	- 10.3(dB)	-2.7 (dB)
NF	1.7 (dB)	3.2 (dB)	1.1 (dB)	1.8 (dB)

表 5-3、模擬與量測結果比較

圖 5-11、LNA 實體圖

5-5 Murata、TOKO 與理想元件的比較

前三節介紹完雙頻低雜訊放大器後,最後一小節使用 ASD 模擬 軟體,比較 Murata、TOKO 和理想元件響應的差別。因為實驗室只有 TOKO 電感,沒有 TOKO 電容,故比較響應所使用的是實際元件中 最小電感值 1.2 nH 、接近中間電感值 47 nH 與最大電感值 100 nH, 分別作 Murata、TOKO 與理想元件的 S₁₁和 S₁₂之比較。模擬元件響 應的電路接法如圖 5-7 所示,在元件的兩級各接上一 50 歐姆阻抗。

逢甲大學學生報告 ePaper(2010 年)

圖 5-7 是以理想元件作範例, Murata 和 TOKO 的元件接法也相同。 因為電路是對稱的,所以 S_{11} 和 S_{22} 完全相同, S_{12} 和 S_{21} 也完全相同, 故在此不比較 S_{22} 及 S_{21} 。

圖 5-14、1.2 nH 元件的 S12 比較

圖 5-17、100 nH 元件的 S₁₁ 比較

圖 5-18、100 nH 元件的 S12 比較

如圖 5-12 到圖 5-17 所示, Murata 的電感相較於 TOKO 似乎皆比較接近於理想元件,尤其當感值愈小, Murata 的 S₁₁ 與 S₁₂ 幾乎與理想元件重疊。

第六章

WLAN 雙頻帶通步階阻抗濾波器 設計

本文中所設計之濾波器的模擬及實作基板板材皆使用玻璃纖維板(FR4),其規格如表 6-1 所示:

基板材質	FR4
介電係數 (Er)	4.4
基板厚度 (h)	1.6 mm
介電損失 (δ)	0.022
表面金屬厚度	0.02 mm

表 6-1、WLAN 雙頻品濾波器基板參數表

近年來雙頻步階阻抗(SIR, step impedance resonator)濾波器受到 熱烈的討論。用此方式設計之濾波器是利用特性阻抗(characteristic impedance)的不連續,使得諧波頻率可以作較為自由的調整,調整到 欲接收的第二頻帶。甚至能藉由諧波頻率的調整,設計出三頻、多頻 濾波器。而本濾波器之製作目標為做出一個雙頻、通用型的 WLAN

帶通濾波器,其低頻帶通頻率為2.4 GHz,由於所設計的是通用型 WLAN 濾波器,故高頻帶通頻率為 5~5.8GHz。本濾波器設計分成幾 個部分探討,分別是(1)等寬的微帶線濾波器,(2)微帶線寬為 1.75 mm 和 2.25 mm 的 SIRs 濾波器, (3) 微帶線寬為 1.5 mm 和 3 mm 的 SIRs 濾波器,以及最後(4)最佳化 SIRs 微帶濾波器。(1)(2)(3)(4)所設計之 濾波器皆以彎折方式縮減電路尺寸。

6-1 調整等線寬微帶濾波器各尺寸參數對

圖 6-1、等寬微帶濾波器尺寸參數(單位:mm)

如圖 6-1 所示,此濾波器要探討的尺寸參數共有五個,分別是 L1、L2、S1、S2 以及 W1,探討這些參數的主要目的是要找出改變 這些參數所造成的 S11 改變趨勢,以利微調濾波器的特性。為簡化討 78

逢甲大學學生報告 ePaper(2010 年)

論,不把此濾波器的微帶線彎折的位置列入探討,儘先簡單把微帶線 折成三段,並且每段長度為L1,故微帶線總成為3×L1。首先改變 圖 6-1 中的參數L1,而其他四個參數(L2、S1、S2以及W1)固定成圖 6-1 括弧裡的數值,只先改變L1。從模擬的結果比較發現改變L1 主 要的效果是整體S₁₁響應的頻偏,如圖 6-2 所示。L1 增加相對提供了 增長的電流路徑,幾乎任何形態的微帶濾波器,改變微帶線長度皆會 影響頻偏。故若是作SIR 結構的雙頻(或多頻)帶通微帶濾波器,可以 先改變微帶線長度來調整第一通帶的頻率,再計算第二通帶與第一通 帶的頻率比值,找到可讓二次諧波頻偏到第二帶通的微帶線電氣長度 比和微帶線特性阻抗比,以達到設計需求。圖 6-2 顯示當L1=13 mm 時,基頻的共振點約為2.4 GHz,符合所設計的 WLAN 的低頻頻率,

圖 6-2、探討 L1 變化對 S₁₁之影響

79

因此L1先選用13 mm。其次要討論的是L2,接頭輸入及輸出(tapped I/O) 的位置所造成的S₁₁響應變化,而其他四個參數(L1、S1、S2以及W1) 固定成括弧裡的數值。為了焊接SMA接頭,濾波器兩個饋入的位置必 須預留1.5×3 mm²的微帶線段(可見圖6-1)。如圖6-3所示,當L2=0.75 mm時有比較小的基頻輸入返回損耗,也有比較好的三次諧波抑制效 果。第三要探討的是兩微帶線間的間隙大小S1,而其他四個參數

圖 6-3、探討 L2 變化對 S11 之影響

(L1、L2、S2以及W1)固定成括弧裡的數值。如圖 6-4,由模擬的 S11圖模擬比較得知,改變 S1造成的耦合效果會明顯影響到基頻的頻 寬與輸入返回損耗,當 S1 值愈小,第一通帶的頻寬愈大且輸入返回 損耗愈小。但考慮基頻的頻寬過大,以及蝕刻機所能蝕刻的最窄微帶 線寬和最小微帶線間距為 0.3 mm 左右,因此微帶線間距若考慮實

80

逢甲大學學生報告 ePaper(2010 年)

作,並非沒有限制。雖然第二諧波和第三諧波的輸入返回損耗也階所 影響,但影響程度極小。第四,要探討的也是微帶線間的間隙大小

圖 6-4、探討 S1 變化對 S11 之影響

S2 造成的 S₁₁ 變化,而其他四個參數(L1、L2、S1 以及 W1)固定成括 弧裡的數值。如圖 6-5,由模擬的 S₁₁ 圖模擬比較得知,改變 S2 所造 成的整體 S₁₁ 改變幅度並不大,但 S2 愈小還是有略佳的基頻輸入返回 損耗及三次諧波的抑制效果。如同前面參數 S1 的探討,因為考慮到 蝕刻問題,故 S2 最小值也大約只能選到 0.3 mm。最後所要探討的是 微帶線寬 W1 造成的 S₁₁ 變化,而其他四個參數(L1、L2、S1 以及 S2) 固定成括弧裡的數值,圖 6-6 顯示,當微帶線寬 W1 為 1.75 mm 時, 第一通帶有較小的輸入返回損耗。比較不同的 W1 值,除了基頻的 S₁₁特性之外,其他的 S₁₁影響並不大。比較完上面五個尺寸參數

81

逢甲大學學生報告 ePaper(2010 年)

圖 6-6、探討 S2 變化對 S11之影響

L1、L2、S1、S2 以及 W1 之後,會發現到當兩段微帶線等寬,沒有使用 SIR 結構時,不論如何調整濾波器的尺寸參數,最多也只是整體的頻偏,或是改變基頻、二次諧波與三次諧波的輸入返回損耗,對於 82 逢甲大學學生報告 ePaper(2010年) 增大基頻與二次諧波的頻率倍數(fs1/f0),幾乎無任何幫助。

6-2 調整微帶線寬為 1.75 mm 和 2.25 mm 的 SIRs 濾波器尺寸對 S₁₁ 影響之探討

圖 6-7、微帶線寬為 1.75 / 2.25 mm 的 SIRs 濾波器尺寸參數(單位:mm)

如圖6-7所示,此濾波器要探討的尺寸參數共有八個,分別是L3、 L4、L5、L6、S1、S2、W2以及W3,探討這些參數的主要目的如同 6-1節,是要找出改變這些參數所造成的S11改變趨勢,以利微調濾波 器的特性。但與6-1小節不同之處在於此濾波器是使用不同寬度微帶 線的SIRs架構。首先要調整的參數依序是L3、W3、S3、S4、L4,一 次只調整一個參數,當調整這五個參數的其中一個時,則其餘的參數 也都固定成圖6-7括弧裡的數值,其S11比較如圖6-8到圖6-12所示。兩

段不同寬的微帶線,特性阻抗分別為67.46 Ω及59.26 Ω,其阻抗比值

圖 6-9、探討 W3 變化對 S11 之影響

(impedance ratio)K 約為 0.88,仍然接近 1,故 L3 值的改變所造成的

長度比(length ratio) α 變化,對於 S₁₁ 無顯著影響。而調整 W3 從模擬比較結果發現,當 W3 值愈大,可以在幾乎不改變第二諧波頻率的

圖 6-11、探討 S4 變化對 S11之影響

圖 6-13、微帶線寬為 1.75 / 2.25 mm 的 SIRs 濾波器尺寸參數(2)(單位:mm)

狀態下,改變基頻的頻率,相對地改變基頻與二次諧波的頻率比 (f_{s1}/f₀)。改變 W3 雖不改變長度比 α,但阻抗比值 K 改變仍可改變二 次諧波的頻率比。調整 S3 結果跟調整 6-1 小節的 S1 結果類似,S3

86

逢甲大學學生報告 ePaper(2010 年)

愈小則基頻的頻寬加大、輸入返回損耗變小,但考慮蝕刻機 0.3 mm 的極限,最小只能選用 0.3 mm。調整 S4 得到的是基頻與二次諧波的 輸入返回損耗幾乎不變,但 S4 選用較小的值可抑制三次諧波。而 L4 選用 0.75 mm 是由於該值有較好的基頻輸入返回損耗。由於已經得知 L4 值為 0.75 mm 的 S₁₁ 圖較佳,故尺寸參考圖從圖 6-7 轉變為 6-13。 在探討 W2 時,將 L5 及 L6 固定為 13 mm。如圖 6-14 所示,W2 值 改變時,可以在幾乎不改變第二諧波頻率的狀態下,改變基頻的頻 率,此乃因為改變了兩段不同寬微帶線的特性阻抗比 K。且相對於改 變前面的 W3,改變 W2 所造成的輸入返回損耗的影響較大。最後要 探討的一個參數是 L5 和 L6。在此將 L5+2×L6 令等於 39 mm,也就 是當 L5 改變時,L6 也會跟著改變,但微帶線總長維持 39 mm 不變,

圖 6-14、探討 W1 變化對 S11之影響

原因是在不改變兩段不同寬微帶線的特性阻抗比值 K 的條件下, 微帶 線長 39 mm 可共振出 2.4 GHz 的基頻。從模擬比較的 S₁₁得知 L5 改 變主要的效果是在基頻與二倍諧波間作交換(trade-off)。比較完上面八 個尺寸參數 L3、L4、L5、L6、S1、S2、W2 以及 W3 之後,發現雖 然此濾波器已經算是 SIR 的架構,但因為此濾波器的 W2 和 W3 值太 接近(1.75 mm 和 2.25 mm),故除非調整 W2 或 W3 來改變特性阻抗 比,否則不論如何調整濾波器的其他尺寸參數,最多也只是整體的頻 偏,或是改變基頻、二次諧波與三次諧波的輸入返回損耗,對於增大 基頻與二次諧波的頻率倍數(*f_{s1}/f₀*),幾乎無任何幫助。

圖 6-15、探討 L5 變化對 S11 之影響

6-3 調整微帶線寬為 1.5 mm 和 3 mm 的 SIRs

濾波器尺寸對 S11 影響之探討

圖 6-16、微帶線寬為 1.5 / 3 mm 的 SIRs 濾波器尺寸參數(單位:mm)

如圖 6-16 所示,此濾波器要探討的尺寸參數共有五個,分別是 L7、L8、L9、L10 和 S5,探討這些參數的主要目的如同 6-1 和 6-2 節,找出改變這些參數所造成的 S₁₁ 改變趨勢,以利微調濾波器的特 性。與前兩小節不同之處,在於此濾波器是使用寬度差距稍大的微帶 線作 SIRs 架構。與前兩小節類似,除了參數 L9 與 L10 一次只調整一 個參數,且當調整這五個參數的其中一個時,則其餘的參數也都固定 成圖 6-16 括弧裡的數值。調整比較的模擬結果如圖 6-17 到 6-20 所 示。調整的參數依序是 L7、S5、L8、L9 及 L10。兩段不同寬的微帶 線,寬度分別為 1.5 mm 及 3 mm,特性阻抗分別為 72.63 Ω 及 50.36 Ω, 其阻抗比值 *K* 約為 0.7。如圖 6-17,由模擬的 S₁₁圖模擬比較得知,

圖 6-18、探討 L5 變化對 S11 之影響

逢甲大學學生報告 ePaper(2010 年)

90

改變 L7 最主要是造成二倍與三倍諧波的輸入返回損耗改變和頻偏, 改變 L7 等同改變長度比 α,在其阻抗比值 K 約為 0.7 已經與 1 有段 差距,改變長度比 α 對於增大基頻與二次諧波的頻率倍數(f_{s1}/f₀)已有 較顯著的效果。如圖 6-18,由模擬的 S₁₁ 圖模擬比較得知,改變 S5 最主要是改二倍與三倍諧波的輸入返回損耗大小。接著要討論的是 L8,接頭輸入及輸出(tapped I/O)的位置所造成的 S₁₁響應變化,當 L8 為 0 mm 時,有最佳的輸入返回損耗值,即使將饋入的位置改成從濾 波器的左右兩端,整體的 S₁₁ 響應也不會變得更好。由於已經得知 L8 值為 0 mm 的 S₁₁ 圖較佳,故尺寸參考圖從圖 6-16 轉變為 6-20。最後 要探討的一個參數是 L9 和 L10。在此將 L9 + 2 × L10 令等於 39 mm, 也就是當 L9 改變時,L10 也會跟著改變,但微帶線總長維持 39 mm

圖 6-19、探討 L5 變化對 S₁₁之影響

91

圖 6-20、微帶線寬為 1.5 / 3 mm 的 SIRs 濾波器尺寸參數(2)(單位:mm)

圖 6-21、探討 L5 變化對 S11 之影響

不變,改變 L9 與 L10 的模擬結果如圖 6-21 所示,當 L9 為 13 mm 時

92

基頻與二倍諧波有較好的輸入返回損耗。由圖 6-21 可看出基頻與二 次諧波的頻率比值已達約 2.3~2.4 倍,但整體頻帶比起欲設計的頻 帶,頻率偏低,可藉由縮減微帶線長度的方式來使共振頻率點往高頻 偏移,接下來的 6-4 節就會根據 6-3 節的濾波器,來調出最佳化的濾 波器。

6-4 最佳化 SIRs 微帶濾波器

如同 6-3 節,兩段不同寬的微帶線,寬度分別為 1.5 mm 及 3 mm, 特性阻抗分別為 72.63 Ω 及 50.36 Ω,其阻抗比值 K 約為 0.7。接下來 的目標就是:(1)固定阻抗比 K,找到適當的長度比 α,使得二次諧波 可順利帶通 WLAN 的高頻頻帶。(2)調整微帶線長度使產生共振頻率

圖 6-22、最佳化 SIRs 微帶線濾波器尺寸參數(單位:mm)

圖 6-23、最佳化 SIRs 微帶線濾波器尺寸參數(單位:mm)

圖 6-24、探討 S6 變化對 S11 之影響

約為 2.4 GHz 的基頻。(3)本濾波器的目的是要製作通用型 WLAN 的帶通濾波器,須加大二次諧波的頻寬,達到操作頻帶包含 5~5.8GHz。

94

首先是長度比 α 部分。因為 $f_{s1}/f_0 = 5.8$ GHz/2.4 GHz=2.42,當 K = 0.7, α 的值約為 0.6 時,可達到 $f_{s1}/f_0 = 2.42$ 。經微帶線長度的微調, 並維持 α 的值約為 0.6,如此確實可以得到接近的 2.4 與 5.8 GHz 的 雙頻帶通,不過無法達到二倍諧波包括 5~5.8 GHz 的目的。在微調過 程中發現一個影響二倍諧波頻寬的重要參數,如圖 6-23 所示,其中 的 S6 值即是影響二倍諧波的關鍵。而圖 6-24 則是不同的 S6 值所造 成的 S₁₁ 響應的改變,犧牲輸入返回損耗,換取較大的頻寬,選用的 的 S6 值是 0.75 mm。如此便得到最佳化的 SIRs 微帶濾波器。如圖 6-25 所示。其 S₁₁ 與 S₂₁的模擬結果如圖 6-26 所示。

圖 6-25、最佳化 SIRs 微帶線濾波器尺寸參數(單位:mm)

圖 6-26、S11 與 S21 的模擬結果

6-5 雙頻微帶濾波器模擬量測比較與結論

若以 S₂₁ 大於-3dB 作為帶通標準,則最佳化濾波器模擬的帶通範 圍大約為低頻 2.22 GHz 到 2.55 GHz 以及高頻 4.9 GHz 到 6.0 GHz。 而實測帶通範圍約為低頻 2.25 GHz 到 2.53 GHz 以及高頻 4.98 GHz 到 6.21 GHz,符合所有規格的 WLAN 頻帶。頻率 2.4 GHz 的實測 S₂₁ 值為-1.376 dB,而高頻 5~6 GHz 帶通頻率範圍的 S₂₁ 實測值大部分約 為-2dB 出頭。測實測與模擬結果的 S₁₁ 與 S₂₁ 比較,如圖 6-27 及 6-28 所示,S₁₁及 S₂₁在量測與模擬的比較上有很高的吻合度。

逢甲大學學生報告 ePaper(2010 年)

96

6-28、最佳化濾波器的 S11 量測與模擬比較

	First passband	First passband	Second passband	Second passband
	(Simulation)	(Measurement)	(Simulation)	(Measurement)
FBW	13.84 %	11.72 %	20.18 %	21.98 %

表 6-2、頻寬比(FBW)的實測與模擬比較

圖 6-29、最佳化濾波器實體圖

第七章

結論與未來研究方向

為了實現較完整的雙頻帶前端電路,本專題研究分別製作天線、 低雜訊放大器、濾波器。首先製作的是最前端的接收電路,天線。實 作電路的量測結果顯示,其操作的三頻帶,符合 WLAN/WiMAX。而 在天線場型方面,操作頻率點所對應的場型,皆有良好的全向性。天 線尺寸為 39×30 mm²,尺寸不至於過大而難以應用於實際。低雜訊 放大器其 2.4 GHz 頻帶的實作電路量測,與模擬相比尚有可接受之特 性,但高頻部分特性不佳,推測可能是板材因素所造成。而濾波器部 分,成功達到微小化的目的,整體電路圖形尺寸僅 16.25 × 12.75 mm².特性上也有符合所有 WLAN 的頻帶需求。

在本專題研究中所製成的電路實作,由於高頻板材取得困難,皆 以價格較低廉的玻璃纖維(FR4)基板製作,然此材料並不適用於操作 頻率較高的電路,故高頻的量測特性與模擬相較之下皆有頻偏或是特 性變差的情況。

本次專題研究雖非每個項目的實際量測都很完美,但卻讓學生從 其中吸收了大量的各方面技能,同時也引起了學生對於微波電路製程 的興趣,往後寬頻或多頻操作的被動電路,如天線、濾波器、EBG

99

逢甲大學學生報告 ePaper(2010 年)

等,或是 MMIC,以及 EMC/EMI 效應的影響,是學生未來想要繼續 深入研究和學習的部分。

参考文獻

- [1] W. L. Stutzman and Gary A. Thiele, Antenna Theory and Design, Second Edition, John Wiley, New York, 1998.
- [2] D. K. Cheng, Field and Wave Electromagnetics, Second Edition, Addison Wesley, 1989.
- [3] 易芝玲撰寫, "無線通訊技術發展現況與展望", 92年9月.
- [4] D. D. Krishna, M. Gopikrishna, C. K. Anandan, P. Mohanan, and K. Vasudevan, "CPW-Fed Koch Fractal Slot Antenna for WLAN/WiMAX Applications," IEEE Antennas and Wireless Propag. Let., Vol. 7, pp.389 -392, 2008.
- [5] J. D. Kraus and R. J. Marhefka, Antennas For All Applications, Third Edition, McGraw-Hill, New York, 2002.
- [6] Gonzalez, "MICOWAVE TRANSISTOR AMPLIFIERS Analysis and Design," Prentice-Hall 1984.
- [7] 郭仁財編譯, David M. Pozar 原著, "微波工程", 高立圖書有限公司, 91 年7月.
- [8] G. D Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques. Wiley, N. Y., 1990.
- [9] 袁帝文、王岳華、謝孟翰、王弘毅編著, "高頻通訊電路設計",高立 圖書有限公司,93年6月.
- [10] C. F. Jou, K.H. Cheng, P.R. Huang and M.C. Chen, "Design of A Fully Integrated High Linearity Dual-Band CMOS LNA, "Electronics, Circuit and System, Vol. 3, pp.978 – 981, 2003.
- [11] Richard C. Dorf and James A. Svoboda, Introduction to Electric Circuit, Seventh Edition, Wiley, N. Y., 2007.

- [12] Adel S. Sedra Kenneth C. Smith, Microelectronic Circuit, Fifth Edition, Oxford, 2004.
- [13] 育英科技有限公司編著,"射頻電路設計實習",滄海圖書有限公司, 92年11月.
- [14] Tae-Hyun Kim, and Dong-Chul Park, "Compact dual-band antenna with double L-slits for WLAN operations," IEEE Antennas and Wireless Propag. Let., Vol. 4, pp.249 - 252, 2005.
- [15] W. Kueathaweekun, P. Jearapraditkul, N. Anantrasirichai, O. Sangaroon, and T. Wakabayashi, "Wide-band CPW-fed Slot Antenna with Tuning Stub and π -Strip for WLANIWiMAX Application," Intelligent Signal Processing and Communications Systems, 2008, pp.1 - 4, 2009.
- [16] 翁敏航等編著,"平面射頻被動元件設計:電磁模擬的基礎與應用, 新文京圖書有限公司,93年.
- [17] R. L. Li, T. Wu, and M. M. Tentzeris," A triple-band unidirectional coplanar antenna for 2.4/3.5/5-GHz WLAN/WiMax applications," IEEE Antennas and Propagation Society International Symposium, 2009. pp.1 - 4, 2009.
- [18] Min-Hang Weng, Hung-Wei Wu, Student and Yan-Kuin Su, "Compact and Low Loss Dual-Band Bandpass Filter Using Pseudo-Interdigital Stepped Impedance Resonators for WLANs," IEEE Microwave and Wireless Components Let., VOL. 17, pp.187 - 189, 2007.
- [19] Yu-Chi Chang, Chia-Hsiung Kao, Min-Hang Weng, and Ru-Yuan Yang, "A Novel Compact Dual-Dand Dandpass Filter with A Wide Stopband Using Asymmetric SIRs for WLANs, "Microwave Conference, APMC. pp.1 – 4, 2008.
- [20] N. Ahsan, A. Ouacha, J. Dabrowskil and C. Samuelsson "Dual Band Tunable LNA for Flexible RF Front End, " International Bhurban Applied Sciences & Technology, pp.19 – 22, 2007.