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Abstract 
Exponentiation is to compute XE for a positive integer E and modular exponentiation is to compute XE mod 

M for positive integers E and M. When the lengths of the operators are at least 1024 binary representations or 
300 decimal digits, modular exponentiation can be time-consuming and is often the dominant part of the 
computation in many algebra systems. Since exponentiation is a sequence of multiplications, there are two kinds 
of methods to accelerate the speed of modular exponentiation. One is to reduce the number of multiplications 
and the other is to accelerate the multiplication itself. 

In this paper, we describe some efficient exponentiation methods, which can effectively reduce the number 
of multiplications and other methods, which can accelerate multiplication itself respectively. Most importantly, 
we also detailed analyze the computational complexity for two kinds of these methods respectively. 
Keywords:Public-key cryptosystem, cryptography, variable length nonzero window, modular 

multiplication, addition chain. 

 

1. Introduction 
The modular exponentiation is a common 

operation for most cryptosystems. Most of 
cryptographic systems based on modular 
exponentiation. Generally, modular exponentiation is 
represented using a chain of modular multiplications. 
The performance of such cryptosystems is primarily 
determined by the implementation efficiency of the 
multiplication and the exponentiation. There are two 
primary ways to reduce the time on the computation of 
modular exponentiation with large operators. One is to 
decrease the time to perform basic modular 
multiplication [1-4] and the other is to reduce the 
number of modular multiplications used to compute 
XE [5-8]. 

In the rest of this paper, we will present and 
compare two kinds of methods. Some methods which 
reduce the number of multiplications are presented in 
Section 2. In Section 3, we present other methods 
which accelerate the multiplication itself. In Section 4, 
we will use tables for computational complexity 
analyses. Finally, some concise conclusions and future 
works are given in Section 5. 

 
 

2. Methods for Reducing the Number of 
Multiplications 

2.1 Right-to-Left Binary Method 
The right-to-left binary algorithm starts at the 

least significant bit and works upward. This algorithm 

requires an extra data register S to store the middle 
variable. Note that modular multiplication and square 
in this right-to-left binary algorithm are independent 
of one another, and thus two operations at each loop 
can be parallelized. Provide that one multiplier and 
one squarer available, the running time of the 
right-to-left binary algorithm is bounded by the total 
time required of computing k modular squares. The 
right-to-left binary method is described in Algorithm 
1. 

 
Algorithm 1 (Right–to–Left Binary Method) 
Input: X, E 
Output: XE contained in C 
S = X 
C = 1 
for i=1 to k 

{ 
if (ith binary bit of E is 1) 
  then C=C*S                /* multiply */ 
S=S*S                        /* square */ 

} 
 
More descriptions of right-to-left binary method 

are depicted in [9]. 
 

2.2 Exponent-Folding Method 
Let the exponent E be iteratively folded in half n 

times i.e. E is divided into 2n equal sized substrings. 
Let each substring of E be denoted as Ei for i=1, 2, …, 
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2n, i.e. E= 12 2 1|| || ... ||n nE E E− , where “||” is the 
concatenation operator and k is the bit length of E. 
Hence 

2 (( 1)( ))
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( )
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n i

ki EE

i

X sq X
−

=

= ∏                      (1) 

where sq(m)(Z) represents performing m squares on the 
related value Z. Using Horner’s rule [10], Equation (1) 
can be transformed as shown in Equation (2). 

2 2 1 2 1
( ) ( ) ( )

2 2 2( ... (( ( )) * )... * ) *n n n n n

k k k
E E E EEX sq sq sq X X X X−=       (2) 

We present the variables: _com jE , _( 1)com jE + , Ej, 
E(j+1), _excl iE , _com iE , and Ei in Equation (3), (4), and 
(5). 

_ _( 1)com j com jE E += =Ej AND E(j+1) 
                 for j=1, 3, …, 2n-3, 2n-1    (3) 

_ _excl i com iE E= XOR Ei     for j=1, 2, …, 2n   (4) 
Each Ei can be represented as shown in Equation (5). 

_ _i com i excl iE E E= +                         (5) 

The exponentiation of the consecutive pairs of 2nE
X , 

2 1nE
X − , 1EX  can be computed as shown in Equation 

(6) and Equation (7). 
 

_ _*j com j excl jE E EX X X=                      (6) 
1 _ _( 1)*j com j excl jE E EX X X+ +=  for j=1, 3, …, 2n-3, 2 n-1 (7) 

 
Let Ey have the binary representation 

2n
k

ye *
1

2n
k

ye
−

*…* 1
ye . 

Thus, an efficient algorithm for computing jEX  and 
1jEX +  is depicted as Algorithm 2. The result of jEX  

and 1jEX +  are kept in C1 and C2 respectively. Based 
on Equation (2) and Algorithm 2, the average number 
of multiplications F(M) required in exponent-folding 
method is shown in Equation (8). Let M denote the 
required number of multiplications. 
 

F(M)= 1
2 2

32 ( * 1* 2) ( ) (2 1)
2 2 2

n n
n n n
k k kM k−
+ ++ + + − + −    

(8) 
The exponent-folding method is described in 
Algorithm 2. 
 
Algorithm 2 (Exponent-Folding Method) 
C1=C2=C3=1 
S=X 

for b=1 to 
2n
k  do   /* scan from LSB to MSB */ 

{ 
      if ( _ 1b

excl je = ) then C1 =S*C1  /* multiply */ 

  if ( _( 1) 1b
excl je + = ) then C2 =S*C2 /* multiply */ 

  if ( _ 1b
com je = ) then C3 =S*C3  /* multiply */ 

    S=S*S                      /* square */ 
} 

 C1= C1*C3 

 C2= C2*C3 
 
More descriptions of exponent-folding method 

are depicted in [10]. 
 

2.3 Exponent-t-Folding Exponent Method 
When we compute XE, let the exponent E= 

ekek-1ek-2…e1, where ei∈{0, 1} (i=1, 2, …, k), be 
divided into t equal-length bit substrings. If k(mod 
t)≠0, then E is padded with t-k(mod t) zeros to the left. 
Each bit substring of E is denoted as Ei (1≤i≤t), i.e. 
E=Et||Et-1||…||E1, where “||” is concatenation operation 
among Et, Et-1, …, E1. The corresponding 
generalization mini-terms Ecom_j (j=1, 2, …, 2t) have 

the binary representations 
1

1
__ _* ... .

k k
t t

com jcom j com je e e
⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥    

The Exponent-t-Folding method can be implemented 
as follows. 
 
Step 1. Derive all the generalization mini-terms except 

the generalization mini-term _ 2tcomE = 

AND 1( )t
i iNOT E=   from the bit substrings Et, 

Et-1, …, E1. 
Step 2. Employ the extended right-to-left binary 

algorithm to compute the exponentiation 

values _1comEX , _ 2comEX , …, _(2 1)tcom
E

X − . 
The extended right-to-left binary algorithm 
is shown in Algorithm 3. 

Step 3. 1EX , 2EX , …, tEX  can be constructed in 
Equation (9). 

Step 4. EX  can be evaluated in Equation (10). 
 

2

_
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for i=1, 2, …, t.       (9) 
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                                   ( 1 0 ) 
 

Algorithm 3 (Extended Right-to-Left Binary 
Method) 

Input:  X, Ecom_1, Ecom_2, …, _(2 1)tcomE −  

Output: _1comEX , _ 2comEX , …, _(2 1)tcom
E

X −  contained 
in C1, C2, …, 2 1tC −  

S=X; 
C1=1, C2=1, …,  2 1tC − =1 

for m=1 to k
t

⎡ ⎤
⎢ ⎥⎢ ⎥

 do   /* scan from LSB to MSB */ 

{ 
if ( _1 1m

come = ) then C1=S*C1 

if ( _ 2 1m
come = ) then C2=S*C2 

M                      /* multiply */ 
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if ( _(2 1) 1t
m
come − = ) then 2 1 2 1*t tC S C− −=  

 S=S*S                           /* square */ 
} 

 
More descriptions of Exponent-t-Folding method 

are depicted in [11]. 
 

2.4 Variable Length Nonzero Window Method 
The variable length nonzero window (VLNW) 

partitioning strategy requires that during the formation 
of a nonzero window (NW), we switch to ZW when 
the remaining bits are all zero. The VLNW 
partitioning strategy has two integer parameters: 

d: maximum nonzero window length, 
q: minimum number of zeros required to switch 

to ZW. 
This VLNW method proceeds as follows. 
ZW: Check the incoming single bit: if it is zero then 

stay in ZW; else stay in NW.  
NW: Checking the incoming q bits: if they are all zero 

then go to ZW; else stay in NW. Let d=1+kq+r 
where 1<r≤q. Stay in NW until 1+kq bits are 
received. At the last step, the number of 
incoming bits will be equal to r. If there r bits 
are all zero, then go to ZW; else stay in NW. 
After all d bits are collected, check the incoming 
single bit: if it is zero, then go to ZW; else go to 
NW. 

The VLNW partitioning produces nonzero windows 
which start with a 1 and end with a 1. 
Two nonzero windows may be adjacent. However, the 
one in the least significant position will necessarily 
have d bits. Two zero windows will not be adjacent 
since they will be concatenated. For example, let d=5 
and q=2, then 5=1+1*2+2, thus k=1 and r=2. The 
following example in binary representation illustrates 
the partitioning of a long exponent according to the 
above parameters d, q, k, r: 
(101 0 11101 00 101 10111 000000 1 00 111 000 
1011)2. 
Also, let d=10 and q=4, which implies k=2 and r=1. 
Another partitioning example is illustrated below: 
(1011011 0000 11 0000 1111110101 00 11110111 
0000 11011)2. 

More descriptions of variable length nonzero 
window are depicted in [3]. 

 
3. Methods for Accelerating the 

Multiplication Itself 
3.1 M-ary Method 

The computation of XE for a positive integer E is 
required in many important applications in computer 
science and engineering. Let E=( EkEk-1Ek-2…E2E1) be 
the binary expansion of the exponent E, where n is the 
number of bits in the binary expansion of E. This 
representation of E is partitioned into n words of 
length d, such that nd=k. The exponent is padded with 
at most d-1 zeros, if d does not divide k. We define 

1

1 2
0

( ... ) 2
id j

d
j

i id d id d id
j

F E E E E
+

−

+ − + −
=

= = ∑         (11) 

such that 0≤Fi≤2d-1 and 
1

2
i

n
id

i
E F

=

= ∑ . The m-ary 

method first computes the values of XW for W=2, 3, …, 
2d-1. The exponent E is then scanned d bits at a time 
from the most significant to the least significant. At 
each step, the partial result is raised to the 2d power 
and multiplied with iFX  where Fi is the  current 
nonzero word. The m-ary method is described in 
Algorithm 4. 
 
Algorithm 4 (The m-ary Method) 
Input: X, E 
Output: y=XE 
Compute and store Xw for all w=2, 3, 4, …2d-1. 
Decompose E into d-bit words Fi for i=1, 2, …, n. 

1kFy X −=  
for i=n-1 downto 1 
 { 
 2 d

y y=  
 if Fi≠0 then y=y* iFX  
 } 
return y 
 
It requires 2d-2 preprocessing multiplications and the 
number of multiplication operations is equal to 
(n-1)d=k-d in Algorithm 4. We perform a 
multiplication if Fi≠0. Since 2d-1 out of 2d values of Fi 
are nonzero, the average number of multiplications 
required is (n-1)(1-2-d) in Algorithm 4. Thus, we find 
the average number of multiplications as Equation 
(12). 

( , ) 2 2 ( 1)(1 2 )d dkT k d k d
d

−= − + − + − −          (12) 

The average number of multiplications for the 
binary method can be found simply by substituting 
d=1 in Equation (12), which gives T=1.5(k-1). Also 
note that there exists an optimal value for each n such 
that T(k, d) is minimized. The optimal values of d can 
be found by enumeration [12, 13]. 

More descriptions of m-ary method are depicted 
in [3]. 

 
3.2 Addition Chain Method 

Computing the shortest addition is an 
NP-complete problem [14], but we see Knuth’s 
method [12] for an excellent introduction to addition 
chains. Therefore we can find near optimal ones. 

An addition chain for the binary representation of 
positive integer r is a list of positive integers 

a1=1, a2, …, al=r, 
such that, for each i>1, there is some j and k with 
1≤j≤k<i and ai= aj+ ak. A short addition chain for r 
gives a fast algorithm for computing gr: compute  

2ag , 3ag , ..., 1lag − , rg . 
Let l(r) be the length of the shortest addition 

chain for r. The exact value of l(r) is known only for 
relatively small values of r. When r is large, l(r) is 
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shown in Equation (13). 
log log( ) log ( )

log log log log
r rl r r O

r r
= + +             (13) 

The lower bound was shown by Erdos’ method [15] 
using a counting argument. The upper bound is just 
the binary algorithm [12]. 

For example, the standard (binary) addition chain 
[12] for the number 15 has length 6: 

1  2  3  6  7  14  15. 
There is, however, a chain of length 5 that produces 
15: 

1  2  3  6  12  15. 
This means that one can compute X15 from x in 5 
multiplications. 
 
Naturally we are interested in addition chain with as 
small a length as possible. Knuth’s method [12] is 
capable of producing an addition chain for a 512-bit 
number of length 605 on average. This is an 
improvement of 21% over the binary algorithm 
(which has length 768 on average) and an 
improvement of 5% over Knuth’s 5-window 
algorithm. 

More descriptions of addition chain method are 
depicted in [16-18]. 
 
4. Computational Complexity 

In this section, we will present the computational 
complexity performance comparisons of many 
methods described as above and some other related 
methods shown in recent researches [19-26]. We 
distinguish two kinds of methods to compute the 
computational complexity. One is to reduce the 
number of multiplications and the other is to 
accelerate the multiplication itself. 

For the first situation, as we know, the squaring 
operations can be regarded as a case of multiplication 
operations. For clarity, the modular reductions and the 
processes of using lookup tables can be omitted. So 
we make a table for comparisons of different methods 
as shown in Table 1, where k is the bit length of the 
exponent and r is the radix. In order to measure the 
speed of the modular multiplication, modular 
exponentiation, etc., we use the numbers of modular 
multiplications to express the speed-up efficiency [12, 
27, 30-34]. 

For the second situation, we use the area and the 
time to show the differences between methods [19-20, 
23-26, 35-39] as shown in Table 2 and Table 3. 
Sometimes we use interpolation and extrapolation 
methods to estimate the result for 1024-bit size as 
shown in Table 4. In Table 2, 3, and 4, the unit of area 
is the numbers of 2-input NAND. The area for one 
Logic gate of 2-input NAND is 2.73*10-6 mm2. 

 
 
 
 
 
 

Table 1. Comparisons for computational  
complexities of modular multiplications  

(k:exponent, r: radix). 
 

Methods The number of 
Multiplications 

Lou-Wu [33] 
3 2

2
3 2 1 *

( 1)
r r r k

r r
+ − +

+
 

Lou-Wu [27] 0.689k+11 
Lou-Wu-Chen [31] (29k/36)+3 

Avizienis [34] 1.292k 
Yen [32] 1.292k 

Yen and Laih [30] 1.375k+3 
D. E. Knuth [12] 1.5k 

 

Table 2. Comparisons of the area and the time for 
16, 32, 64, and 128 bits. 

 
Author Area Time Size 

Wang-Lin [35] 172 0.00142ns 16bits 
Lee-Yoo [25] 367 0.00145ns 16bits 

Srikanthan-Lam- 
Suman [20] 107.67 0.99ns 16bits 

Wang-Lin [35] 240 0.00286ns 32bits 
Lee-Yoo [25] 586 0.00289ns 32bits 

Srikanthan-Lam- 
Suman [20] 244.16 1.1ns 32bits 

Wang-Lin [35] 220 0.00574ns 64bits 
Lee-Yoo[25] 735 0.00577ns 64bits 

Srikanthan-Lam- 
Suman [20] 516.62 1.25ns 64bits 

Yeh-Reed-Truong[36] 1260 1.8ns 64bits 
Srikanthan-Lam- 

Suman [20] 1061.61 1.4ns 128bits
Nedjah-Mourelle [24] 3179 3.3ns 128bits
Yeh-Reed-Truong[36] 2991 2.5ns 128bits
Nedjah-Macedo [23] 259 23ns 128bits
 

Table 3. Comparisons of the area and the time for 
256, 512, and 768 bits. 

 
Author Area Time Size 

Srikanthan-Lam- 
Suman [20] 2011.13 1.59ns 256bits

Nedjah-Mourelle [24] 4004 6.6ns 256bits
Yeh-Reed- 
Truong [36] 4074 8.9ns 256bits

Blum-Paar[37] 1180 19.7ns 256bits
Nedjah-Macedo [23] 304 42ns 256bits
Nedjah-Mourelle [24] 5122 7.1ns 512bits

Blum-Paar [37] 2217 19.5ns 512bits
Nedjah-Macedo [23] 492 76ns 512bits
Nedjah-Mourelle [24] 6278 8.3ns 768bits

Blum-Paar [37] 3275 20ns 768bits
Nedjah-Macedo [23] 578 82ns 768bits

 
 



2006 工研院創新與科技管理研討會 

 5

Table 4. Comparisons of the area and the time for 
1024 bits. 

 
Author Area Time 

Wang-Lin [35] 3520 0.0922ns
Srikanthan- 

Lam-Suman [20] 7708.25 2.73ns 

Nedjah-Mourelle [24] 7739 8.9ns 
Blum-Paar [37] 4292 18ns 

Yeh-Reed-Truong [36] 10572 47.3ns 
Yile-Xingjun [19] 8050 114ns 

Nedjah-Macedo [23] 639 134ns 
Yang-Wu-Zhou [38] 9100 160ns 
Kwon-You-Heo [39] 46000 325ns 

 
5. Conclusions and Future Works 

An efficient computation of the modular 
exponentiation is very important and useful public-key 
cryptosystems. We know many researchers are 
devoted to reducing the number of multiplications and 
improving the hardware design in computer 
algorithms for information management and network 
security usages. 

Now there are still many novel methods issued in 
many computer security journals [11, 26-28] and 
reports for computer arithmetic operations and 
theoretical analyses. In the future, we will incorporate 
modular arithmetic and some novel techniques 
(including hardware and software design) to 
effectively perform overall RSA evaluation (the 
number of multiplications or accelerate the 
multiplication itself respectively) for modern 
cryptographic applications. 
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