
2006 工研院創新與科技管理研討會

 1

Investigations on Fast Exponentiation Algorithms for RSA

Cryptographic Applications
Chia-Long Wu

Director of Aviation &
Communication

Electronics Department,
Chinese Air Force

Institute of Technology
chialongwu@seed.net.tw

Der-Chyuan Lou
Director of Computer
Center, Chung Cheng

Institute of Technology,
National Defense

University
dclou@ccit.edu.tw

Te-Jen Chang
Graduated Department of
National Defense Science,
Chung Cheng Institute of

Technology, National
Defense University,
karl@ccit.edu.tw

Abstract
Exponentiation is to compute XE for a positive integer E and modular exponentiation is to compute XE mod

M for positive integers E and M. When the lengths of the operators are at least 1024 binary representations or
300 decimal digits, modular exponentiation can be time-consuming and is often the dominant part of the
computation in many algebra systems. Since exponentiation is a sequence of multiplications, there are two kinds
of methods to accelerate the speed of modular exponentiation. One is to reduce the number of multiplications
and the other is to accelerate the multiplication itself.

In this paper, we describe some efficient exponentiation methods, which can effectively reduce the number
of multiplications and other methods, which can accelerate multiplication itself respectively. Most importantly,
we also detailed analyze the computational complexity for two kinds of these methods respectively.
Keywords:Public-key cryptosystem, cryptography, variable length nonzero window, modular

multiplication, addition chain.

1. Introduction
The modular exponentiation is a common

operation for most cryptosystems. Most of
cryptographic systems based on modular
exponentiation. Generally, modular exponentiation is
represented using a chain of modular multiplications.
The performance of such cryptosystems is primarily
determined by the implementation efficiency of the
multiplication and the exponentiation. There are two
primary ways to reduce the time on the computation of
modular exponentiation with large operators. One is to
decrease the time to perform basic modular
multiplication [1-4] and the other is to reduce the
number of modular multiplications used to compute
XE [5-8].

In the rest of this paper, we will present and
compare two kinds of methods. Some methods which
reduce the number of multiplications are presented in
Section 2. In Section 3, we present other methods
which accelerate the multiplication itself. In Section 4,
we will use tables for computational complexity
analyses. Finally, some concise conclusions and future
works are given in Section 5.

2. Methods for Reducing the Number of
Multiplications

2.1 Right-to-Left Binary Method
The right-to-left binary algorithm starts at the

least significant bit and works upward. This algorithm

requires an extra data register S to store the middle
variable. Note that modular multiplication and square
in this right-to-left binary algorithm are independent
of one another, and thus two operations at each loop
can be parallelized. Provide that one multiplier and
one squarer available, the running time of the
right-to-left binary algorithm is bounded by the total
time required of computing k modular squares. The
right-to-left binary method is described in Algorithm
1.

Algorithm 1 (Right–to–Left Binary Method)
Input: X, E
Output: XE contained in C
S = X
C = 1
for i=1 to k

{
if (ith binary bit of E is 1)
 then C=C*S /* multiply */
S=S*S /* square */

}

More descriptions of right-to-left binary method

are depicted in [9].

2.2 Exponent-Folding Method
Let the exponent E be iteratively folded in half n

times i.e. E is divided into 2n equal sized substrings.
Let each substring of E be denoted as Ei for i=1, 2, …,

2006 工研院創新與科技管理研討會

 2

2n, i.e. E= 12 2 1|| || ... ||n nE E E− , where “||” is the
concatenation operator and k is the bit length of E.
Hence

2 ((1)())
2

1

()
n

n i

ki EE

i

X sq X
−

=

= ∏ (1)

where sq(m)(Z) represents performing m squares on the
related value Z. Using Horner’s rule [10], Equation (1)
can be transformed as shown in Equation (2).

2 2 1 2 1
() () ()

2 2 2(... ((()) *)... *) *n n n n n

k k k
E E E EEX sq sq sq X X X X−= (2)

We present the variables: _com jE , _(1)com jE + , Ej,
E(j+1), _excl iE , _com iE , and Ei in Equation (3), (4), and
(5).

_ _(1)com j com jE E += =Ej AND E(j+1)
 for j=1, 3, …, 2n-3, 2n-1 (3)

_ _excl i com iE E= XOR Ei for j=1, 2, …, 2n (4)
Each Ei can be represented as shown in Equation (5).

_ _i com i excl iE E E= + (5)

The exponentiation of the consecutive pairs of 2nE
X ,

2 1nE
X − , 1EX can be computed as shown in Equation

(6) and Equation (7).

_ _*j com j excl jE E EX X X= (6)
1 _ _(1)*j com j excl jE E EX X X+ += for j=1, 3, …, 2n-3, 2 n-1 (7)

Let Ey have the binary representation

2n
k

ye *
1

2n
k

ye
−

… 1
ye .

Thus, an efficient algorithm for computing jEX and
1jEX + is depicted as Algorithm 2. The result of jEX

and 1jEX + are kept in C1 and C2 respectively. Based
on Equation (2) and Algorithm 2, the average number
of multiplications F(M) required in exponent-folding
method is shown in Equation (8). Let M denote the
required number of multiplications.

F(M)= 1
2 2

32 (* 1* 2) () (2 1)
2 2 2

n n
n n n
k k kM k−
+ ++ + + − + −

(8)
The exponent-folding method is described in
Algorithm 2.

Algorithm 2 (Exponent-Folding Method)
C1=C2=C3=1
S=X

for b=1 to
2n
k do /* scan from LSB to MSB */

{
 if (_ 1b

excl je =) then C1 =S*C1 /* multiply */

 if (_(1) 1b
excl je + =) then C2 =S*C2 /* multiply */

 if (_ 1b
com je =) then C3 =S*C3 /* multiply */

 S=S*S /* square */
}

 C1= C1*C3

 C2= C2*C3

More descriptions of exponent-folding method

are depicted in [10].

2.3 Exponent-t-Folding Exponent Method
When we compute XE, let the exponent E=

ekek-1ek-2…e1, where ei∈{0, 1} (i=1, 2, …, k), be
divided into t equal-length bit substrings. If k(mod
t)≠0, then E is padded with t-k(mod t) zeros to the left.
Each bit substring of E is denoted as Ei (1≤i≤t), i.e.
E=Et||Et-1||…||E1, where “||” is concatenation operation
among Et, Et-1, …, E1. The corresponding
generalization mini-terms Ecom_j (j=1, 2, …, 2t) have

the binary representations
1

1
__ _*

k k
t t

com jcom j com je e e
⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

The Exponent-t-Folding method can be implemented
as follows.

Step 1. Derive all the generalization mini-terms except

the generalization mini-term _ 2tcomE =

AND 1()t
i iNOT E= from the bit substrings Et,

Et-1, …, E1.
Step 2. Employ the extended right-to-left binary

algorithm to compute the exponentiation

values _1comEX , _ 2comEX , …, _(2 1)tcom
E

X − .
The extended right-to-left binary algorithm
is shown in Algorithm 3.

Step 3. 1EX , 2EX , …, tEX can be constructed in
Equation (9).

Step 4. EX can be evaluated in Equation (10).

2

_
1 , 0_

t

c o m j
j E A N D Ec o m j i b si

E
EX X = ≠=

∑

for i=1, 2, …, t. (9)

1 2 1
(1)*

1

() (... ((()) *)...) *i t t

k k k kt i
E E E E EE t t t t

i

X sq X sq sq sq X X X X−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

=

= =∏

 (1 0)

Algorithm 3 (Extended Right-to-Left Binary
Method)

Input: X, Ecom_1, Ecom_2, …, _(2 1)tcomE −

Output: _1comEX , _ 2comEX , …, _(2 1)tcom
E

X − contained
in C1, C2, …, 2 1tC −

S=X;
C1=1, C2=1, …, 2 1tC − =1

for m=1 to k
t

⎡ ⎤
⎢ ⎥⎢ ⎥

 do /* scan from LSB to MSB */

{
if (_1 1m

come =) then C1=S*C1

if (_ 2 1m
come =) then C2=S*C2

M /* multiply */

2006 工研院創新與科技管理研討會

 3

if (_(2 1) 1t
m
come − =) then 2 1 2 1*t tC S C− −=

 S=S*S /* square */
}

More descriptions of Exponent-t-Folding method

are depicted in [11].

2.4 Variable Length Nonzero Window Method
The variable length nonzero window (VLNW)

partitioning strategy requires that during the formation
of a nonzero window (NW), we switch to ZW when
the remaining bits are all zero. The VLNW
partitioning strategy has two integer parameters:

d: maximum nonzero window length,
q: minimum number of zeros required to switch

to ZW.
This VLNW method proceeds as follows.
ZW: Check the incoming single bit: if it is zero then

stay in ZW; else stay in NW.
NW: Checking the incoming q bits: if they are all zero

then go to ZW; else stay in NW. Let d=1+kq+r
where 1<r≤q. Stay in NW until 1+kq bits are
received. At the last step, the number of
incoming bits will be equal to r. If there r bits
are all zero, then go to ZW; else stay in NW.
After all d bits are collected, check the incoming
single bit: if it is zero, then go to ZW; else go to
NW.

The VLNW partitioning produces nonzero windows
which start with a 1 and end with a 1.
Two nonzero windows may be adjacent. However, the
one in the least significant position will necessarily
have d bits. Two zero windows will not be adjacent
since they will be concatenated. For example, let d=5
and q=2, then 5=1+1*2+2, thus k=1 and r=2. The
following example in binary representation illustrates
the partitioning of a long exponent according to the
above parameters d, q, k, r:
(101 0 11101 00 101 10111 000000 1 00 111 000
1011)2.
Also, let d=10 and q=4, which implies k=2 and r=1.
Another partitioning example is illustrated below:
(1011011 0000 11 0000 1111110101 00 11110111
0000 11011)2.

More descriptions of variable length nonzero
window are depicted in [3].

3. Methods for Accelerating the

Multiplication Itself
3.1 M-ary Method

The computation of XE for a positive integer E is
required in many important applications in computer
science and engineering. Let E=(EkEk-1Ek-2…E2E1) be
the binary expansion of the exponent E, where n is the
number of bits in the binary expansion of E. This
representation of E is partitioned into n words of
length d, such that nd=k. The exponent is padded with
at most d-1 zeros, if d does not divide k. We define

1

1 2
0

(...) 2
id j

d
j

i id d id d id
j

F E E E E
+

−

+ − + −
=

= = ∑ (11)

such that 0≤Fi≤2d-1 and
1

2
i

n
id

i
E F

=

= ∑ . The m-ary

method first computes the values of XW for W=2, 3, …,
2d-1. The exponent E is then scanned d bits at a time
from the most significant to the least significant. At
each step, the partial result is raised to the 2d power
and multiplied with iFX where Fi is the current
nonzero word. The m-ary method is described in
Algorithm 4.

Algorithm 4 (The m-ary Method)
Input: X, E
Output: y=XE
Compute and store Xw for all w=2, 3, 4, …2d-1.
Decompose E into d-bit words Fi for i=1, 2, …, n.

1kFy X −=
for i=n-1 downto 1
 {
 2 d

y y=
 if Fi≠0 then y=y* iFX
 }
return y

It requires 2d-2 preprocessing multiplications and the
number of multiplication operations is equal to
(n-1)d=k-d in Algorithm 4. We perform a
multiplication if Fi≠0. Since 2d-1 out of 2d values of Fi
are nonzero, the average number of multiplications
required is (n-1)(1-2-d) in Algorithm 4. Thus, we find
the average number of multiplications as Equation
(12).

(,) 2 2 (1)(1 2)d dkT k d k d
d

−= − + − + − − (12)

The average number of multiplications for the
binary method can be found simply by substituting
d=1 in Equation (12), which gives T=1.5(k-1). Also
note that there exists an optimal value for each n such
that T(k, d) is minimized. The optimal values of d can
be found by enumeration [12, 13].

More descriptions of m-ary method are depicted
in [3].

3.2 Addition Chain Method

Computing the shortest addition is an
NP-complete problem [14], but we see Knuth’s
method [12] for an excellent introduction to addition
chains. Therefore we can find near optimal ones.

An addition chain for the binary representation of
positive integer r is a list of positive integers

a1=1, a2, …, al=r,
such that, for each i>1, there is some j and k with
1≤j≤k<i and ai= aj+ ak. A short addition chain for r
gives a fast algorithm for computing gr: compute

2ag , 3ag , ..., 1lag − , rg .
Let l(r) be the length of the shortest addition

chain for r. The exact value of l(r) is known only for
relatively small values of r. When r is large, l(r) is

2006 工研院創新與科技管理研討會

 4

shown in Equation (13).
log log() log ()

log log log log
r rl r r O

r r
= + + (13)

The lower bound was shown by Erdos’ method [15]
using a counting argument. The upper bound is just
the binary algorithm [12].

For example, the standard (binary) addition chain
[12] for the number 15 has length 6:

1 2 3 6 7 14 15.
There is, however, a chain of length 5 that produces
15:

1 2 3 6 12 15.
This means that one can compute X15 from x in 5
multiplications.

Naturally we are interested in addition chain with as
small a length as possible. Knuth’s method [12] is
capable of producing an addition chain for a 512-bit
number of length 605 on average. This is an
improvement of 21% over the binary algorithm
(which has length 768 on average) and an
improvement of 5% over Knuth’s 5-window
algorithm.

More descriptions of addition chain method are
depicted in [16-18].

4. Computational Complexity

In this section, we will present the computational
complexity performance comparisons of many
methods described as above and some other related
methods shown in recent researches [19-26]. We
distinguish two kinds of methods to compute the
computational complexity. One is to reduce the
number of multiplications and the other is to
accelerate the multiplication itself.

For the first situation, as we know, the squaring
operations can be regarded as a case of multiplication
operations. For clarity, the modular reductions and the
processes of using lookup tables can be omitted. So
we make a table for comparisons of different methods
as shown in Table 1, where k is the bit length of the
exponent and r is the radix. In order to measure the
speed of the modular multiplication, modular
exponentiation, etc., we use the numbers of modular
multiplications to express the speed-up efficiency [12,
27, 30-34].

For the second situation, we use the area and the
time to show the differences between methods [19-20,
23-26, 35-39] as shown in Table 2 and Table 3.
Sometimes we use interpolation and extrapolation
methods to estimate the result for 1024-bit size as
shown in Table 4. In Table 2, 3, and 4, the unit of area
is the numbers of 2-input NAND. The area for one
Logic gate of 2-input NAND is 2.73*10-6 mm2.

Table 1. Comparisons for computational
complexities of modular multiplications

(k:exponent, r: radix).

Methods The number of
Multiplications

Lou-Wu [33]
3 2

2
3 2 1 *

(1)
r r r k

r r
+ − +

+

Lou-Wu [27] 0.689k+11
Lou-Wu-Chen [31] (29k/36)+3

Avizienis [34] 1.292k
Yen [32] 1.292k

Yen and Laih [30] 1.375k+3
D. E. Knuth [12] 1.5k

Table 2. Comparisons of the area and the time for
16, 32, 64, and 128 bits.

Author Area Time Size

Wang-Lin [35] 172 0.00142ns 16bits
Lee-Yoo [25] 367 0.00145ns 16bits

Srikanthan-Lam-
Suman [20] 107.67 0.99ns 16bits

Wang-Lin [35] 240 0.00286ns 32bits
Lee-Yoo [25] 586 0.00289ns 32bits

Srikanthan-Lam-
Suman [20] 244.16 1.1ns 32bits

Wang-Lin [35] 220 0.00574ns 64bits
Lee-Yoo[25] 735 0.00577ns 64bits

Srikanthan-Lam-
Suman [20] 516.62 1.25ns 64bits

Yeh-Reed-Truong[36] 1260 1.8ns 64bits
Srikanthan-Lam-

Suman [20] 1061.61 1.4ns 128bits
Nedjah-Mourelle [24] 3179 3.3ns 128bits
Yeh-Reed-Truong[36] 2991 2.5ns 128bits
Nedjah-Macedo [23] 259 23ns 128bits

Table 3. Comparisons of the area and the time for
256, 512, and 768 bits.

Author Area Time Size

Srikanthan-Lam-
Suman [20] 2011.13 1.59ns 256bits

Nedjah-Mourelle [24] 4004 6.6ns 256bits
Yeh-Reed-
Truong [36] 4074 8.9ns 256bits

Blum-Paar[37] 1180 19.7ns 256bits
Nedjah-Macedo [23] 304 42ns 256bits
Nedjah-Mourelle [24] 5122 7.1ns 512bits

Blum-Paar [37] 2217 19.5ns 512bits
Nedjah-Macedo [23] 492 76ns 512bits
Nedjah-Mourelle [24] 6278 8.3ns 768bits

Blum-Paar [37] 3275 20ns 768bits
Nedjah-Macedo [23] 578 82ns 768bits

2006 工研院創新與科技管理研討會

 5

Table 4. Comparisons of the area and the time for
1024 bits.

Author Area Time

Wang-Lin [35] 3520 0.0922ns
Srikanthan-

Lam-Suman [20] 7708.25 2.73ns

Nedjah-Mourelle [24] 7739 8.9ns
Blum-Paar [37] 4292 18ns

Yeh-Reed-Truong [36] 10572 47.3ns
Yile-Xingjun [19] 8050 114ns

Nedjah-Macedo [23] 639 134ns
Yang-Wu-Zhou [38] 9100 160ns
Kwon-You-Heo [39] 46000 325ns

5. Conclusions and Future Works

An efficient computation of the modular
exponentiation is very important and useful public-key
cryptosystems. We know many researchers are
devoted to reducing the number of multiplications and
improving the hardware design in computer
algorithms for information management and network
security usages.

Now there are still many novel methods issued in
many computer security journals [11, 26-28] and
reports for computer arithmetic operations and
theoretical analyses. In the future, we will incorporate
modular arithmetic and some novel techniques
(including hardware and software design) to
effectively perform overall RSA evaluation (the
number of multiplications or accelerate the
multiplication itself respectively) for modern
cryptographic applications.

References
[1] J. Bos and M. Coster, “Addition chain

heuristics,” Advances in
Cryptology-CRYPTO'89, LNCS 435,
Springer-Verlag, 1990, pp. 400-407.

[2] P. Downey, B. Leong, and R. Sethi, “Computing
sequences with addition chains,” SIAM Journal
of Computing, Vol. 10, No. 3, pp. 638-646,
1981.

[3] C. K. Koç, “Analysis of sliding window
techniques for exponentiation,” Computers &
Mathematics with Applications, Vol. 30, No. 10,
pp. 17-24, Nov. 1995.

[4] Y. Yacobi, “Exponentiating faster with addition
chains,” Eurocrypt'90, Lecture Notes in
Computer Science 473, Springer Verlag, 1991,
pp. 222-229.

[5] S. M. Hong, S. Y. Oh, and H. S. Yoon, “New
modular multiplication algorithms for fast
modular exponentiation,” In Advances in
Cryptology-EUROCRYPT'96, LNCS 1070,
Springer-Verlag, 1996, pp. 166-177.

[6] P. L. Montgomery, “Modular multiplication
without trial division,” Mathematics of
Computation, Vol. 44, No. 170, pp. 519-521,

April 1985.
[7] H. Morita, “A fast modular-multiplication

algorithm based on a higher radix,” Proceeding
of CRYPTO in Advances in Cryptology, 1990,
pp. 387-399.

[8] C. D. Walter, “Faster modular multiplication by
operand scaling,” Advances in
Cryptology-CRYPTO '91, Lecture Notes in
Computer Science, Springer-Verlag, Vol. 576,
pp. 313-323, 1992.

[9] M. Joye and S.-M. Yen, “Optimal left-to-right
binary signed-digit recoding,” IEEE
Transactions on Computers, Vol. 49, No. 7, pp.
740-748, July 2000.

[10] D.-C. Lou and C.-C. Chang, “Fast
exponentiation method obtained by folding the
exponent in half,” IEE Electronics Letters, Vol.
32, No. 11, pp. 984-985, May 1996.

[11] D.-Z. Sun, Z.-F. Cao, and Y. Sun, “How to
compute modular exponentiation with large
operators based on the right-to-left binary
algorithm,” Applied Mathematics and
Computation, Vol. 176, No. 1, pp. 280-292,
May 2006.

[12] D. E. Knuth, Seminumerical Algorithms, 2nd
Edition, The Art of Computer Programming,
Vol. 2, Addison-Wesley, Reading MA, 1981.

[13] C. K. Koc, “High-radix and bit recoding
techniques for modular exponentiation,”
International Journal of Computer Mathematics,
Vol. 40, No. 7, pp. 139-156, 1991.

[14] P. Downey, B. Leong, and R. Sethi, “Computing
sequences with addition chains,” SIAM Journal
of Computing, Vol. 10, No. 3, pp. 638-646,
1981.

[15] P. Erdos, “On addition chains,” Acta Arithmetic,
Remarks on Number Theory, Vol. III, pp. 77-81,
1960.

[16] J. Bos and M. Coster, “Addition chain
heuristics,” Advances in Cryptology
-CRYPTO'89, LNCS 435, Springer-Verlag, pp.
400-407, 1990.

[17] D. M. Gordon, “A survey of fast exponentiation
methods,” Journal of Algorithms, Vol. 27, No. 1,
pp. 129-146, April 1998.

[18] N. Nedjah and L. M. Mourelle, “Efficient and
secure cryptographic systems based on addition
chains: Hardware design vs. software/hardware
co-design,” to be appeared in Integration the
VLSI Journal.

[19] S. Yile and W. Xingjun, “An area efficient
modular arithmetic processor,” Proceedings of
5th International Conference on ASIC, Vol. 2,
Oct. 2003, pp. 1273-1276.

[20] T. Srikanthan, S. K. Lam, and M. Suman,
“Area-time efficient sign detection technique for
binary signed-digit number system,” IEEE
Transactions on Computers, Vol. 53, No. 1, pp.
69-72, Jan. 2004.

[21] M. E. Kaihara and N. Takagi, “A hardware

2006 工研院創新與科技管理研討會

 6

algorithm for modular multiplication/division,”
IEEE Transactions on Computers, Vol. 54, No.
1, pp. 12-21, Jan. 2005.

[22] N. Nedjah and L. M. Mourelle, “A review of
modular multiplication methods and respective
hardware implementations,” Informatica, Vol.
30, No. 1, pp. 111-129, 2006.

[23] N. Nedjah and L. M. Macedo, “Reconfigurable
hardware implementation of Montgomery
modular multiplication and parallel binary
exponentiation,” Proceedings of the Euromicro
Symposium on Digital System Design, pp.
226-233, Sept. 2002.

[24] N. Nedjah and L. M. Mourelle, “Fast
reconfigurable systolic hardware for modular
multiplication and exponentiation,” Journal of
Systems Architecture, Vol. 49, No. 7-9, pp.
387-396, Oct. 2003.

[25] W.-H. Lee, K.-J. Lee, and K.-Y. Yoo, “Design
of a linear systolic array for computing modular
multiplication and squaring in GF(2m),”
Computers and Mathematics with Applications,
Vol. 42, No. 1, pp. 231-240, July 2001.

[26] N. Nedjah and L. M. Mourelle, “Reconfigurable
hardware for addition chains based modular
exponentiation,” International Conference on
Information Technology: Coding and
Computing, pp. 603-607, Vol. 1, Apr. 2005.

[27] D.-C. Lou and C.-L. Wu, “Parallel
exponentiation using common-multiplicand-
multiplication and signed-digit-folding
techniques,” International Journal of Computer
Mathematics, Vol. 81, No. 10, pp. 1187-1202,
Oct. 2004.

[28] C.-L. Wu, D.-C. Lou, and T.-J. Chang,
“Computational complexity analyses of modular
arithmetic for RSA cryptosystem,” Proceedings
of the 23rd Workshop on Combinatorial
Mathematics and Computation Theory, Section
C2: Security and Applications, Apr. 2006, pp.
215-224.

[29] Y. Yacobi, “Exponentiating faster with addition
chains,” Eurocrypt'90, Lecture Notes in
Computer Science 473, Springer Verlag, 1991,
pp. 222-229.

[30] S.-M. Yen and C.-S. Laih, “Common-
multiplicand multiplication and its applications
to public key cryptography,” IEE Electronics
Letters, Vol. 29, No. 17, pp. 1583-1584, Aug.
1993.

[31] D.-C. Lou, C.-L. Wu, C.-Y. Chen, “Fast
exponentiation by folding the signed-digit
exponent in half,” Journal Title: International
Journal of Computer Mathematics, Vol. 80, No.
10, pp. 1251-1259, Oct. 2003.

[32] S.-M. Yen, “Improved common-multiplicand
multiplication and fast exponentiation by
exponent decomposition,” IEICE Transaction
Fundamentals, Vol. E80-A, No. 6, pp.
1160-1163, June 1997.

[33] D.-C. Lou and C.-L. Wu, “Parallel modular
exponentiation using signed-digit-folding
technique,” Informatica Vol. 28, No. 2, pp.
197-205, July 2004.

[34] A. Avizienis, “Signed digit number
representation for fast parallel arithmetic,” IRE
Transaction on Electronic Computers, Vol.
EC-10, No. 3, pp. 389-400, Sep. 1961.

[35] C. L. Wang and J. L. Lin, “Systolic array
implementation of multipliers for finite fields
GF(2m), IEEE Transaction Circuits Systems, Vol.
38, pp. 796-800, July 1991.

[36] C. S. Yeh, I. S. Reed, and T. K. Truong,
“Systolic multipliers for finite fields GF(2m),
IEEE Transaction Computer, Vol. C-33, pp.
357-360, Dec. 1984.

[37] T. Blum and C. Paar, “Montgomery modular
exponentiation on reconfigurable hardware,”
Proceedings. 14th IEEE Symposium on
Computer Arithmetic, Vol. 14 No. 16, April
1999, pp. 70-77.

[38] Q. Yang, X. Wu, R. Zhou, and et al, “An
embedded RSA processor for encryption and
decryption,” Proceedings of 4th International
Conference On ASIC, 2001, pp. 356-359.

[39] T.-W. Kwon, C.-S. You, W.-S. Heo, and et al,
“Two implementation methods of a 1024-bit
RSA cryptoprocessor based on modified
Montgomery algorithm”, IEEE International
Symposium on Circuit and Systems, pp. 650,
2001.

