題名: A Domain Ontology Learning Approach Based on Soft-computing Techniques
其他題名: 基於軟式計算技術之領域實體論學習方法
作者: Kao, Yuan-Fang
關鍵字: Ontology Learning
Chinese Natural Language Processing,
Episode Mining
Soft-computing
期刊名/會議名稱: 中華民國92年全國計算機會議
摘要: Ontology is increasingly important in knowledge management and Semantic Web. The problem of it is that the construction of ontology is a time-consuming job and ontology engineers need to spend much time to maintain it. In this paper, we propose an incremental domain ontology learning method. This method can effectively extract new information from new domain documents to update the schema of domain ontology and make the knowledge base of domain ontology more complete based on a constructed domain ontology. First, we use schema of domain ontology to extract candidate instances. We also use genetic algorithm to learn the knowledge base of fuzzy inference. The three-layer parallel fuzzy inference mechanism is further applied to obtain new instances for ontology learning. In addition, new attributes, operations, and associations will be extracted based on episodes and morphological analysis to update the domain ontology
日期: 2006-05-30T09:08:49Z
分類:2003年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
WS_050200366.pdf123.1 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。