題名: Quantitative Analysis of Alternative Splicing Forms from EST Database
作者: Yu, Po-Shun
關鍵字: 分群法
相似度
資料新增
期刊名/會議名稱: 中華民國92年全國計算機會議
摘要: 分群是一種將相似的物件或是屬性分類 到同一群的過程,傳統的分群技術大都採用計 算物件與物件之間的”相似度”來進行分群,而 相似度的計算多以物件間的距離為基礎,例如: 歐幾里得距離等等。Haixun Wang 等人在[5] 提出了一個新的分群模型”pCluster”,有別以 往的分群法,兩個物件之間是否相似,取決於 它們維度中的子集是否有相同起伏的區塊。如 何在大量資料中準確、有效率的找出這樣的 群,便成了一個很有趣的問題。在本篇論文 中,提出一個新的演算法:pCluster+,使得處 理pCluster 的問題更為快速,同時也提出解決 資料量新增(Incremental)問題的方法。經過我 們實驗証明,本篇論文所提出的方法都要比原 來的pCluster 方法快上好幾倍。
日期: 2006-06-08T06:22:36Z
分類:2003年 NCS 全國計算機會議

文件中的檔案:
檔案 描述 大小格式 
BI_0182003148.pdf88.75 kBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。